Deterministic Program — The While Program

Shangping Ren

Department of Computer Science
Illinois Institute of Technology

February 24, 2014
Outline

1. Verification
 - Total Correctness: Proof System TW

2. Developing Programs

3. Proof Outlines
 - Weakest Preconditions and Strongest Postconditions
Proof System (TW)

Axiom 1: Skip : the same as in PW
Axiom 2: Assignment : the same as in PW
Rule 3: Composition : the same as in PW
Rule 4: Conditional : the same as in PW
Rule 5: Loop : different from PW (given as Rule 7)
Rule 6: Consequence : the same as in PW
Rule 7 : Total Correctness for Loops

\[
\begin{align*}
\{p \land B\} & \quad S \quad \{p\}, \\
\{p \land B \land t = z\} & \quad S \quad \{t < z\}, \\
p \rightarrow t \geq 0 & \\
\hline
\{p\} & \quad \text{while } B \text{ do } S \text{ od} \quad \{p \land \neg B\}
\end{align*}
\]

Where \(t \) is an integer expression and \(z \) is an integer variable that does not occur in \(p, B, t, \) or \(S \).

Why are we talking about variables that don’t exist?
Example 2, Revisited – Verify the Total Correctness

$DIV \equiv$

\begin{verbatim}
quo := 0;
rem := x;
while rem >= y do
 rem := rem - y;
 quo := quo + 1
od
\end{verbatim}

Verify under total correctness:

\[
\{ x \geq 0 \land y > 0 \} \rightarrow DI V \{ quo \cdot y + rem = x \land 0 \leq rem < y \}
\]
Example 2, Revisited — Verify the Total Correctness

\[\text{DIV} \equiv \]

\begin{align*}
\text{quo} & := 0; \\
\text{rem} & := x; \\
\text{while} \rem \geq y \text{ do} \\
& \quad \rem := \rem - y; \\
& \quad \text{quo} := \text{quo} + 1 \\
\text{od}
\end{align*}

\text{inv: } p \equiv \text{quo} \cdot y + \text{rem} = x \land \text{rem} \geq 0 \land y > 0;

\text{B: } B \equiv \text{rem} \geq y;

\text{bd t: } t \equiv \text{rem};

\text{z: } \text{an integer variable that does not occur in } p, B, t, \text{ and } \text{DIV}
Example 2, Revisited – Verify the Total Correctness

inv: \(p \equiv quo \cdot y + rem = x \land rem \geq 0 \land y > 0; \)

B: \(B \equiv rem \geq y; \)

bd t: \(t \equiv rem; \)

z: an integer variable that does not occur in \(p, B, t, \) and \(DIV \)

1. Invariant is established:
\[
\{ x \geq 0 \land y > 0 \} \quad quo := 0; \quad rem := x\{p\}
\]

2. Loop body does not change the loop invariant
\[
\{ p \land B \} \quad rem := rem − y; \quad quo := quo + 1\{p\}
\]

3. Bounded integer decreases after each iteration
\[
\{ p \land B \land rem = z \} \quad rem := rem − y; \quad quo := quo + 1\{rem < z\}
\]

4. Invariant implies bounded integer is non-negative: \(p \rightarrow t \geq 0 \)

5. When it terminates, the postcondition holds
\[
p \land \neg B \rightarrow p \land rem < y
\]
The Five Equations

To do this we need to develop five equations.

1. \(\{ r \} T \{ p \} \)
2. \(\{ p \land B \} S \{ p \} \)
3. \(\{ p \land B \land t = z \} S \{ t < z \} \)
4. \(p \rightarrow t \geq 0 \)
5. \(p \land \neg B \rightarrow q \)
Extended Example

Given an array A, populate array B with the running sum of A.

E.g., if $A = \{1, 1, 2, 3, 4\}$, then $B = \{1, 2, 4, 7, 11\}$.
Proof Outlines for Loops

Partial Correctness

\[
\{ p \land B \} \ S^* \{ p \} \\
\{ \text{inv} : p \} \text{ while } B \text{ do } \{ p \land B \} \ S^* \{ p \} \ \text{ od } \{ p \land \neg B \}
\]

Total Correctness

\[
\{ p \land B \} \ S^* \{ p \}, \quad \{ p \land B \land t = z \} \ S^{**} \{ t < z \}, \\
p \rightarrow t \geq 0 \\
\{ \text{inv} : p \} \{ \text{bd} : t \} \text{ while } B \text{ do } \{ p \land B \} \ S^* \{ p \} \ \text{ od } \{ p \land \neg B \}
\]
The Proof Outline for Total Correctness

