CARNEGIE MELLON UNIVERSITY

Session-Typed Recursive Processes and

Circular Proofs

Farzaneh Derakhshan

Thesis submitted in partial fulfillment
for the degree of Doctor of Philosophy

Thesis committee:
David Baelde (ENS Cachan)
Stephanie Balzer
Adam Bjorndahl
Frank Pfenning (Chair)
Wilfried Sieg

May 2021

Acknowledgements

First and foremost, I would like to extend my sincerest gratitude and respect to my advisor,
Professor Frank Pfenning, for his kind encouragement, patience, and supervision. It has been
a real privilege being his student, and I have learned a great deal from him. He has been an

excellent role model for me as a researcher, teacher, and person.

My sincere thanks goes to Professor Wilfried Sieg for his constant encouragement, numerous
stimulating discussions, and excellent advice. It has been an honor for me to work with him. I
would like to also express my gratitude to Dr. Stephanie Balzer with whom I have had the plea-
sure of collaborating. Her ideas and her support have provided me with great opportunities. I
would like to thank the other committee members, Dr. David Baelde, and Dr. Adam Bjorndahl,
for serving on the committee and for their valuable feedback. In particular, I appreciate the

detailed discussions with Dr. David Baelde about infinitary proof theory.

I wish to thank Dr. Majid Alizadeh, who first introduced me to proof theory and logic during

my undergraduate studies.

I gratefully acknowledge my colleagues at CMU for their helpful comments and discussions
on topics related to this work: Ankush Das, Henry Deyoung, Zhibo Chen, Jonas Frey, Klaas

Pruiksma, and Siva Somayyajula.

Many thanks to my friends and colleagues, Kendra Chilson, Fernando Larrain Langlois, Zesen
Qian, Egbert Rijke, Elizabeth Viera-Patron, Patrick Walsh, Colin Zwanziger, and many others
for contributing to a friendly and enjoyable atmosphere at the Department of Philosophy. I
express my deep appreciation to my close friends Mate Szabo and Jeff Adams, who kindly
supported me in my path and helped me in any way they could. Without them, I would not

have made it through the first couple of years of graduate school.

There are many others I would like to mention - in no particular order - my friends who sup-
ported me to finish the thesis: Ghazaleh Parvini, Nedah Nemati, Ardeshir Raihanian, Nooshin

Shafaei, Fatemeh mohammadhashem, Marzieh sharifi and many more.

Most importantly, I must express my deepest appreciation to my lovely family. My mother,
Touran Nikpour, and my father, Eskandar Derakhshan, have encouraged me and supported
me with endless love since I can remember, and my dear sisters have always been there for
me. They have been in my heart, even though I could not visit them for more than three years.
Most of my gratitude goes to my spouse, Farshad Ghanei, for his patience and love throughout

these years.

Abstract

Session types describe the communication behavior of interacting processes. Binary session
types, in which each channel has two endpoints, corresponds to intuitionistic linear logic by a
Curry-Howard interpretation of propositions as types, proofs as programs, and cut reduction
as communication. This interpretation provides a solid foundation for reasoning about the be-
havior of session-typed processes. For example, termination of a process can be inferred from
the cut elimination property of its underlying proof. However, as soon as we add recursive ses-
sion types we abandon this correspondence and lose our solid ground. From the programming
perspective it means that we can no longer exploit the cut elimination property to guarantee

termination.

This document establishes a logical foundation for recursive binary session-typed processes
using infinitary proof systems for linear logic. We show that if we refine recursive types as
least and greatest fixed points and impose a guard condition on recursive processes, we can still
guarantee meaningful communication, ensuring that a program always terminates either in an
empty configuration or one attempting to communicate along external channels. To develop
this logical foundation, we appeal to two well-known paradigms that relate programs to logical

systems: types-as-propositions and processes-as-formulas.

Contents

Acknowledgements i
Abstract ii
1 Introduction 1
1.1 Logic and programming languages 1

1.2 Recursion and termination Lo Lo oL 2

13 Ourwork o 3
1.3.1 Design choice: rules for fixed points 4

1.3.2 Design choice: subsingleton fragment 4

133 Ourapproach 5

1.4 Synopsiso 7
Part 1. Prooftheory, 7

Part 2. Session typed processes 8

2 Preliminaries - Proof theory 9
2.1 Abitofhistory. 9

2.2 Sequent calculi for linear logics L Lo 0oL 11
2.2.1 Propositional subsingleton logic. 12

2.2.2 Propositional intutitionistic multiplicative additive linear logic. 14

2.2.3 First-order intutitionistic multiplicative additive linear logic. 15

3 Preliminaries - Fixed points in logic 18
3.1 Abitofhistory. 18

3.2 Mutual fixed points and prioritieso 20

3.3 Subsingleton logic with fixedpoints Lo L. 22

3.4 Classical multiplicative additive linear logic with fixed points (WMALL>™) . . 24

3.5 Otherrelatedwork L 26
3.5.1 Parity games and circular proofs. o L. 26

ii

Contents iv
3.5.2 Otherapproaches. 26

4 First order linear logic with least and greatest fixed points 27
41 Languageandcalculus o 28

4.2 Pattern Matching 33

4.3 A validity condition on first order derivations 35

44 A productive cut elimination algorithm 40

5 Session-typed processes 53
5.1 Background 53

5.2 Session typed processes 54

53 Typingrules L 56

54 Recursive types 57

5.5 Operational semantics. Lo 60
5.5.1 Configurationtyping 60

5.5.2 Synchronous semanticso .. 61

5.5.3 Asynchronous semantics L. 61

5.6 Typesafety 62

5.7 Strong progress 64

6 Strong progress as termination of cut elimination 67
6.1 Ensuring communication and a local guard condition 68

6.2 Alocal guard algorithm: naive version 72

6.3 Priorities in the local guard algorithm 75

6.4 Mutual Recursion in the Local guard algorithm 80

6.5 Amodifiedruleforcut 84

6.6 Typing rules for session-typed processes with channel ordering 87

6.7 Alocal guard condition 88

6.8 Local guard condition and FS validity 92

6.9 Computational meta-theory 106
6.10 Incompleteness of guard conditions L. 107

7 Strong progress as a predicate 110
7.1 Background on processes as formula 0oL 110

7.2 Typing rules for session-typed processes 112

7.3 Asynchronous Semantics Lo oL 115

7.4 A predicate for strong progress. 120

7.5 A direct proof for strong progress oL 121

Contents v
8 Implementation 136
8.1 Syntax 136
8.2 Reconstruction of fixedpoints L 137
8.3 Terminationchecking 138
84 Examples 138
9 Conclusion 140
9.1 Strong progress as a logical relation o L. 140
9.2 A more general guard condition for the subsingleton fragment 141
9.3 Recursive binary session types in linear logic 142
9.4 Linear logic with adjoint modalities 142
Bibliography 143

Chapter 1

Introduction

Proof theory as we know it today is built upon Hilbert’s efforts to prove the consistency of
mathematics. Hilbert’s radical foundational goal to prove consistency was abandoned after
Godel presented his incompleteness theorems; however, the logical structure further estab-
lished based on Hilbert’s efforts became a foundation for computer science and particularly
programming languages. Proof theory has heavily influenced the development of program-
ming languages and provided new insights into designing new computational systems. This

thesis exploits this foundation to study termination of concurrent recursive programs.

1.1 Logic and programming languages

Two main paradigms have endorsed the foundational role of logical proofs in formalizing pro-

gramming languages: types-as-propositions and programs-as-formulas.

+ The types-as-propositions paradigm, also known as Curry-Howard correspondence,
has its roots in Curry’s [20] discovery that axiomatic schemas correspond to types of
combinators and Howard’s [56] interpretation of simply-typed A-calculus in intuitionis-
tic natural deduction. Under this interpretation, types correspond to propositions, pro-

grams to proofs, and computations to proof reductions.

The (simply-typed) A-calculus is the original (statically-typed) functional programming
language introduced by Church [19]. Like all other functional programming languages,
the (simply-typed) A-calculus emphasis is on interpreting the computation as the eval-
uation of a function. Evaluating functions in nature gives rise to a model with a uni-
directional flow from the inputs to the output. This uni-directional flow results from
the asymmetric behavior of functions toward their inputs and output. The asymmetry
manifests itself in the corresponding natural deduction system too, where all logically

genuine rules apply to the succedents.

Introduction 2

More recently, a correspondence between linear logic [41] and binary session types (ei-
ther in its intuitionistic [15, 16] or classical [98] formulation) has been recognized. Ses-
sion types provide a typed foundation for communication centered programming (CCP).
As opposed to the uni-directional nature of functions, the structural units of CCP are
bi-directional communicating sessions (or processes) connected by channels. The com-
munications along channels are governed by a protocol associated with them. These
protocols are expressed as session types. A collection of interrelated processes is called
a configuration. Binary session types, is a particular form of session types in which each
channel has two endpoints. A binary channel connects the provider of a resource to its
client. When such a channel connects two processes within a configuration of processes
it is considered internal and private; other external channels provide an interface to a

configuration and communication along them may be observed.

Caires and Pfenning [15] interpret a binary session type system as a Gentzen-style se-
quent calculus for intuitionistic linear logic. Under this interpretation, propositions are
associated with session types, proofs in the sequent calculus with concurrent processes,
and cut reduction with communication. They show that the left and right rules for each
connective in the linear logic capture a principal action in session types, e.g., sending or

receiving a label/channel to or from the left and right.

The Curry-Howard correspondence provides a solid ground for studying and reasoning
about programming languages. For example, proving deadlock freedom for interrelated
binary session-typed processes follows from cut-reduction for each connective in the
underlying sequent calculus. Moreover, a terminating cut-elimination algorithm for the

underlying proofs ensures termination of concurrent processes

» Logic programming, in general, expresses programs as formulas and computation as
proof construction. As a particular case, Miller [68] introduced the processes-as-formulas
paradigm to express processes in the 7m-calculus as formulas in linear logic. His approach
is based on the observation that linear logic is a suitable interface between computer sci-
ence and logic; it can model the dynamics of processes by describing the state of a process
and its resources as a linear formula. In this interpretation, a computation of a process
corresponds to the construction of its corresponding formula proof, and logical implica-
tion gives rise to a process preorder. This approach has been used to prove properties
about processes, e.g., proofs of deadlock-freedom for (recursive) session types [54], and

bisimilarity for m-calculus processes [96].

1.2 Recursion and termination

In the context of programming, recursive session types and recursive processes have also been
considered [60, 97]. Together they can capture unbounded interactions between processes.
They seem to fit smoothly, just as recursive types fit well into functional programming lan-

guages. However, this comes at a price: we abandon the proposition-as-types correspondence.

Introduction 3

From the programming perspective it means that we can no longer exploit the cut elimination

property to guarantee termination of programs.

Even in the presence of the recursive session types and recursively defined processes, the pro-
cess typing rules guarantee deadlock-freedom, also known as the progress property [15, 97].
The progress property for a configuration of processes ensures that during its computation, it
either (i) takes an internal communication step, or (ii) is empty, or (iii) communicates along
one of its external channels. However, we may spawn a vacuous process that will get stuck
in an infinite number of internal communication steps without ever communicating along an
external channel. The programmer will generally be interested in a stronger form of progress
that restricts this non-communicating behavior. We introduce strong progress that requires
any of conditions (ii) or (iii) to hold after a finite number of computation steps. This strong
version of the progress property ensures that a configuration terminates either in an empty

configuration or one attempting to communicate along an external channel.

This is similar to the functional programming setting with general recursive types. Without
any restrictions on the programs or types, a well-typed program may diverge and never return

a value.

1.3 Owur work

The main thesis can be summarized as follows:

Even in the presence of recursion, we can retain the propositions-as-types correspon-
dence between linear logic and session-typed concurrent programs if we (a) refine
general recursive session types into least and greatest fixed points, and (b) impose con-
ditions under which recursively defined processes correspond to valid circular proofs.
With this approach we can retain the correspondence between cut elimination, and

meaningful communication with type preservation and strong progress.

General (nonlinear) type theory has followed a similar path, isolating inductive and coinductive
types with a variety of conditions to ensure validity of proofs. Mendler [65, 66] first formal-
ized inductive and coinductive types in simply-typed lambda calculus. He imposed a simple
positivity condition on types and proved normalization of the calculus. The recursion schema
introduced by Mendler resembles general recursion, but its power is limited to primitive re-
cursion [65] through typing. Moreover, the use of Mendler’s recursive types is restricted in the
sense that it can reason about recursive types using the recursion principle but cannot unfold
their definitions directly. Our system resembles Mendler-style languages as we also introduce
inductive and coinductive types to our language. However, in contrast to Mendler’s system,
our language has the full power of general recursion schema, and we unfold the definition
of the inductive and coinductive types directly both on the left and right of the judgment.

Moreover, in the setting of linear logic, we find many more symmetries than typically present

Introduction 4

in traditional type theories that appear to be naturally biased towards least fixed points and

inductive reasoning.

1.3.1 Design choice: rules for fixed points

There are two main approaches for incorporating fixed points in a linear logic proof system.
One approach studied by Baelde and Miller [8] yields a finitary system that enjoys the cut elim-
ination property but not the sub-formula property. The other approach results in an infinitary
system that maintains the sub-formula property but not necessarily the cut elimination prop-
erty [7, 33, 36]. The infinitary systems for linear logic are always equipped with additional
conditions on derivations to ensure the cut elimination property. We can represent some in-

finitary derivations, called circular derivations, as finite trees with loops (or circular edges).

We choose to build the typing rules for least and greatest fixed points of session types upon
an infinitary proof system since it requires a minimal change to the system of session types.
This is in contrast to the design choice made by Lindley and Morris [60] to build their system
for recursive session-typed processes based on the finitary system introduced by Baelde and
Miller [8]. In our design, the recursive process calls are supported as they correspond to circular
edges in the derivation. Moreover, the left and right unfolding rules for general recursive types
remain intact when refined into least and greatest fixed points; the left and right rules for both
fixed points unfold the definition of a recursive type. The rules of least and greatest fixed points
are only differentiated by their different semantics. As a drawback, we need to provide an extra

condition on the processes to ensure strong progress.

A similar design choice exists when considering inductive and coinductive types in the setting
of functional programming. One may choose to work with an infinitary system that requires
additional guard conditions but is closer to the recursive programming schema, or a finitary

system with a simpler condition but not ergonomically suitable for implementing recursion.

1.3.2 Design choice: subsingleton fragment

Subsingleton logic is a fragment of intuitionistic linear logic [18, 41] in which the antecedent
and succedent of each judgment consist of at most one proposition. This reduces consideration
to the additive connectives and multiplicative units, because the left or right rules of other
connectives would violate this restriction. The expressive power of pure subsingleton logic is
rather limited, among other things due to the absence of the exponential ! A. However, we can
recover significant expressive power by adding least and greatest fixed points, which can be

done without violating the subsingleton restriction.

In this thesis we focus mainly on binary session types defined over the subsingleton fragment
of linear logic. In this fragment each process uses the service of at most one process on its left

and provides its own resource to the right. Moreover, we allow least and greatest fixed points

Introduction 5

and recursively defined processes that correspond to circular derivations in the underlying
logic. The computational power of the subsingleton fragment in the presence of recursion is

surprisingly as good as Turing machines [31].

We think of the subsingleton fragment as a laboratory in which to study the properties and
behaviors of least and greatest fixed points in their simplest nontrivial form, following the

seminal work of Fortier and Santocanale [36].

1.3.3 Our approach
Our approach toward the thesis involves several layers:

1. The first step is to build prior work on infinitary linear logics with fixed points, and
form a Curry-Howard correspondence between them and binary session types. We build
the correspondence upon the infinitary system introduced by Fortier and Santoconale
[36, 83] for singleton logic, a fragment of intuitionistic logic in which the antecedent

consists of exactly one formula [27].

Fortier and Santoconale [36, 83] extend the sequent calculus for singleton logic with
rules for least and greatest fixed points. A naive extension, however, loses the cut elimi-
nation property (even when allowing infinite proofs) so they call derivations pre-proofs.
Circular pre-proofs are distinguished as a subset of derivations which are regular in the
sense that they can be represented as finite trees with loops. Fortier and Santocanale
then impose a validity condition on pre-proofs to single out a class of pre-proofs that
satisfy cut elimination. Moreover, they provide a cut elimination algorithm and show its
productivity on valid derivations. In this thesis we call a pre-proof FS-valid if it satisfies

Fortier and Santocanale’s condition.

We establish a correspondence between (mutually) recursive session-typed processes
and circular pre-proofs in subsingleton logic with fixed points. We introduce a guard
condition to check a stricter version of the FS-validity condition. Our condition is local
in the sense that we check each process separately to be guarded, and it is stricter in the

sense that it accepts a proper subset of the processes with an underlying valid proofs.

We further introduce a synchronous computational semantics of cut reduction in
subsingleton logic with fixed points in the context of session types, based on a key step
in Fortier and Santocanale’s cut elimination algorithm which is compatible with prior
operational interpretation of session-typed programming languages [97]. We show that
the strong progress propertyfor session typed programs corresponds to productivity of the
cut elimination property for their underlying derivations. Since the FS-validity condition
satisfies productivity of cut elimination, our local guard condition ensures the strong

progress property.

2. One shortcoming of building our local guard condition upon the FS-validity condition

is that we cannot capture some interesting programs, although they enjoy the strong

Introduction 6

progress property. Of course, as a corollary to the halting problem, no decidable guard
condition can recognize all programs with the strong progress property. But, our goal
is to capture more programs with this property as long as the guard condition is still

effective, local, and elegant.

For generalizing the guard condition, we need to prove the strong progress property
directly. The first step towards this goal is to formalize strong progress as a predicate in-
dependent from cut elimination of its underlying derivation, and prove it in a metalogic.

Here is where our subgoal arises:

« New metalogic. To carry out our argument in a metalogic we need a calculus in
which we can easily embed session-typed processes and define their operational
behavior, which strongly suggests a linear metalogic. Moreover, the formaliza-
tion of strong progress inherits the need for using nested least and greatest fixed
points from the session types that it is defined upon. Furthermore, we must be able
to prove properties formalized using nested fixed points. For these reasons, we
decided to introduce a new metalogic: a calculus for first order intuitionistic mul-
tiplicative additive linear logic with fixed points and infinitary proofs [28]. Our
metalogic also supports term equality. To avoid the general unification problem in
the presence of higher-order terms with binding operators, which is undecidable
and non-deterministic, we use higher-order patterns in the sense of Miller [67].
Miller’s higher-order patterns inherit the good properties of first-order unification,
e.g. alinear-time decision procedure and existence of most general unifiers, and are

sufficient in many applications where representation requires binding operators.

For data types mutually defined by induction and coinduction the separate prin-
ciples of induction and coinduction are insufficient. One recent approach in type
theory integrates induction and coinduction by pattern and copattern matching
and explicit well-founded induction on ordinals [2], following a number of earlier
representations of induction and coinduction in type theory [1]. Here, we pursue
a different line of research in linear logic with fixed points. Our goal is to intro-
duce a sequent calculus to reason about linear predicates defined as nested least
and greatest fixed points. Instead of applying induction and coinduction principles
directly, we follow the approach of Brotherston et al. [12] to allow circularity in
derivations. Unlike Brotherston’s calculus which only has least fixed points, we
consider nested least and greatest fixed points. To ensure soundness of the proofs
we impose a validity condition on our derivations. We generalize the cut elimina-
tion algorithm introduced by Fortier and Santocanale for infinitary singleton logic
with fixed points to our setting. We prove that this algorithm is productive on first
order valid derivations and produces a cut-free (possibly infinite) valid proof pro-
ductively. An algorithm is productive if every piece of its output is generated in a

finite number of steps.

Our metalogic and the validity condition imposed upon its derivations are a gener-

alization of Fortier and Santocanale’s singleton logic and their validity condition,

Introduction 7

respectively. Baelde et al. [7, 33] introduced a validity condition on the pre-proofs
in multiplicative-additive linear logic with fixed points and proved cut-elimination
for valid derivations. Our results, when restricted to the propositional fragment,
differ from Baelde et al’s in the treatment of intuitionistic linear implication (—o)
versus its classical counterpart (’®). In Chapter 4, we will compare our work with

Baelde et al’s in more detail.

We follow the approach of processes-as-formulas to provide an asynchronous semantics
for session-typed processes and a predicate for strong progress indexed by session types
in our metalogic. We carry out the proof of strong progress in the metalogic [28]. In this
logic, we can build an elegant derivation for the strong progress property of a process
with clearly marked (simultaneous) inductive and coinductive steps. We form a bisim-
ulation between the resulting metalogical derivation and the process typing derivation.
This helps us to better understand the interplay between mutual inductive and coinduc-
tive steps in the proof of strong progress, and how they relate to the behavior of the
program. Finally, we show that for a guarded process this derivations ensures strong

progress of the process when executed with any synchronous scheduler.

We use this proof technique as a case study of the guard criterion established in prior
step, but also of how to prove properties of programming languages in a metalanguage

with circular proofs.

1.4 Synopsis

This thesis is split into two parts. The first part is dedicated to proof theory of infinitary systems
for linear logic with fixed points. In the second part, we focus on the strong progress property

of session-typed processes.

Part 1. Proof theory

+ Chapter 2 provides a brief history of sequent calculus and a discussion on the importance
of cut elimination. We review the proof system of a few linear logics that are of inter-
est in this thesis: subsingleton logic, multiplicative additive linear logic, and first-order

multiplicative additive linear logic.

+ Chapter 3 provides a brief history of fixed-points in proof theory. We review the lit-
erature that generalizes linear logic to reason with least and greatest fixed points. We
recall the system for infinitary subsingleton logic with fixed points [36] and infinitary

multiplicative additive linear logic with fixed points [7, 33].

+ Chapter 4 introduces our infinitary system for first order multiplicative additive linear
logic (FIMALL,’,). We describe our validity condition on derivations and provide a cut-

elimination algorithm for valid derivations.

Introduction 8

Part 2. Session typed processes

+ Chapter 5 provides a background on session types. We recall the typing rules, operational
semantics, and the type safety properties of session-typed processes. We also extend the
Curry-Howard correspondence of derivations in infinitary subsingleton logic with fixed

points as recursive communicating processes.

« Chapter 6 presents our local guard condition to check a stricter version of the Fortier and
Santocanale’s validity condition. Our condition is local in the sense that we check each
process definition separately, and it is stricter in the sense that it accepts a proper subset
of the processes that their underlying proofs are recognized by the FS validity condition.
We provide a proof for strong progress of guarded subsingleton session-typed processes

based on the Curry-Howard correspondence built in Chapter 5.

« Chapter 7 revisits strong progress for session-typed processes. Following the processes-
as-formulas approach, we formalize strong progress as a predicate in FIMALL’, defined
using mutual least and greatest fixed points. We provide an infinitary proof for this

predicate when defined over guarded processes in FIMALL,;,.

 Chapter 8 briefly describes an implementation of our local guard condition for subsin-

gleton session-typed processes in SML.

In Chapter 9 we conclude this thesis by discussing future lines of work.

Chapter 2
Preliminaries - Proof theory

This chapter reviews the foundations of proof systems of different logics used in this thesis. In
the next chapter, we review the literature that generalizes these systems to reason with least

and greatest fixed points.

2.1 A bit of history

The history of proof theory goes back to 1920, when Hilbert was pursuing formalizability of
mathematics as part of his program. Hilbert and Bernays introduced the original natural de-
duction as an axiomatic proof system with axioms to eliminate and introduce each connective
[49, 50]. Gentzen articulates these axioms as the introduction and elimination rules for each
connective [39]. In Gentzen’s Natural Deduction (ND), proofs are structured as trees. It has a
novel feature that allows adding and discharging assumptions. The nodes in ND are sequents
of the form I' - A, meaning that the proof of succedent formula A uses the assumptions in the
set of formulas I'. The genuinely logical actions in both elimination and introduction rules are
taking place on the right (succedent A). Here we only formalize introduction and elimination

rules for disjunction:

A I'-B
oI I'-(A®B) and T'+ (A® B)

I'(AeB) T,A-C T,BFC
PF IFC

This calculus’s essential property is normalization [77], which roughly is the ability to trans-

form a proof into another that does not make any detours. In particular, a calculus’s consistency

Preliminaries - Proof theory 10

is a corollary to its normalization. The proof of normalization is typically by induction on the

structure of the derivation and the complexity of detour formulas.