We have a program of the form

\[R \equiv T; \text{while } B \text{ do } S \text{ od } \]

satisfying under total correctness

\[\{ r \} R \{ q \} \]

\[\{ r \} \]
\[T ; \]
\[\{ \text{inv: } p \} \{ \text{bd: } t \} \]
\[\text{while } B \text{ do} \]
\[\{ p \land B \} \]
\[S \]
\[\{ p \} \]
\[\text{od} \]
\[\{ p \land \neg B \} \]
\[\{ q \} \]
The Proof Outline for Total Correctness

\{r\}
T ;
\{inv : p \} \{bd : t\}
while B do
 \{p \land B\}
 S
 \{p\}
od
\{p \land \neg B\}
\{q\}

21 \{x \geq y \land y > 0\}
22 \text{quo := 0; rem := x;}
23 \{inv : p}\{bd : rem\}
24 \text{while rem \geq y do}
25 \quad \{p \land rem \geq y\}
26 \quad \text{rem := rem - y; quo := quo + 1}
27 \quad \{p\}
28 \text{od}
29 \{p \land rem < y\}
30 \{quo \cdot y + rem = x \land 0 \leq rem < y\}

where \(p \equiv quo \cdot y + rem = x \land rem \geq 0 \land y > 0\)

Still need to verify the other two promises in Rule 7.
Proof Outlines

Decomposition for the Total Correctness Proof

Proof under total correctness:

\[
\{ p \} S \{ q \}
\]

We can separate the proof process into two steps:

1. Establish a partial correctness formula

\[
\{ p \} S \{ q \}
\]

2. Proof termination with simpler total correctness formula

\[
\{ p \} S \{ \text{true} \}
\]

Axiom A1: Decomposition

\[
\frac{\vdash_p \{ p \} S \{ q \}, \quad \vdash_t \{ p \} S \{ \text{true} \}}{\vdash \{ p \} S \{ q \}}
\]
Auxiliary Axioms and Rules

Axiom A2: Invariance

\[\{ p \} S \{ p \} \]
and

\[\{ r \} S \{ q \} \]

\[\{ p \land r \} S \{ p \land q \} \]

where \(free(p) \cap change(S) = \phi \)

Rule A3: Disjunction

\[\{ p \} S \{ q \}, \{ r \} S \{ q \} \]

\[\{ p \lor r \} S \{ q \} \]

Rule A4: Conjunction

\[\{ p_1 \} S \{ q_1 \}, \{ p_2 \} S \{ q_2 \} \]

\[\{ p_1 \land p_2 \} S \{ q_1 \land q_2 \} \]
Axiom A5: Substitution

\[
\frac{\{p\} S\{q\}}{\{p[u := t]\} S\{q[u := t]\}}
\]

where \(u \not\in \text{var}(S) \land t \not\in \text{change}(S) \).

Axiom A6: \(\exists \)-Introduction

\[
\frac{\{p\} S\{q\}}{\{\exists x : p\} S\{q\}}
\]

where \(x \) does not occur in \(S \) or in \(\text{free}(q) \).
Strengthening Precondition and Weakening Postconditions

- Given a valid triple \(\{p\} S \{q\} \), how can we modify \(p \) and \(q \) and maintain validity?
- if \(p_0 \rightarrow p_1 \) then \(p_0 \) is **stronger than** \(p_1 \) and \(p_1 \) is **weaker than** \(p_0 \).
- Example: \(x = 0 \) is stronger than \(x = 0 \lor x = 1 \) is stronger than \(x \geq 0 \)
- **Consequence Rule**: we can strengthen a precondition and weaken a postcondition.
- What is the strongest predicate? What is the weakest one?
Strengthening Precondition and Weakening Postconditions

Given a valid triple \(\{ p \} S \{ q \} \), how can we modify \(p \) and \(q \) and maintain validity?

- If \(p_0 \rightarrow p_1 \) then \(p_0 \) is **stronger than** \(p_1 \) and \(p_1 \) is **weaker than** \(p_0 \).
- Example: \(x = 0 \) is stronger than \(x = 0 \lor x = 1 \) is stronger than \(x \geq 0 \).

Consequence Rule: we can strengthen a precondition and weaken a postcondition.

- What is the strongest predicate? What is the weakest one?
Strengthening Precondition and Weakening Postconditions

Given a valid triple \(\{ p \} S \{ q \} \), how can we modify \(p \) and \(q \) and maintain validity?

if \(p_0 \implies p_1 \) then \(p_0 \) is stronger than \(p_1 \) and \(p_1 \) is weaker than \(p_0 \).