Later, in 1934-35 Gentzen introduced another proof system known as Sequent Calculus (SC)
[39, 39, 40]. Like ND, the proofs in an intuitionistic Sequent calculus are tree form structures
with their nodes being sequents of the form I' - A. He assigned two rules to each connective;
a left rule (L) to specify how to use an assumption (or antecedent) with that connective and a
right rule (R) to prove a succedent with it. As a result, the logical actions in SC may occur in

both left and right. The left and right rules for disjunction, for example, are:

T'RB I'NA-C T,BERC

THA
TFden TLAGBFC

I Aap oM

Other than the left and right rules for the connectives, SC has two rules to capture the meaning
of logical consequence: Identity (ID) and Cut (CuT). Identity states that an assumption A
is sufficient to achieve the succedent A. In contrast, Cut states that proving a formula A is

enough to use it as an assumption.

1 T FA Ty AFC
AFA™® I,[5FC

Cut

Using these two judgmental rules, we can test that a connective’s behavior specified by its left
and right rules respects the meaning of pure logical consequence as understood by Gentzen
[37, 73]. In the first test, we consider breaking down Identity for each connective compound
formula into smaller subformulas. This test is called Identity expansion. For example, for dis-

junction, we have:

- Ip > p ID
_AFA “op _BEB ap
I A-AeB BFAEBB@L
Identity expansion: AeBrAeB ® = AeBr-AeB

The second test is Cut reduction. It states that we can reduce a cut for each connective com-

pound formula to its smaller subformulas. For disjunction, the test is as follows:

T T2 T3

3
INN I'y,A-C T9,BFEC
1HA @R, L2 2, ol Ti Ts
IhM+-FAae B FQ,A@B"CC h+A FQ,A"CC
Cut reduction: r,I,-C vt = I'i,ILFC uT

where T3, for example, is the proof tree given for the sequent I'; - A.

Identity expansion and Cut reduction ensure that each connective’s left and right rules are in

harmony. They are both strong enough to match up with the other one [73, 85].

The analog of normalization in SC is the cut-elimination property originally called Hauptsatz

("main theorem”) by Gentzen. It states that we can eliminate the use of Cut in any given proof.

Preliminaries - Proof theory 11

Similar to normalization, cut elimination is of utmost importance. Cut elimination is necessary
for the proof of the sub-formula property. This property bounds the logical complexity of
formulas in the proof by the complexity of the formulas in the proved sequent (conclusion)
and is crucial for proof search. Among other results, cut-elimination for a system ensures its
consistency and completeness for the synthetic notion of logical consequence; it ensures that

the calculus captures correct inferences.

Cut reductions for each connective are essential for eliminating Cuts in a proof. Usually, cut-
elimination follows from cut reduction by a straightforward induction. However, in the next

chapter, we will see that this is not always the case.

To fully describe Gentzen’s sequent calculus, we need to mention three structural rules that he
considered in his system:!
'+C I'NAJAEC I'y,B,A T, C

T.AFC WEAKENING T.AFC CONTRACTION T, A BT,FC EXCHANGE

We are interested in a refinement of this calculus in which Weakening and Contraction rules
are not necessarily applicable. This refinement is called linear logic and was first described by
Girard [43]. Without weakening and contraction, formulas behave as resources that have to
be used exactly once. Consuming (left rules) and producing (right rules) such resources can

model changes in the states of computation.

In a linear proof system, additive (&,®) and multiplicative (®, —o in the intuitionistic setting,
'® in the classical setting) connectives are distinguished and not equivalent. The contexts of
premises remain the same in the additive rules, while in the multiplicative ones the contexts

are divided.

2.2 Sequent calculi for linear logics

We focus on linear Sequent Calculus for two main reasons. First, it corresponds to the underly-
ing structure of session-typed processes, the main subjects of this thesis. We will elaborate on
this correspondence later in Chapter 5. Second, we need the ability of linear logic to represent

state in order to model the behavior of session-typed processes (Chapters 4 and 7).

We first review a system in which sequents are restricted to those with at most one resource
on the left, called subsingleton logic. Next, we lift this restriction and provide the calculus
for intuitionistic Multiplicative Additive Linear Logic (MALL). Finally, we show the first-order

generalization of it.

"The Exchange rule is implicitly admissible when I in sequent I" - A is defined as a multiset of formulas.

Preliminaries - Proof theory 12

1 wEA AFC
AFAP wkC v
Wk A Wk B A-C BFC
oFAeB P S anp O AoBro oL
whFA wkB AFC Bl C
ok ALB YR AeBrc ¥ Tepro Y
o O
1 1ot
w7 B o4 0L

FIGURE 2.1: Sequent calculus for subsingleton logic.

2.2.1 Propositional subsingleton logic.

The basic judgment of the subsingleton sequent calculus has the form w - A, where w is either
empty or a single proposition A. If we restrict w to be exactly one formula, we get the singleton

sequent calculus.

The syntax of propositions follows the grammar

AB:=A®B|A&B|T|1]0
wa=-|A

We summarize the subsingleton logic rules [73] in Figure 2.1. Our only connectives are dis-
junction () and conjunction (&). With the restriction of having at most one formula as an
antecedent, the multiplicative connectives cannot be captured in the subsingleton setting. We

will see the multiplicative connectives in the next section when this restriction is lifted.

We generalize & and & to be n-ary connectives ©{¢ : Ay}scr and &{¢ : Ay}ocr, where L
ranges over finite sets of labels denoted by ¢ and &.

A= | ®{l: Artoer | &{0: Ar}ocr

The binary disjunction and conjunction are defined as A ® B = ®&{m : A,my : B} and
A&B = &{m : A,m : B}. Constants 0 and T are defined as the nullary version of these
connectives: 0 = @{} and T = &{}.

whk A keL69 A C WGL@ whkHA, Vel ALFC kel
wh@{l:Ap}ecr ©{l:Agter - C w - &{l:Ap}ecr &{l:Aptoer - C

&L

To prove the cut-elimination property, we need to provide cut reductions for each connective.
These reductions cover the cases where the cut-formula is a principal formula of a left rule

in the first assumption of CuT rule and a right rule in the second one (we call them internal

Preliminaries - Proof theory 13

L+C
1 rare !
TFC uT M, T'+C
whk A k:eL69 A EC WGL@L
wk @{l:A}eer ©{l:Aster FC whk A, A FC
CUT Reduce Cur
whkC — whC
whkHA, Yel A= C k:eL&L
w b &{l:A}er &{l:Ap e F C whkA, ALbFC
CUT Reduce Cur
whkC — whC
.+ B ‘B BFC
-t Bl_CCUT LFLi 7'|_01L cur
1-C =P 1-C
B+ A kEL@R whk B B}_Akc
wk B BFo{bAder - wF Ay, ur kel o
10) i
w @{K:Ag}geL :p> whk @{EIAE}EeL
A-B Vel ArB BEC |
&{t:Ag}er B BrC . A FC vt weL .
uT i
®{l:Ag}per - C -2 Al Agtier - C
BbA, LeL whkB BiA
wB BF&{bAder o w b Ay ur veeL .
10) i
wF &{l:Ag}er S wF &{l:Ag}er
&{t:Aoer B BrC o A FC m‘keL&L
uT i
&{KZAZ}ZGL FC :p> &{E:AE}EEL =C

FIGURE 2.2: Internal and External reductions for subsingleton logic

reductions). We also need to consider external reductions or Flip rules to cover other cases
in the proof of cut-elimination. We provide a full list of internal and external reductions for

subsingleton logic in Figure 2.2.

Theorem 2.1 (Cut admissibility). If 71 and Tz are cut-free proofs for w = A and A + C,
respectively, we can build a cut-free proof forw = C.

Proof. The proof is by a lexicographic induction on the structure of formula A and structure

of 71 and 7s. If the last step in 77 or 73 is ID, we can eliminate it outright:

Ip

AFA® ArbC .
AFC vt BEm. 4k

weA AFAD
whkA =, whk A

Preliminaries - Proof theory 14

If the last step in 77 is a right rule (applied on A) and the last step in 7 is a left rule (applied
on A), we use the corresponding internal cut reduction and apply the inductive hypothesis.
Otherwise, either the last step in 77 is a left rule or the last step in 75 is a right rule, in each of

these cases we apply the corresponding external reduction. For a complete proof see [73]. [J

Theorem 2.2 (Cut elimination). Sequent w = C' is provable in subsingleton logic if and only if

it is provable without the cut rule.

Proof. The proof'is by induction on the structure of the proof given for w - C' and is a straight-

forward corollary of cut-admissibility. O

The proof of the cut-elimination theorem provides a mechanical algorithm to remove cut from
any given derivation. The cut-free derivation has a subformula property meaning that any
formula appearing in a derivation for w = C is a subformula of either w or C'. Consistency is

a straightforward corollary of this property: there is no proof in subsingleton logic for - I 0.

2.2.2 Propositional intutitionistic multiplicative additive linear logic.

Derivations in Intuitionistic Multiplicative Additive Linear Logic (IMALL) establish judgments
of the form I' + A where T is an unordered list of formulas. The syntax of formulas follows

the grammar

A = 1A A|A— A|&{l:As}ier | &{6:Ar}eer.

The sequent calculus for this logic, originally presented by Girard [41], is given in Figure 4.1.
Intuitionistic sequents in the calculus of Figure 4.1 are restricted to have only one formula as
the succedent. Classical Multiplicative Additive Linear Logic (MALL) is obtained by allowing a
set of formulas for the succedent instead: I' = A. In the classical setting, we have an alternative

disjunction *, the counterpart of —o in the intuitionistic framework:

T'HA, A B TAFA T,BF A
TEA, Asp o T.T. AsBF AN

SR

There is an equivalent one-sided representation for classical MALL, in which the sequents are
of the form - A. A proof for - A in the one-sided calculus implies - - A in a two-sided
system of classical MALL, and I' = A in the two-sided calculus implies +- I‘l, A in the one-

sided system. Where the involution of formulas by negation satisfies:

O{CA ey = &{lAT e &{l:AYjep, = S{CAT Yier
(A® B)t = AbeBt (A9B): = A @ B+

Preliminaries - Proof theory 15

I'-A T, AFC

AF AP T rc Ut
o T-Cc
1 rirc it
THA, T'F A, T, A, Ay - B
T Ao °F T aears o
T, A b Ay DhA T\ AB
TFA -4, % T I A <ArB °
I'HA, kel oR I'NA,FB Viel ol
I'E@®{l;: Aitier Iye{l: Aitier H B
THA Viel T A FB kel
L€ &R k &L

I'E&{l; : Aitier I &{l; : Ai}icr F B

FIGURE 2.3: Propositional intuitionistic MALL

The cut-elimination theorem can be proved for IMALL and MALL, similar to Theorem 2.2 for
subsingleton logic. Internal and External cut reductions needed for the proof of IMALL are

given in Figure 2.4.2

2.2.3 First-order intutitionistic multiplicative additive linear logic.

The grammar
A = |3z Az) | Ve Alx) | s =t | T(2),

extends intuitionistic multiplicative additive linear logic to a first-order language. s,t stand
for terms, ¢ for a sequence of terms, and x, y for term variables. For our purposes, no grammar
is specified for terms; all terms are of the only type U with binders. T'(¢) is an instance of a

predicate. The rules for the first order extensions are given in Figure 2.5.

Our first-order quantifiers and equality rules follow the standard representation of the rules
in a linear logic with fixed points presented in [8]. In the = L rule, mgu stands for the most
general unifier. A substitution ¢ is a function that replaces variables by terms. ¢ unifies two
terms ¢ and s if t[o] = s[o]. A substitution, 6, is a most general unifier of ¢ and s if it unifies ¢
and s, and for any unifier ¢ for ¢ and s, there is a unifier A, such that ¢ = 6 o A, where o stands
for the composition of § and A as functions. We restrict our terms to Miller’s [67] higher-order
patterns: an extension of first-order formulas including bound variable names and scopes. With
this restriction, we ensure that we have the most general unifier when unifiers exist. In this
setting, the set mgu(¢, s) in = L is either empty, or a singleton set containing a most general

unifier.

*This thesis focuses on intuitionistic systems, so we only provide cut reductions for IMALL.

Preliminaries - Proof theory 16
T-C
1 tirc éL
TFC UT Reduce T-C
Fll |— Al Plz l_ AQ F”,Al,AQ |— B ®L
FII,FIQI_A1®A2 FH,A1®A2|_B c Fll}—Al F/2|_A2 F”,Al,AQI_B c
I}, T, 1" - C UT o Redue 0}, T, 1" - C ot
TV, Ay F Ay I+ A TY Ay b B ,
I'FA — Ay 0 TUTU A —A B I+A T/, A Ay TY Ay- B
I T/, T C CoT - Reduce BVBVING cor
'+ A kIEL@ Iy, Ay C VEGLGBL
[y @{l:Ater Lo, @{l:Ag}eer - C c o I FA, T ApC c
T, I, C UT Reduce T, T,FC ur
I A Yel L A b C kel
Ty F &{6:Atier Ty, &{l:Ag}per F C - - Lok Ay To A C
[,[5FC UT Dedice [,[5FC ur
I/ BF Ay TU+ Ay I'+B F’l’jBi—Alc
'+ B F’{,F’Q’,BI—A1®A2C® | U.T/, B A 00 TUF A,
DI oA, =L I\ T{. T3 A1 ® Ay
I, Ay, Ay - B oL I, A1, Ay B T".BFC
', A, @Ay - B I".BFC _ DALAEC vt
' T", A @ Ay - C vt Ll ' T", A @ Ay - C
I B, A F A "B T", B, A F A,
/ 7 — R R uT
I'FB I BFA —4dy _ . /. T7, A F Ay R
' T"F A, —o Ay Ut Rl T/ FA — Ay ©
I'FA; T, Ayb B . I, Ay b B F”,BI—CC
I, Th, A oA, B " T/.BrC . | I, - A 5,17, Ay C vt
T Th T, A —o Ay - C vt e, T I A — Ay

FIGURE 2.4: Internal cut reductions and selected external cut reductions for IMALL

The following derivation is an example of = L application when the most general unifier of

the terms is an empty set:

z—=srH A

L

Ve (z=szx)F A

VL

Cut reductions for the first-order components of first-order intutitionistic multiplicative addi-

tive linear logic (FIMALL) are given in Figure 2.6. The proof of cut elimination is similar to the

previous fragments of linear logic by induction on the structure of derivations.

Preliminaries - Proof theory 17

'k P(t) I'P(x) - B «x fresh
' 3z.P(x) I'3z.P(z) - B *
'k P(z) fresh I'P(t)F B
I'FVz.P(x) * I'\Vaz.P(z) - B
I'[0] - B[] V6 € mgu(t,s)
~|—s:s:R I''s=t+B =L

FIGURE 2.5: First-order extension of IMALL.

-
Iy - P(t) Iy, P(z) - B 1 Tt/z]
Ty F J2.P(x) T.,32.P(z) - B Ty F P(t) To,P(t)F B
1_‘1’ FQ s Cur Reduce Fl,PQ E O Cut
-
Ty - P(x) Iy, P(t) - B I Tt/)
T, F Vz.P(z) T,,Vz.P(z) F B I, - P(t) Ty, P(t)F B
Fl; FQ FC Curt Reduce Fl,FQ EC Cut
- _p _I'tCc
‘Fs=s =R Is=sk-C EL
TFC UT Reduce T'-C
T 1 P(t) I'+B TI",BF P(t)
/ " JR Y Cur
I'FB I".BF3uPr) _ DR
.1 F 3¢.P(x) T LN U1 F 3¢.P(x)
', P(z) - B ' P(zx)-B T",BFC
7 L I 7T Cur
', 32.P(z) - B " BEC | D P RO
.1, 3¢.P(x) F C vt Ll T'.T",3¢.P(x) F C
M BEPW) I'FB I".BFP@)
MBI BFVeP() _ I'.T" - P(x) vt
/. T" F Va.P(z) T Rele, T/, T" F Vz.P(z)
I’ P(t)- B I'FB T",BF P(t)
/ VL /! / /! CUT
T'.Vz.P(z) - B I BEC | T',T" F P(t)
I'.T" Vz.P(z) F C ur SN /.0 Vz.P(2)
T16]
I'[0] - B[] V6 € mgu(t,s) I T I'[0] - B[] T"[6], Bl6] + CI0) o
' s—tF B ~ " IMBrO | T'[0], T"[0] - C[0] "' V0 engu(t,s) .
' s—tFC vr Lhle, T s—tFC =

FIGURE 2.6: Selected internal and external cut reductions for FIMALL

Chapter 3
Preliminaries - Fixed points in logic

3.1 A bit of history

Inductive reasoning is well known and presented in the literature in many different contexts.
In general, it is used to prove properties about inductively defined structures such as natural
numbers, finite lists, and finite trees. Computer scientists also use induction to specify and
reason about recursive programs’ behavior. The usual induction schema for induction over the

natural numbers is the following:

P(z) VaeN(P(z) — P(s(z)))
P(t)

where z stands for 0 € N and s(z) for successor of x € N.

Several approaches were introduced throughout the proof theory history that embraces in-
ductive reasoning in a proof system. Hilbert in his 1930 Hamburg talk extends the elementary
arithmetic by a finitist rule called Hilbert’s rule (HR) to introduce universally quantified for-
mulas. Essentially, it asserts that a universally quantified formula is justified when all of its
instances are justified. Later in 1931, Bernays, inspired by the HR rule, proposed an infini-
tary rule (w-rule) for universal quantifier that captures complete induction [87, 88]. Lorenzen,
Schiitte, and Tait further developed the schema of w-rule [58, 61, 94]. In a sequent calculus

system, this schema is as the following rules:

'+ A(n) forallmeN . IA(n) B C for somen €N
I'FVz.A(z) I\WVz. A(z) F C

The V R rule is an infinitary rule; it requires infinitely many premises. Alternatively, the uni-

versally quantified formula Vz.A(x) can be translated as an infinitary conjunction II,, A(n).

Proofs in the calculus are infinitely branching but still well-founded trees. This extension is

strong enough to capture inductive reasoning. As with other sequent calculi, cut-elimination

18

Preliminaries - Fixed points in logic 19

is of utmost importance for the system’s consistency and has been studied for this extension.
Tait’s proof for cut-elimination of infinitary classical propositional logic is one particular result
[94].

A different approach entails adding rules for unfolding inductive definitions to the calculus.
This approach has its roots in Martin L6fs’ natural deduction system with iterated inductive
definitions [62], Girard’s description of linear logic with fixed points [44], and Eriksson [35]
and Schroeder-Heister definitional reflection [84]. It is developed further by McDowell and
Miller 2000 [64], and Momigliano and Tiu [71].

There are two main methods for adding unfolding rules of inductive definitions (least fixed
points) to the proof system. The first method is closely associated with the induction princi-
ple and yields a finitary system. The other is related to infinite descent and produces a non-

wellfounded infinitary system (but finitely branching).

A typical schema for the unfolding rules of least fixed points in a finitary system is as follows:

'+ Alpz.A/x] R AB/z]F B T,BEFC
— K

'k px. A L ux AFC nL

where x is a propositional variable.

This set of rules is a variant of Park’s rules; in contrast to original Park’s rules, they do not break
cut admissibility. Cut elimination for such finitary systems is proved in different contexts, e.g.
[8]. However, the subformula property is necessarily lost because of the left fixed-point rule.
As a result, consistency is not a straightforward corollary of cut-elimination in such systems

anymore.

Unfolding rules for the least fixed points in an infinite system are usually more straightforward

and respect the subformula property:

'+ Alpz.A/x]
'k pux.A

T, Aluz. A/z| F C

i L puxAFC

uL

This set of rules in a finitary system is not strong enough to prove all derivations in a calculus
with the previous set of fixed-point rules [33]. To revive this strength, we allow the system to

be infinitary.

Cut reductions for matching left and right rules hold in the infinitary calculus. However,
the non-wellfoundedness of infinite derivations breaks the induction needed to prove cut-

elimination. Without the cut-elimination property, derivations are not proper proofs.

To establish the cut-elimination property, an additional soundness condition is imposed on
infinitary derivations. A typical soundness condition on an infinitary calculus ensures that
some inductive definition unfolds infinitely often along each infinite branch. Sound derivations
are called proofs. Cut-elimination is proved for proofs in infinitary calculi in different contexts
(7,12, 33].

Preliminaries - Fixed points in logic 20

Even though infinitary derivations can be “infinite,” an interesting subset of them can be ex-
pressed as finite trees with loops. A circular derivation is the finite representation of an infinite

one in which we can identify each open subgoal with an identical interior judgment.

This thesis focuses on non-wellfounded infinitary sequent calculi with fixed points. Our
interest in such calculi is rooted in the close correspondence of circular derivations to recursive
programs and cyclic reasoning employed in computer science. We elaborate more on this

correspondence in Chapter 7.4.

In this historical section, we only considered inductive definitions. However, our general in-
terest is more extensive: we want to include coinductive definitions (greatest fixed points) in
our sequent calculus. To show properties of coinductive definitions, e.g. streams and infinite
trees, a dual principle of coinduction is needed. Although this dual principle has been used in
the literature before, David Park was the first one who explicitly used greatest fixed points in
a non-trivial form. For an intensive historical review of coinduction and greatest fixed points,

see the paper titled ”On the Origins of Bisimulation and Coinduction” by Sangiorgi [80].

Similar to the least fixed points, we can introduce the rules for greatest fixed points in both
finitary and infinitary systems. The following is a typical schema for the unfolding rules of

greatest fixed points in a finitary system:

I'-B Bt A[B/z] I Alvz.A/x) - C
I'Fvz.A VR Tve.AFC vL

where z is a propositional variable. By adding this set of rules, cut admissibility remains intact.

The subformula property is lost also because of the right greatest-point rule.

The typical unfolding rules for the greatest fixed points in an infinite system is similar to the

rules we provided for the least fixed points and respect the subformula property:

I'F Afvx.A/x) I Alvz. AJx] = C
I'tvze.A vR v AEC

vL

To summarize, we are interested in non-wellfounded infinitary sequent calculi that integrate
mutually defined least and greatest fixed points. The rest of this chapter is devoted to reviewing

such calculi presented previously.

3.2 Mutual fixed points and priorities

The celebrated Knaster-Tarski theorem[95] guarantees existence of both least and greatest fixed

points of a monotone operator in a complete lattice:

Definition 3.1. A lattice L with a partial order < is called complete if every subset A of L has

a least upper bound (join) and a greatest lower bound (meet).

Preliminaries - Fixed points in logic 21

Definition 3.2. A mapping f : L — L is monotonic if Vz,y € L.z <y implies f(x) < f(y).

Theorem 3.3 (Knaster-Tarski fixed point theorem). For a complete lattice L and a monotone
operator f : L — L, the least fixed point px.f(x) = AN{u€L : f(u) < u} and the greatest fixed
pointve.f(x) = \/{ueL : u < f(u)} exist.

This result can be generalized to n-ary operators f:L™ — L monotonic in all variables.

It is well-known that for a monotonic operator f:L"*! — L, the fixed-points pz.f(z,7) and
ve. f(x,y) are also monotonic operators from L™ to L. As a result, we can consider nested

fixed-points such as pz. ve. (1 ® x @ y) [6].
Example 3.1. 1. px.1 @ x represents natural numbers.

2. vy.(ux.1 @ x) ® y represents a stream of natural numbers.

As an alternative to the vectorial presentation of fixed points as pz. f(x) for least fixed-points
and vz. f(x) for greatest fixed points, we can use systems of equations. We use an example to

explain this alternative representation’s key ideas; for more information, see [86].

The formula vy.(px.o @ y) ® y can be represented using equations y =, * ® y and z =,
x @ y. To ensure that this signature truly represents the formula vy.(uz.z @ y) ® y (and not
uzr.x ® (ry.x ®y)), we need to impose a linear ordering on the equations. The importance of

this ordering is apparent from the following inequality:

vy.(pr.x ©y) @y # pr.o ® (uy.r @ y).

We call the place of an equation in this ordering its priority and present it as a superscript
on the equation: y =) r ® y and z :i x @ y. We will see that priorities provide central

information to determine validity of circular proofs.

Priorities are not significant when comparing two least fixed points and similarly two greatest

fixed points:
pxpy.f(z,y) = py.pe. f(z,y).

As aresult, a signature of fixed-point equations is divided into "layers” within which only fixed-
points of the same kind occur. In other words, relational priorities form a heirarchy analogous

to quantifiers in logic [86].