Example: \(x = 0 \) is stronger than \(x = 0 \lor x = 1 \) is stronger than \(x \geq 0 \)

Consequence Rule: we can strengthen a precondition and weaken a postcondition.

What is the strongest predicate? What is the weakest one?
Strengthening Precondition and Weakening Postconditions

- Given a valid triple \(\{p\} S \{q\} \), how can we modify \(p \) and \(q \) and maintain validity?
- If \(p_0 \rightarrow p_1 \) then \(p_0 \) is **stronger than** \(p_1 \) and \(p_1 \) is **weaker than** \(p_0 \).
- Example: \(x = 0 \) is stronger than \(x = 0 \lor x = 1 \) is stronger than \(x \geq 0 \).
- **Consequence Rule:** we can strengthen a precondition and weaken a postcondition.
- What is the strongest predicate? What is the weakest one?
What about Weakening Preconditions and Strengthening Postconditions?

- If $p \rightarrow p_0$ and $\{p\} S\{q\}$ is valid, can we conclude $\{p_0\} S\{q\}$ is valid?

 Consider $\{x = 0\} y := x \times x \{y = x\}$, what about

 - $\{x = 0 \lor x = 1\} y := x \times x \{y = x\}$ or
 - $\{x \geq 0\} y := x \times x \{y = x\}$

- If $q_0 \rightarrow q$ and $\{p\} S\{q\}$ is valid, can we conclude $\{p\} S\{q_0\}$ is valid?
Definitions about \textit{wlp} and \textit{wp}

Definition: let S be a \textbf{while} program and Φ a set of proper states,

Weakest Liberal Precondition \textit{wlp} of S with respect to Φ:

$$\text{wlp}(S, \Phi) = \{ \sigma | M[S](\sigma) \subseteq \Phi \}$$

Weakest Precondition \textit{wp} of S with respect to Φ:

$$\text{wp}(S, \Phi) = \{ \sigma | M_{\text{tot}}[S](\sigma) \subseteq \Phi \}$$
Definitions about \textit{wlp} and \textit{wp}

\textbf{Definition:} let S be a \textbf{while} program and Φ a set of proper states, Weakest Liberal Precondition \textit{wlp} of S with respect to Φ:

$$\textit{wlp}(S, \Phi) = \{ \sigma | \mathcal{M}[S](\sigma) \subseteq \Phi \}$$

Weakest Precondition \textit{wp} of S with respect to Φ:

$$\textit{wp}(S, \Phi) = \{ \sigma | \mathcal{M}_{\text{tot}}[S](\sigma) \subseteq \Phi \}$$
Theorem about \(wlp \) and \(wp \)

Remember the notation of \(\llbracket p \rrbracket \) ?

Theorem: let \(S \) be a *while* program and \(q \) an assertion. Then the following holds:

1. There is an assertion \(p \) defining \(wlp(S, \llbracket q \rrbracket) \), i.e., with \(\llbracket p \rrbracket = wlp(S, \llbracket q \rrbracket) \)
2. There is an assertion \(p \) defining \(wp(S, \llbracket q \rrbracket) \), i.e., with \(\llbracket p \rrbracket = wp(S, \llbracket q \rrbracket) \).

We also write \(wlp(S, \llbracket q \rrbracket) \) as \(wlp(S, q) \) and \(wp(S, \llbracket q \rrbracket) \) as \(wp(S, q) \)
Weakest Liberal Precondition

The following statements hold for all while programs and assertions:

1. **skip**: $\text{wlp}(\text{skip}, q) \leftrightarrow q$,
2. **assignment**: $\text{wlp}(u := t, q) \leftrightarrow q[u := t]$,
3. **sequence**: $\text{wlp}(S_1; S_2, q) \leftrightarrow \text{wlp}(S_1, \text{wlp}(S_2, q))$,
4. **conditional**: $\text{wlp}(\text{if } B \text{ then } S_1 \text{ else } S_2 \text{ fi }, q) \leftrightarrow (B \land \text{wlp}(S_1, q) \lor (\neg B \land \text{wlp}(S_2, q)))$,
5. **$S \equiv \text{while } B \text{ do } S_1 \text{ od}$**: $\text{wlp}(S, q) \land B \rightarrow \text{wlp}(S_1, \text{wlp}(S, q))$,
6. **$S \equiv \text{while } B \text{ do } S_1 \text{ od}$**: $\text{wlp}(S, q) \land \neg B \rightarrow q$
7. **${p}S{q}$**: $\models {p}S{q} \iff p \rightarrow \text{wlp}(S, q)$
wlp(S, q) as Loop Invariant