Using systems of equations to represent fixed points is more in line with recursive definitions
of data types in programming languages. Moreover, it is more flexible in the sense that we
can reformulate a signature only by changing the priorities, without altering the fixed-point

formulas.

We conclude this section by providing an example of a system of equations, also called signa-

ture.

Preliminaries - Fixed points in logic 22

Example 3.2. The signature
_ _1 _2
¥ = {stream =, nat ® stream, nat =, 1 ® nat}

describes natural numbers nat and stream of natural numbers stream.

3.3 Subsingleton logic with fixed points

The expressive power of pure subsingleton logic described in Section 2.2.1 is rather limited,
among other things due to the absence of the exponential ! A. However, we can recover signif-
icant expressive power by adding least and greatest fixed points, which can be done without

violating the subsingleton restriction.

Fortier and Santocanale [36] introduce an extension of singleton logic with the least and great-
est fixed points. This section summarizes the fundamental ideas of Fortier and Santocanale’s
seminal work. However, we allow some deviations from their original formulation. For in-

stance, we generalize this result for the subsingleton logic.

The syntax of propositions follows the grammar
A= {CAper | &{l:Askeer |1t

where ¢ ranges over a set of propositional variables denoting least or greatest fixed points. We
define them in a signature ¥ which records some important additional information, namely
their relative priority.

Su=-|St=) A3t =, A,

with the conditions that

. ift:ZAEZandt’:gBEZ,thena:b,and

. ift:flAGEandt:ZBGZ‘,theni:jandA:B.

For a fixed point ¢ defined as t =!, A in ¥ the subscript a is the polarity of t: if a = y, then ¢
is a fixed point with positive polarity and if a = v, then it is of negative polarity. Finitely rep-
resentable least fixed points (e.g., natural numbers and lists) can be represented in this system
as defined propositional variables with positive polarity, while the potentially infinite great-
est fixed points (e.g., streams and infinite depth trees) are represented as those with negative

polarity.

The superscript ¢ is the priority of t. Fortier and Santocanale interpreted the priority of fixed
points in their system as the order in which the least and greatest fixed point equations are
solved in the categorical semantics [36, 81]. They also used them syntactically as central infor-

mation to determine validity of circular proofs.

Preliminaries - Fixed points in logic 23

whHA AI—CC

AFA D wFC ut
whkA, kel AFC WeL
— R @®L
w b @&{Ar}eer ®&{A}per HC
wkA, Vlel A, HC kel

&R &L
whk &{Ag}geL @{Ag}geL FC !

- FC

e ot

whk A t:LAeE " AFC t:;Aez .

whi H tFC H
whFA t=0Acx AFC t=LAeXx

Wkt vR tFC vL

FIGURE 3.1: Infinitary sequent calculus for subsingleton logic with fixed points.

We write p(t) = i for the priority of ¢, and €(i) = a for the polarity of propositional variable ¢

with priority . The condition on X ensures that ¢ is a well-defined function.

The basic judgment of the subsingleton sequent calculus has the form w Fyx A, where w is
either empty or a single proposition A and . is a signature. Since the signature never changes

in the rules, we omit it from the turnstile symbol.

The rules of subsingleton logic with fixed points are summarized in Figure 3.1. We added the
fixed points in the two last rows to Figure 2.1. This set of rules must be interpreted as infinitary,

meaning that a judgment may have an infinite derivation in this system.

Even a cut-free derivation may be of infinite length since each defined propositional variable
may be unfolded infinitely many times. Also, cut elimination no longer holds for the deriva-
tions after adding fixed point rules. What the rules define then are the so-called pre-proofs. In
particular, we are interested in circular pre-proofs, which are the pre-proofs that can be illus-

trated as finite trees with loops [33].

Fortier and Santocanale [36] introduced a validity condition for identifying proofs among all
infinite pre-proofs in singleton logic with fixed points. They used the notion of transition sys-
tems to define their validity condition formally. Here we only provide a high-level description
of the condition. It states that every cycle should be supported by the unfolding of a least
fixed point on the antecedent or a greatest fixed point on the succedent. Since they allow
mutual dependency of least and greatest fixed points, they need to consider the priority of each
fixed point as well. Each cycle’s supporting fixed point has to be of the highest priority among
all fixed points that are unfolded in the cycle.

Preliminaries - Fixed points in logic 24

Fortier and Santocanale proved that the valid subset of derivations enjoys the cut-elimination
property; in particular, a cut composing any two valid derivations can be eliminated effec-
tively. They introduced a cut-elimination algorithm that applies internal cut reductions in a
sub-algorithm Treat until an external cut reduction is available. They proved that the algo-
rithm is productive for infinite proofs satisfying their validity condition, which means that it

outputs a cut-free step after every finite number of steps.

Their proof of cut elimination is based on a critical lemma which states termination of the
internal reductions in the sub-algorithm 7reat. The sub-algorithm creates a trace that is a
complete lattice. The lemma is proved using the observation that a valid derivation tree has
only a limited number of branches on its right or left side created by the cut rule. By this

observation, they deduce that the sub-algorithm does not have an infinite computation tree.

As a corollary to this lemma, the cut-elimination algorithm produces a potentially infinite
cut-free proof for the annotated derivation. They further prove that the output of the cut-

elimination algorithm is valid.

In Chapter 4 we use a variant of this technique to prove cut-elimination for a first-order intu-

itionistic linear logic with fixed points.

We conclude this section with two examples of circular derivations. The following circular
pre-proof defined on the signature nat :2‘ 1 & nat depicts an infinite pre-proof that consists

of repetitive application of ;R followed by ®R:

- nat
-F1® nat
- nat

SR

This derivation is not valid. On the other hand, on the signature conat :i 1 & conat, we can

define a circular pre-proof using greatest fixed points that is valid:

-1 1R - - conat

- 1& conat
- conat vR

&R

3.4 Classical multiplicative additive linear logic with fixed points
(LMALL™)

This section reviews the infinitary sequent calculus for multiplicative additive linear logic
(uMALL®™) introduced by Baelde, Doumane, and Saurin and reviews some of their main re-
sults [7, 33].

Preliminaries - Fixed points in logic 25

FT1,A FTI9 AL

Ip

- A AL FTq,T Ut
FI'1,A1 FT9, Ay FT, A, A
F1p, T2, A1 @ A ok FT, A As wh
FT,A, kel T, A Yiel
FT,@{li - Aitier BR FT,&{l - Astier LR
FT, Alpx. A/ x] FT, Alvz.A/x]
FT,uz. A H FIve A vR

FIGURE 3.2: Infinitary multiplicative additive linear logic with fixed points

The grammar for building formulas in uMALL®™ is as follows:
A = ARA | ARA | @{[ZA@}[GL | &{é:Ag}geL | ut. A ‘ vt.A | t.

Fixed points are presented in the vectorial form, and their rules follow from the following

classical negation involution:
(ut. At = vt. A+ (vt At = pt A+ tt =t

They represent their proof system as the one-sided sequent calculus of Figure 3.2.

Like other infinitary calculi, they enforced a validity condition on infinite derivation to en-
sure cut-elimination. Their validity condition is similar to Fortier and Santocanale’s validity
condition: they both require an infinite branch to have infinitely many unfoldings of a proper
fixed-point. However, there are a few differences in presenting these two validity conditions

worth mentioning:

« Since multiple formulas are allowed to be in the succedents, we need to consider the
thread formed from connecting each formula’s derivatives in the infinitary branch sep-
arately. These threads are defined carefully by annotating each formula’s occurrence by
an address. In essence, a thread starting from a formula on a derivation is a list of its
sub-occurrences. The sub-occurrences of a formula in the conclusion when a logical rule
is applied on it are depicted in Figure 3.2 as formulas in the premises with the same color.
When no logical rule is applied on a formula in the conclusion its sub-occurrence is the

identical formula in a premise. (For the exact definition see [33].)

« Moreover, with a one-sided calculus, the proper fixed-point for supporting an infinite

branch is always in succedents and thus is a greatest fixed-point.

« Finally, instead of using the notion of priority which only makes sense for a language

presented using systems of equations, they use subformula ordering on the fixed-points.

Preliminaries - Fixed points in logic 26

In summary, a thread is valid if supported with a greatest fixed point which is minimal (wrt.
subformula ordering) among those occurring infinitely often. A derivation is valid if every

infinite branch has a valid thread.

Their cut-elimination algorithm is similar to Fortier and Santocanale’s: to apply internal re-
ductions and, when available, external reductions. However, the proof of the algorithm’s pro-
ductivity follows a different technique based on the semantical soundness of a truncation of
the infinitary calculus. They form a contradiction with semantical soundness from assuming a

non-productive sequence of reductions on a valid proof.

3.5 Other related work

3.5.1 Parity games and circular proofs.

Circular proofs in singleton logic are interpreted as the winning strategy in parity games [81].
A winning strategy corresponds to an asynchronous protocol for a deadlock-free communica-
tion of the players [57]. The cut-elimination result for circular proofs is a ground for reasoning
about these communication protocols, and the related categorical concept of p-bicomplete cat-
egories [82, 83].

3.5.2 Other approaches.

In the literature, bisimulation has been used effectively to prove the equality of structures
defined as greatest fixed points. To prove properties other than equality for coinductive data
types, one needs to use the somewhat less familiar coinduction principle [11, 26, 48, 70, 80].
Kozen and Silva established a practical proof principle to produce sound proofs by coinduction
[59]. However, these separate principles are insufficient for data types mutually defined by

induction and coinduction.

One recent approach in type theory integrates induction and coinduction by pattern and co-
pattern matching and explicit well-founded induction on ordinals [2], following some earlier
representations of induction and coinduction in type theory [1]. We will discuss this line of

work further in Chapter 9.

Chapter 4

First order linear logic with least and

greatest fixed points

In this chapter we introduce first order intuitionistic multiplicative additive linear logic with
fixed points (FIMALL}Y,). In our first order calculus, we allow circularity in derivations gen-
eralizing the approach of Brotherston et al. [12, 13] by allowing both least and greatest fixed
points. To ensure soundness of the proofs we impose a validity condition on our derivations.
We introduce a cut elimination algorithm and prove that it produces a cut-free proof when
applied on valid derivations. This algorithm is productive for valid derivations: it receives a
potentially infinite valid proof as an input and outputs a cut-free infinite valid proof produc-
tively. (An algorithm is productive if every piece of its output is generated in a finite number
of steps.) Our results, when restricted to the propositional singleton fragment are the same as

Fortier and Santocanale’s (Section 3.3).

We restrict the linear implication to allow only an atomic formula as its assumption, i.e. Ay in
Aj —o Ay, is an atom. Our validity condition for the linear implication is also more restrictive
than Baelde et al’s treatment of its classical counterpart (*®). Recall form Section 3.4 that in
Baelde et al’s notion of thread both A and B are considered to be sub-occurrences of A’ B in
the ’@ rule. We, however, only consider B (and not A) as a continuation of the formula A — B

in the rules for —o. We will comment more on this difference in Section 4.3.

The restrictions on the linear implication are motivated by two considerations. First, we can
obtain a clearer cut elimination proof even in the presence of the multiplicative connectives;
it allows us to adapt Fortier and Santocanale’s cut elimination proof. Our proof is essentially
different from Baelde et al’s proof of cut elimination [7, 33] for infinitary multiplicative addi-
tive linear logic; in particular, we do not need to interpret the logical formulas in a classical
truth semantics. Second, the resulting metalogic is strong enough for our primary application,
i.e., encoding session-typed processes as formulas in linear logic. Furthermore, our restric-

tion seems to be in line with the restrictions imposed on implication in multiset rewriting, e.g.

27

First order linear logic with least and greatest fixed points 28

the work by Cervesato and Scedrov [17] in which they restrict an implication to be between

tensors of atomic formulas.

McDowell and Miller [63] presented what can be considered a precursor of the metalogic we
introduce in this chapter. They designed a metalogic with a similar goal: to prove properties
about the specified programming systems in a formal framework. Their metalogic is defined

based on (non-linear) intuitionistic sequent calculus that allows higher-order quantification

o0
IRZ

reflection [84] via left- and right- rules for unfolding definitions in the sequent calculus. Their

over simply typed terms. Similar to our use of fixed points in FIMALLS®,, they use definitional
logic also admits inductive reasoning using an explicit rule for induction on natural numbers.

However, it does not support coinduction and is not based on an infinitary logic.

4.1 Language and calculus

The syntax and calculus of FIMALLY, is similar to the first order linear logic (Section 2.2.3),
but it is extended to handle predicates that are defined as mutual least and greatest fixed points.
The syntax of formulas follows the grammar

where s, ¢ stand for terms and x, y for term variables. We do not specify a grammar for terms;
all terms are of the only type U with binders. Similar to Section 2.2.3 we restrict our terms
to Miller’s [67] higher-order patterns which is an extension of first-order terms that include

bound variable names and scopes.

T(t) is an instance of a predicate. A predicate can be defined using least and greatest fixed
points in a signature 3
Yu=-|X,T@) =, A|5,T(F) =, A

An atom is an instance of a predicate T'(f) that is not defined in the signature as a least or
greatest fixed point. We restrict the formulas in our metalogic to those in which the left-hand

side of a linear implication is an atom, i.e. formula A in A — B is atomic.

The subscript a of a fixed point T'(Z) =¢, A determines whether it is a least or greatest fixed
point. If a = p, then predicate T'(T) is a least fixed point and inductively defined (e.g., the
property of being a natural number) and if @ = v it is a greatest fixed point and coinductively

defined (e.g., the lexicographic order on streams).

The superscript i € N is the relative priority of 7'(Z) in the signature ¥ with the condition that
if 71 (z) =, A, T2(%) = B € I, then a = b. We say 11 () =/, A has higher priority than
T5(T) :Z B ifi < j. The priorities determine the order by which the fixed-point equations in

3 are solved [81], and we use them to define the validity condition on infinite derivations.

First order linear logic with least and greatest fixed points 29

Example 4.1. Let signature 1 be

Stream(r) =! (y.3z.(x =y 2)® Nat(y) ® Stream (z))
Nat(x) =2 (e =sy) ® Nat(y) & (x =7)

where predicate Nat refers to the property of being a natural number, and predicate Stream refers
to the property of being a stream of natural numbers. A stream of natural numbers is defined as a
concatenation of natural numbers y.z where y is a natural number and z is the rest of the stream.

z corresponds to 0 € N and sy corresponds to the successor of y.

We define Stream to have a higher priority relative toNat since the definition of a natural number

is nested in the definition of a stream.

Example 4.2. Let signature X5 be

Nat(x) :L
Even(z) =2 (Jy.(x=sy) ® 0dd(y
0dd(z) =

where positive predicates Nat, Even, and 0dd refer to the properties of being natural, even, and odd
numbers respectively. All predicates in this signature are inductive, and their relative priority is
not important. We assign a higher priority to Nat so that we can use this signature for illustrating

some notations in the future examples.

Derivations in FIMALL}, establish judgments of the form I' iy, A where I' is a multiset
of formulas and ¥ is the signature. We omit 3 from the judgments, since it never changes

throughout a proof. The infinitary sequent calculus for this logic is given in Figure 4.1.

Example 4.3. Consider signature 3o and predicates Even and 0dd defined in Example 4.2. The

following derivation is a finite proof of one (sz) being an odd number.

- _pR
=) GR

- F (Fy.(x =sy) ® 0dd(y)) & (z=z) "

-Fsz=sz =R - F Even(z) 2

- (sz = SZ) &® Even(z)
-F Jy.(sz=sy) ® Even(y)
- 0dd(sz)

uR

The calculus of Figure 4.1 is infinitary, meaning that we allow finitely branching but non-
wellfounded derivations. Like other infinitary calculi described in this thesis, derivations in

FIMALLY, do not necessarily enjoy the cut-elimination property and are called pre-proofs.

We call the open leaves in a partial derivation open subgoals of the derivation. The judgments
in the derivation that are the conclusion of a rule are called interior judgments. A circular

derivation is the finite representation of an infinite one in which we can identify each open

First order linear logic with least and greatest fixed points

30

A T/, AFC

AF AP IT'FC T
o IreC.
1 rirc L
THA, I'F A, T, A, Ay b B
T Ao, OF T A oA B oF
T, Ay - Ay T4, T/, 4+ B

TrA, -4, °F

T A <A, - B

PHA kel o PAFB viel
I'Ee{lit Aitier Lol Aitier = B
'kA; Viel INAy B kel
IE&{li+ Aitier e L,&{li: Aitier = B kel
I'E P(t) I'P(z)F B «x fresh
== 5~ 3R 3L,
'k 3z.P(x) I'3z.P(z) - B
'+ P(z) « fresh IP(t)F B
VR, VL
'k Vz.P(x) I'Vz.P(x) - B
T@) =,A T'F[t/z]A T(x)=,A T,[t/z7]A+B
~ urR = prL
0 T, 7() - B
T(z)=,A TF[t/T]A T(x)=,A T,[t/T|A+ B
— 1% = 1%
TFT() 4 T, 7() - B 4
VO € mgu(t,s) TI'[0]+ B[0]
pEp——— T.s—tF B =L

FIGURE 4.1: Infinitary calculus for first order linear logic with fixed points. (In the =L rule, the
set mgu(t, s) is either empty, or a singleton set containing a most general unifier.)

subgoal with an identical interior judgment’. In the first order context we may need to use a
substitution rule right before a circular edge to make the subgoal and interior judgment exactly

identical [12]:
'+-B

————— subst

I'[6] - BI6] ’
We can transform a circular derivation to its underlying infinite derivation in a productive way,
i.e. at each step we can produce one rule of the infinite derivation. Consider a substy rule and
a circular edge in the circular derivation. We (1) instantiate the (possibly circular) derivation
to which the circular edge pointed with substitution 6, (2) replace the substg rule with the
instantiated derivation, and (3) remove the circular edge. Lemma 4.1 proves that instantiation

of a derivation used in step (1) exists and does not change the structure of derivation.

!By this definition vacuous circular derivation that identifies an open sub-goal with itself is not allowed.

First order linear logic with least and greatest fixed points 31

Lemma 4.1 (Substitution). For a derivation

II
r-A

in the infinite system and substitution 0, there is a derivation for

TI[6)
(0] - A[f]

where I1[0)] is the whole derivation II or a prefix of it instantiated by 6.
Proof. The proof is by coinduction on the structure of
IT
r-A
The only interesting case is where we get to the = L rule.
H/

I+ B[#'] V8 € mgu(s,t)
I''s=t+B

If the set mgu(t[f], s[0]) is empty then so is II'[f]. Otherwise if 7 is the single element of
mgu(t[6], s[f]), then for some substitution A we have §n = §’\, and we can form the rest of

derivation for substitution A as IT'[\] coinductively. O

The definitions and proofs in this chapter are based on the infinite system of Figure 4.1. When

possible, we present the derivations in a circular form.

Example 4.4. Consider signature 3.9 and predicates Nat, Even, and 0dd defined in Example 4.2.
Figure 4.2 represents a circular derivation for Even(z) - 0dd(s x). I is the finite derivation given

in Example 4.3.

In Figure 4.2, the judgment x Even(x) - 0dd(sx) is an open subgoal that can be identified with
the interior judgment x Even(x) - 0dd(sz). We marked both judgments with the same symbol x

to represent this identification.

We can interpret the proof in Example 4.4 as an inductive proof where its circular edge cor-
responds to applying the induction hypothesis. In the next two examples we represent two

coinductive proofs in our circular calculus. Both examples are adapted from [59].

1
v

Example 4.5. Define X3 to consist of a single predicate with negative polarity (x ~ y) =
(hdz = hdy) &(tlz ~ tly).

Predicate (x ~ y) can be read as a bisimulation between streams x and y, where the term hd x
refers to the head of the stream x and tl x refers to its tail. For simplicity, we use the hd and t1
notation as an alternative to the concatenation in Example 4.1. We present a circular derivation

for ~ being symmetric in Figure 4.3.

First order linear logic with least and greatest fixed points 32

* Even(z) b 0dd(sz)
b ssz=ssz R Even(z) - 0dd(sz)
Even(z) b (ssz = ssz) ® 0dd(sz)
Even(z) F (Jy.(ssz = sy) ® 0dd(y))

Subst|, /x

Even(2) F (Jy.(ss> — sy) ® 04d(y)) @ (ss2 = 2) j‘jg
Even(z) - Even(ssz) B
(y = sz),Even(z) - Even(sy)
(y =sz) ® Even(z) - Even(sy)
R Jz.(y = sz) ® Even(z) - Even(sy)
F (ssy =ssy) 0dd(y) + Even(sy)
0dd(y) F (ssy = ssy) ® Even(sy)
0dd(y) F Jz.(ssy = sz) ® Even(z)
0dd(y) - 0dd(ssy)
(z = sy),0dd(y) F 0dd(sz) n
(z =sy) ® 0dd(y) - 0dd(sz) - 0dd(sz)
Jy.(z = sy) ® 0dd(y) - 0dd(sz) (z = z) F 0dd(sx) ;LL

(Fy.(z = sy) ® 0dd(y)) @ (z = z) I 0dd(sz)
* Even(z) b 0dd(sx)

uL

FIGURE 4.2: Successor of every even number is odd.

=R

-k (hdz = hdz) s * (z~y) b (y ~x) Substigs /oty
(hdz =hdy) F (hdy = hdx) ol (the ~tly) F (tly ~ tlz) ol
(hdz =hdy) &(tlx ~ tly) F (hdy = hdz) (hdzx =hdy) &(tlx ~ tly) F (tly ~ tlx) “R

(hdz = hdy) &(tlz ~ tly) - (hdy = hd z) &(tly ~ tlz) .
(x~y)F (hdy = hdz) &(tly ~ tlz) v
VR
* (x~y) (Y~)

FIGURE 4.3: Relation ~ defined on streams is symmetric.

Example 4.6. We can reason about the properties of stream operations in our calculus as well.
Consider three operations merge, split; and splity. Operation merge receives two streams and
merge them into a single stream by alternatively outputting an element of each. Operations split;
and split, receive a stream x as an input and return the odd and even elements of it, respectively.

We define these operations as negative predicates in our language. Define signature .4 as

Merge(z,y,2) =, (hdz=hdzr ® Merge (y,tlz,tl2))

Split,(w,y) =L (hdy=hdz ® Split,(tlz,tly))
Splity(z,y) =L (Split,(tlx,y))

The derivation given in Figure 4.4 shows that operations merge and split; are inverses: Split a

stream x into two streams y1 and yo using split; and splity, respectively, then merge y1 and ys.

The result is x.

First order linear logic with least and greatest fixed points 33

‘Fhdy, =hdy; — R B * So(w,y2),81(%, y1) FM(y1,y2, 2)
hdy; = hdz-hdz =hdy; — So(tlz, tlyy), S1(tlx, y2) F M(ya, thyy, tix)
hdy, = hdx,Sy(tlz, tlyy),S1(t1x,40) F hdx = hdy; @ M(yg,tly;, tlz)
hdy; = hdz ® Sa(tlz,tly),S1(tla,y2) Fhdz = hdy; ® M(yo,tlyr,tlx)
hdy; = hdz ® So(tlx,tly1),Sa(z,y2) F hdz =hdy; @ M(ya,tly;,tlx)
S1(z,y1),S2(x, y2) F hdz = hd y1 &M (y2, tlyy, tlw)
* S1(z,y1), S2(w, y2) = M(y1, Y2, ©)

S

u b[tlxvtlyl 7y2/17y2 vyl]

1%

FIGURE 4.4: Operations Merge(M) and Split;(S;) are inverses.

4.2 Pattern Matching

It may not be feasible to present a large piece of derivation fully in the calculus of Figure 4.1.
For the sake of brevity, we may represent predicates of positive polarity in the signature using
pattern matching and build equivalent derivations based on that signature [12, 79]. In all the
examples in this thesis, if we use pattern matching, it should be clear how to transform the

signature and derivations into the main logical system.

Example 4.7. Recall signature ¥ in Example 4.2

Nat(z) =L (Iy.(x=sy) © Nat(y)) & ((z =2))
Even(z) => (Jy.(x=sy) ® 0dd(y))® ((z = 2))
0dd(z) =; (Jy.(z =sy) @ Even(y))

where positive predicates Nat, Even, and 0dd refer to the properties of being natural, even, and
odd numbers respectively.