Previous slides

(5) \(S \equiv \text{while } B \text{ do } S_1 \text{ od } : \ wlp(S, q) \land B \rightarrow wlp(S_1, wlp(S, q)) \), and

(7) \(\{p\} S \{q\} : \models \{p\} S \{q\} \iff p \rightarrow wlp(S, q) \)

We have \(\models \{wlp(S, q) \land B\} S_1 \{wlp(S, q)\} \), i.e., \(wlp(S, q) \) is a loop invariant of \(S \).
Weakest Precondition

The following statements hold for all *while* programs and assertions:

1. **skip:** $\text{wp}(\text{skip}, q) \leftrightarrow q$,
2. **assignment:** $\text{wp}(u := t, q) \leftrightarrow q[u := t]$,
3. **sequence:** $\text{wp}(S_1; S_2, q) \leftrightarrow \text{wp}(S_1, \text{wp}(S_2, q))$,
4. **conditional:** $\text{wp}(\text{if } B \text{ then } S_1 \text{ else } S_2 \text{ fi }, q) \leftrightarrow (B \land \text{wp}(S_1, q) \lor (\neg B \land \text{wp}(S_2, q)))$,
5. $S \equiv \text{while } B \text{ do } S_1 \text{ od } : \text{wp}(S, q) \land B \rightarrow \text{wp}(S_1, \text{wp}(S, q))$,
6. $S \equiv \text{while } B \text{ do } S_1 \text{ od } : \text{wp}(S, q) \land \neg B \rightarrow q$,
7. $\{p\} S\{q\} : \models_{\text{tot}} \{p\} S\{q\} \text{iff } p \rightarrow \text{wp}(S, q)$
For given p and S, there exists a strongest postcondition q such that $\{p\}S\{q\}$ is valid, i.e.,

- For partial correctness, $\{p\}S\{q\}$ iff $sp(p, S) \rightarrow q$.
- For total correctness, $\{p\}S\{q\}$ iff $sp(p, S) \rightarrow q$ and S terminates on all states of p.
Strongest Postcondition

- For given \(p \) and \(S \), there exists a **strongest postcondition** \(q \) such that \(\{ p \} S \{ q \} \) is valid, i.e.,
- For partial correctness, \(\{ p \} S \{ q \} \) iff \(sp(p, S) \rightarrow q \).
- For total correctness, \(\{ p \} S \{ q \} \) iff \(sp(p, S) \rightarrow q \) and \(S \) terminates on all states of \(p \).
Strongest Postcondition

- For given p and S, there exists a strongest postcondition q such that $\{p\} S\{q\}$ is valid, i.e.,
- For partial correctness, $\{p\} S\{q\}$ iff $sp(p, S) \rightarrow q$.
- For total correctness, $\{p\} S\{q\}$ iff $sp(p, S) \rightarrow q$ and S terminates on all states of p.
Strongest Postconditions for Loop-Free Programs

- \(sp(p, \text{skip}) \equiv p \)
- \(sp(p, u := v) \equiv p[u := u_0] \land u = (v[u := u_0]) \)
- \(sp(p, S_1; S_2) \equiv sp(sp(p, S_1), S_2) \)
- \(sp(p, \text{if } B \text{ then } S_1 \text{ else } S_2 \text{ fi }) \equiv sp(p \land B, S_1) \lor sp(p \land \neg B, S_2) \)
Strongest Postcondition Examples

\[
sp(y \geq 0, x := y) = \equiv y \geq 0[x := z] \land x = (y[x := z]) \\
\equiv y \geq 0 \land x = y
\]

Therefore, we have \(\{y \geq 0\}x := y\{y \geq 0 \land x = y\}\), and the \(y \geq 0 \land x = y\) is the strongest postcondition for the given precondition and the assignment statement.

As \(y \geq 0 \land x = y \rightarrow x \geq 0\), apply consequence rule to \(\{y \geq 0\}x := y\{y \geq 0 \land x = y\}\), we have \(\{y \geq 0\}x := y\{x \geq 0\}\).

The weakest precondition of given post condition \(x \geq 0\) and program \(x := y\) is nevertheless \(y \geq 0\), i.e., \(wp(x := y, x \geq 0) \equiv y \geq 0\).