Redefine predicates Even, 0dd, and Nat by pattern matching in signature ¥}, as:

Nat(z) :b 1 Nat(sy) —i Nat(y)
0dd(z) =, O 0dd(sy) =, Even(y)
Even(z) :}L 1 Even(sy) :;14 0dd(y)

The circular derivation in Example 4.4 can be simplified in the following way:

1 1R
- Even(z) nh
-+ 0dd(sz) H % 0dd(z) F Even(sx)
1+ 0dd(sz) 0dd(x) + 0dd(ssx)
[1] {Even(z) - 0dd(sz) nl [2] t{Even(sz)tF 0dd(ssx)

t Even(z) F 0dd(sz)
0 F 0dd(z) 0L Even(z) - Even(ssz) K
[3] %0dd(z) - Even(s 2) K [4] x0dd(sz) F Even(ssx) a

First order linear logic with least and greatest fixed points 34

By the definition of signature ¥}, the pattern of x in 0dd(x) is either of the form sy orz. At the
subgoal marked with % in subderivation 2, we form a branch similar to the & L rule to cover all
possible patterns of x; we continue with subderivations 3 and 4. With the same reasoning at the

subgoal marked with 1 in the subderivation 4 we form a branch with subderivations 1 and 2.

A major contribution of this chapter is to give a criterion for validity of theorems proved by
simultaneous induction and coinduction. In the next example we see an interplay between
positive and negative fixed points in the derivation. This example is adapted from [2]. De-
fine predicate run(x,t) to represent computation of a stream processor, where x is the list of

operations we want to compute.

Example 4.8. Define the signature ¥ to be

1

run(zx,t)

run(end ,t)

run(seq(skip,x),t)

run(seq(put(x),y),t)
nrun(z,y,t)

nrun (z,y,t)
hdt = z& run(seq(z,y),tlt)

RNERTERT-

Operations can be either a skip or a put(x). They are composed to each other with seq(x,vy).
Operation skip simply skips one step and does not contribute to the output stream t. Operation
put(x) puts element z as the head of the output stream t and appends a new list of operations x to
the original list of operations. After computing skip the length of remaining operations in x goes
down by one. So we can define run(seq(skip, x), t) inductively. put(x) increases the length of the
operations, but produces an element of the output stream. So run(seq(put(x),y),t) needs to be
defined coinductively. We assigned a higher priority to the inductive predicates since the overall

program is terminating given that the length of the list of operators x is finite.

The equivalent signature without pattern matching is

run(z,t) =), @®fend:z=end @1,
skip : 32’ seq(skip, 2’) ® run(a’,t),
put : 3z’ Jy.x = seq(put(z’),y) @ nrun(z’, y,t)}
2

nrun(x,y,t) =; hdt=z&run(seq(z,y),tlt)

Here we define run(seq(put(z),y),t) in two steps to follow the rules of definition by pattern
matching: the pattern is broken down inductively and is defined as a positive fixed point. In the
case where the pattern matches seq(put(x),y), the predicate run is defined using an intermediate

negative predicate nrun coinductively. We may abbreviate this definition to one step as:

run(seq(put(z),y),t) =2 hdt = z& run(seq(z, y), t1t)

First order linear logic with least and greatest fixed points 35

1 - OR
-F 1@ ztrean(t)
-k zlist(t) nlt
1+ zlist(t) T run(x,t) b zlist(t)
trun(end,t) - zlist(t) a t run(seq(skip, z),t) - zlist(t) nl

*xnrun (z,y,t) - ztream(t)
nrun (z,y,t) - 1 @ ztream(t)
nrun (z,y,t) - zlist(t)
Trun(seq(put(z),y),t) - zlist(t)

SR
uR

hdt=zF hdt =z ID run(z;y,tl t; Fzlist(tlt)
hdt = z& run(seq(z,y),tlt) - hdt =z &L hdt = z& run(seq(z,y),tlt) - zlist(tl?) L
nrun (z,y,t) - hdt =z v nrun (x,y,t) - zlist(tl?) vl
nrun (z,y,t) - hdt = z& zlist(tlt) R LR
v

*xnrun (z,y,t) - ztream(t)

FIGURE 4.5: run produces a possibly infinite list of elements z

In Figure 4.5, we prove that a run of any list of operations x produces a (possibly infinite) list of

elements z:
zlist(t)

ztream(t)

1

=, 1© ztrean(t)

=2 hdt=z&zlist (t1t)

We give circular derivations for both T run(x,t) - z1ist(t) and *nrun(z,y,t) b ztream(t) to

show the interplay between coinductive and inductive predicates.

4.3 A validity condition on first order derivations

In Section 4.1, we introduced an infinitary calculus for first order linear logic with fixed points.
This section establishes a concept of validity with respect to cut elimination. As usual, cut
elimination for valid derivations ensures consistency: it implies that there is no proof for - - 0
in our calculus. All derivations presented in this chapter are valid by the definition we present

in this section. We leave it to the reader to check their validity.

To establish a validity condition we need to keep track of the behavior of any particular for-
mula throughout the whole derivation. We uniquely annotate the formulas in a judgment with
variables X, y, z. The variables used for labeling formulas are disjoint from the set of term vari-
ables. Similar to proof terms, the annotations can differentiate between two alternative proofs

of a judgment. For example, by annotating the formulas, the proof

AFA D AFAgR
AAF A A

First order linear logic with least and greatest fixed points 36

can be differentiated into the following two proofs based on the roles of the distinct but equiv-

alent formulas in the antecedent of the conclusion:

x:AI—W:AID y:AI—z:AIDR y:AI—W:AID x:AI—z:AID
x Ay Arz. A4 % x Ay Arz: AQA

where w is a fresh variable that we introduce as the (left) continuation of z, when a ® R rule
applies on it. The freshness of variable w ensures the uniqueness invariant of each formula in
the sequent. Similarly, in the cut rule we annotate the cut formula with a fresh variable w to

distinguish it from the other formulas in the derivation:

x:AI—W:AID w:AI—y:AIg
Xx:AFy: A ur

We track the generation of variables to capture evolution of a formula in a derivation. A gen-
eration « is defined over natural numbers. We call a variable used for labelling formulas in
a sequent and its generation (x“) a generational variable. Different generations of the same
variable allow us to capture the progress of a given formula which is made when an unfolding
fixed point rule is applied on it. With this annotation we can keep track of the behaviour of
any particular formula throughout the whole derivation. Our validity condition requires that
at least one formula in every infinite branch behaves in a way that justifies validity of that

branch.

Figure 4.6 shows the calculus annotated with variable generations and their relations. A basic
judgment in the annotated calculus is of the form A I z”:C where A is a multiset of formulas
annotated with (unique) generational variables, i.e. its elements are of the form x*: A. The set {2

keeps the relation between different generations of variables in a derivation for each priority.
B B

The relations in €2 are of the form x{ < y; or x* = y;, where ¢ is a priority of a predicate in

the signature.

We picked generational variables to track formulas over alternatives since they resemble chan-
nels in session-typed processes [27]. We will use this analogy in the proof of strong progress
property (Section 7.4). Generational variables are related to other alternatives for annotating a
formula in an infinite derivation to track its behaviour [7, 92]. For example, Baelde et al’s no-
tion of (pre)formula occurrences is similar to annotated formulas with generational variables.
However, some subtle differences make them distinct: 1) Generational variables are unique in
each sequent, but they are not necessarily assigned uniquely to sub-formulas, e.g. &R/ L rules.
2) The relation that we form between generational variables is not based on a subformula re-

lation, e.g. uR, vL,and — R/L rules.

The relation of a new generation y**! to its prior y® is determined by the role of the rule
that introduces it in (co)induction. The uL rule breaks down an inductive antecedent and v R
produces a coinductive succedent. They both take a step toward termination/productivity of

the proof: we put the new generation of the variable they introduce to be less than the prior

First order linear logic with least and greatest fixed points 37

ones in the given priority. Their counterpart rules vL and p R, however, do not contribute to

termination/productivity. They break the relation between the new generation and its prior

ones for the given priority. In the pL rule, for example, we add the relation yf‘Jrl <ydto .

It is interpreted as the new generation y®*! is less than its prior generation on priority 7. For
a+1

the other priorities j # i we keep y; o =y5

As explained above, in the CuT rule we introduce a fresh variable annotated with a generation:
w" where w is a fresh variable and 7 is a generational variable. Since it refers to a new formula,
we designate it to be incomparable to other variables. We consider w” as a continuation of z’
in the rule ®R and add w] = zf to (2 for each priority ¢. Similarly, we keep the relation
of y® with its continuation w” for each priority in €2 for the ®L rule. This is similar to the
validity condition for propositional y-MALL™ [7] where both A; and As are sub-occurrences
of A; ® As and are considered to be on the same thread as A1 ® Ao (see Section 3.4).

The fresh variable w" introduced in the — R (resp. —o L) rule switches its place in the sequent
from right to left (resp. left to right) and thus it has a dual role in (co)induction compared to z*
(resp. y®). We do not consider a relation between w" and z” in the — R (resp. y® in — L). As
a result, our condition on —o is more restrictive than its classical counterpart *® in [7] where
both A; and As are sub-occurrences of 4179 Ao (see Section 3.4). Recall that A; is already
restricted to be an atomic formula in our setting, and no logical rule will apply to it further
in the derivation. The restrictions we put on the linear implication allow us to obtain a more
straightforward cut-elimination proof than Baelde et al’s proof. To accept more proofs, one
mavy lift the restriction on linear implication and maintain a relation between A; and A; — As
in the intuitionistic setting despite the switch of A; between left and right by polarizing all the
connectives as described in [74]. This is a generalization we plan to pursue in future work since

it is not necessary here in our principal application.

Unlike the existing validity conditions for infinitary calculi defined only over least fixed points
[12, 13, 25, 90], priorities are essential in a setting with nested least and greatest fixed points.
Here both inductive and coinductive predicates may be unfolded infinitely often along the left
and right sides of a branch, but only the one with the highest priority shall be used to ensure
validity of it.

To sort fixed point unfolding rules applied on previous generations of variable x* by their
priorities we use a snapshot of x*. For a given signature X, the snapshot of an generational
variable x* is a list snap(x®) = [x{']i<p, where n is the maximum priority in ¥. Having the
relation between generational variables in (), we can define a partial order on snapshots of

generational variables. We write snap(x®) = [x§---x2] <q [z} - 28] = snap(z?)if the list

[x$ -+ - x2] is less than [zf .- z0] by the lexicographic order defined by the transitive closure

of the relations in).

Example 4.9. Consider signature 31

Stream(z) L 3y Iz (r=vy-2) @ Nat(y) ® Stream (z))

Nat(z) = (Jy(r=sy) @ Nat(y)) @ ((z=2) ® 1)

First order linear logic with least and greatest fixed points 38

AFogw’: A A wh:Arqz?:C

I
XaZAl_QZ’BZAD AN FqzP: C ur
ArqzP:.C
—F— 1R 1L
Fqzf i1 Ay*:1kqz?:C
AFougwr—alicny W' A1 AP Ao R A, w1 Ay s As Fougwi—yali<ny 27 B ®L
A,A’I—QzﬁzA1®A2 A,yalA1®A2|_QZB:B
A, wh: Ay g zP i Ay R AFqw?: A1 A,y*: Ay bqz’: B I
Al_QZﬁ:Al—OAQ A,A/7ya:A1—0A2|_QZ5:B
Arazl Ay kel &R Ay*: A bqzP:B Viel
Atq 2’ o{li: Aitier Ay®: &{li: Aitier Fo 2°:B
AbqzPiA; Viel Ay*: Atz B kel
i L= &R Y Sk 02 &L
Abq 2’ &{l;: Atier Ay®:&{l;: Atier b 2’ - B
AbqzP: P(t) R A,y*: P(x)Fqz®: B 1 fresh I
Abqz?: 32.P(x) A,y®:32.P(x) oz’ : B ’
AbqP::z°: P(z) xfresh VR Ay*:P(t)Fqz®: B VI
Atq z? : Va.P(z) v A,y®:Vo.P(x)Fqz®: B
O =qui{ztTt =2 |i+£j)} V=Qu{ytt =y i# i u{yft <y$}
Abg 2Pt [{/z]A T(7) =), A . Ayt [t/z]A b 2° . B T(z) =], A I
Ato7?:T(D) a Ay :T(H) Faz’: B a
V=Qu{a" =2l |i# 0z <A} OV =Quiyr =y liAg)
A For zPt1 [E/f]A T(f) =1 A R A,yaJrl : [E/T}A Far z°: B T(T) =1, A I
Atqz?: T(F) Y Ay :T(H) oz’ : B Y
R A0 Fq z° : B[] V6 € mgu(t, s) I
'l_QZﬁ:(S:S)_ A,yaI(S:t)l_QZﬁZB -

FIGURE 4.6: Infinitary calculus annotating formulas with labelling variables and their genera-
tions.

and variables x* and z° in the judgment x*:Nat(z),y® : Stream(y) b z°:Stream(z - z). We have

snap(x”) = [x{]i<2 = [x7,x3] and snap(z”) = [z)iz = [z, 25).

Example 4.10. Let Q = {x§ = 2z x¢ < z],2] < z5}. For snap(x®) and snap(z”) defined

over signature 1 in Example 4.9, we have snap(x®) = [x{,x5] <q [z’f,z’g] = snap(z?).

When comparing the snapshot of a generational variable with the snapshot of a previous gen-

eration of it, we can recognize the history of fixed point unfolding rules that has been applied

First order linear logic with least and greatest fixed points 39

on the formula between the two generations. For example, in the path

2t As ko y°: B

2%:A Foy?: B
if [x] - - - x%] is less than [x{ - - - x], then we know that a least fixed point unfolding rule with
priority i has been applied on a prior generation of z* in the path but no greatest fixed point

rule with a higher priority than i has been applied on the prior generations of z*.

We generalize the definitions of left yi-trace and right v-trace from Fortier and Santocanale and

adapt it to our setting.

Definition 4.2. An infinite branch of a derivation is a left u-trace if for infinitely many gen-
erational variables x1%*,x22, - . . appearing as antecedents of judgments xi® : A;, A; Fq,

w? : C;, in the branch as

x393 : Ag, Alg Fa, 2" : C3

X292 : Ao, A‘g Fa, y5 : Cy

x191 : Al,Al }_Ql Wﬁ : Cl

we can form an infinite chain of inequalities snap(x1%1) >q, snap(x2%2) >q,

Dually, an infinite branch of a derivation is a right v-trace if for infinitely many generational
variables y171,y2%2 ... appearing as the succedents of judgments A; g, yi% : Cj in the
branch as

Az Fq, }"363 : (s

As Fq, y252 1 Oy

Aq Fao, ylﬁl : (4

we can form an infinite chain of inequalities snap(y1°1) >q, snap(y2%) >q,

Consider a derivation given in the system of Figure 4.1. We can annotate the derivation to get
one in the system of Figure 4.6. This can be done productively: we start by annotating the root
with arbitrary generational position variables, and continue by replacing the last rule with its

annotated version.

First order linear logic with least and greatest fixed points 40

Definition 4.3 (Validity condition for infinite derivations). An infinite derivation in the cal-
culus of Figure 4.1 is a valid proof if each of the infinite branches in its annotated derivation is

either a left y-trace or a right v-trace.

We do not represent circular derivations in the annotated calculus directly; instead we un-
fold them to their underlying infinitary derivations. A circular derivation in the calculus of

Figure 4.1 is a proof if it has a valid underlying infinite derivation.

We can prove that our validity condition is preserved by substitution.

Lemma 4.4 (Substitution preserves validity). For a valid derivation

N ! S
AFw®: A

in the infinite system and substitution 0, there is a valid derivation for

T[]
A0 - we: Af)]

where 11[6)] is the whole derivation II or a prefix of it instantiated by 6.
Proof. Similar to the proof of Lemma 4.4. O]

Our validity condition, when restricted to the propositional singleton fragment considered by

Fortier and Santocanale, is the same as their validity condition.

Example 4.11. Figure 4.7 presents the first several steps of the derivation from Example 4.4 in

the annotated calculus. To check the validity of this derivation, it is enough to observe that

snap(xa+2) = [x?”,xg”] <qq [XT,%x5] = snap(x®).

Since the annotation of generational variables is straightforward, for the sake of conciseness,
we present future examples as circular derivations in the calculus of Figure 4.1. We also use

pattern matching whenever possible.

4.4 A productive cut elimination algorithm

We introduce a cut elimination algorithm for infinite pre-proofs in FIMALL},. We prove that
this algorithm is productive for valid derivations: the algorithm receives a potentially infinite
valid proof as an input and outputs a cut-free (possibly infinite) valid proof productively. An

algorithm is productive if every piece of its output is generated in a finite number of steps.

First order linear logic with least and greatest fixed points 41

e uY issz=ssz R otz Even(z) l_‘Q6 y572 . 0dd(sz)
x°*2 : Even(z) Fq, y#12 1 (ssz = ssz) ® 0dd(sz)
x*2 : Even(z) o, 772 : (3y.(ssz = sy) ® 0dd(y))
x*2 : Even(z) Fq, y772 1 (y.(ssz = sy) ® 0dd(y)) @ (ssz = 0)

OR

x*2 : Even(z) o, y°*! : Even(ssz) ni
v (y = s2),x72 : Even(2) Fq, y?*! : Even(sy) =L
x%2: (y = s2) ® Even(z) g, y?*! : Even(sy)
x*2: J32.(y = s2) ® Even(2) kg, y?*! : Even(sy) L
Fq, 27 (ssy = ssy) r xF1:0dd(y) Fo, y?+! : Even(sy)
xT1: 0dd(y) Fo, yP*! : (ssy = ssy) ® Even(sy) ol
x°* : 0dd(y) Fo, yP! : 32.(ssy = s2) ® Even(z)
x°*1:0dd(y) Fo, y? : 0dd(ssy)
wo : (z = sy),x*t! : 0dd(y) Fq, y? : 0dd(sz) -
xtl: (z = sy) ® 0dd(y) Fq, y? : 0dd(sz)
xt1: Jy.(z = sy) ® 0dd(y) ko, y° : 0dd(sz) oL

xT1: (Jy.(x =sy) ® 0dd(y)) ® ((x = 2)) Fq, y? : 0dd(sz)
x® : Even(z) F¢ y? : 0dd(sz)

ulL

O = {x5 < x§, x0T = %9}, Qo = QU {w) = x5 wi = x¢T
Qs =D Uyl =y} Q= Q3 U {x§T2 < x§T! x0T = x§H),
Qs = U {vg = x5t V% = x0T Qg = Q5 U {y?+2 = yf“}, and

Qr=QUizf =y, 2] =y{ "}

FIGURE 4.7: Successor of an even number is odd in the annotated calculus.

Consider a derivation given in the system of Figure 4.1. We annotate it to get a proof in the
system of Figure 4.6. We prove a lemma which states termination of the principal reductions
(or internal reductions) of the algorithm (Lemma 4.7) on the annotated derivation. Fortier and
Santocanale’s proof of a similar lemma for singleton logic is based on an observation that after
the principal reductions are applied on a v-trace in a valid derivation tree, the resulting path
only has a finite number of branches on its right side. These branches are created by the cut
rule. The branches in the derivation that are created by additive connectives in & R and G L are
not significant in this setting: in the principal cut reduction steps these branches are resolved

and exactly one of them remains.

In our calculus, multiplicative connectives can also create a branch by the ® R and —o L rules.
These branches continue to exist even after an internal cut reduction step. We introduce a fresh
variable w" as a succedent in the branching rules. In the branches created by ® R we keep the
relation between the fresh variable w” with its parent z°. As a result there may be an infinite
v-trace with infinitely many branches on its right created by the ® R rule. To take advantage of

a similar observation to Fortier and Santocanale’s, we distinguish between branching on fresh

First order linear logic with least and greatest fixed points 42

succedent generational variables created by a cut or a — L rule, and a ® R rule. After this
distinction, our cut elimination algorithm creates a trace which is a chain complete partially
ordered set, rather than a complete lattice in Fortier and Santocanale’s proof. We show that
having a chain complete partially ordered set is enough for proving the lemma both in our
setting and the subsingleton setting by slightly modifying Fortier and Santocanale’s argument.
As a corollary to this lemma our cut elimination algorithm produces a potentially infinite cut-
free proof for the annotated derivation. We further prove that the output of the cut elimination
algorithm is valid. By simply ignoring the annotations of the output, we get a cut free valid

derivation in the calculus of Figure 4.1.

Since we are dealing with infinite derivations, to make the algorithm productive we need to
push every cut away from the root with a lazy strategy. With this strategy we may need to
permute two consecutive cuts which results into a loop. To overcome this problem, similarly
to Fortier and Santocanale and also Baelde et al. [7] we generalize binary cuts to n-ary cuts

using the notion of a branching tape.
Definition 4.5. A branching tape C is a finite list of sequents? A - w? : A, such that
« Every two judgments A - w? : A and A’ - w'% : A’ on the tape share at most one
generational variable z% : B. If they share such a generational variable, we call them

connected. Moreover, assuming that A - w” : A appears before A’ - w'%" : A’ on the
list, we have z* : B€ A’ andz®: B=w" : A.

« Each generational variable z° appears at most twice in a tape, and if it appears more

than once it connects two judgments.

« C is connected.
The conclusion concp of a branching tape M is a sequent A - x* : A such that

« For some A/, there is a sequent A’ - x* : A in the tape that x* : A does not connect it
to any other sequent in the tape.
« For every y? : B € A there is a sequent A/, y? : B 27 : C on the tape (for some A/
and z7 : C) such that y” : B does not connect it to any other sequent in the tape.
We call A the set of leftmost formulas of M: Ift(M). And x® : A is the rightmost formula of
tape M: rgt(M).
Lemma 4.6. Every branching tape has a unique conclusion.

Proof. By definition a branching tape is connected and acyclic. Therefore its conclusion always

exists and is unique. O

®For brevity we elide the set Q in the judgments.

First order linear logic with least and greatest fixed points 43

M

An n-ary cut is a rule formed from a tape M and its conclusion conc: conc nCut

We generalize Fortier and Santocanale’s set of primitive operations to account for FIMALL},.
They closely resemble the reduction rules given by Doumane [33]. Figure 4.8 depicts a few
interesting internal (PRd) and external (Flip) reductions, identity elimination, and merging a
cut. It is straightforward to adapt the remainder of the reduction steps from the previous work
(33, 36].

Our cut elimination algorithm is given as Algorithms 1 and 2. We define a function Treat that
reduces the sequence in a branching tape with principal reductions (PRd) until either a left rule
is applied on one of its leftmost formulas or a right rule is applied on its rightmost formula.
While this condition holds, the algorithm applies a flip rule on a leftmost/rightmost formula of
the tape (LFlip or RFlip). The flipping step is always productive since it pushes a cut one step
up. It suffices to show that the principal reductions are terminating to prove productivity of

the algorithm. We prove termination of the principal reductions in Lemma 4.7.

H/
A28 P(t) A" 7% P(x)Fw*:B
R 3L
A"+ 28 32.P(x) Co A" 7°:3x.Px)Fw*:B Cs
AEv.C nCut PRd
I'[t /]
Cl All—ZBZP(t) Cg A//,Zﬁip(t)l—WaZB C3
AFv:C nCul
_n A'+Fw*: B _
Fzfis=s Co, AN zP:s=s-w*:B 3 Ci Co A"Fw*:B (s
AEv. O nCut PRd AEv.C nCut
A Ful: Ay ALEZP A A u": A, z° Ao wY: B
1 2 QR } 1, 2 QL
A/FZﬁIAl(X)AQ Co A//,Z5:A1®A2|—WQ:B Cs
ALv-C nCut PRd
Ci AlFu’:A; ALFZP:i Ay Co A" uh:A,z° AyFwe:B G
AFv:C nCut
Aum: A FzZP Ay AlFum: Ay ozl Ak we: B
—o — L
A/'_Zﬁ:Al—OAQ CQ A”,Z’B:Al—oAQI_WaZB 3 Ct
AFv:C ntut PR,
Cl C2 A’1’|—u77;A1 A’,un:Al}—zﬁ:Ag AIQI,Z’B:AQFWQ:B Cg
Abv:C nCut
ARz [TE]IA T() =, A . A" ZPt /7| AR we B T(z) =, A I
At 22 T(@) e, A 2P TEHF wo: B e,
N nCut PRd
Cl A/}_Zﬁlel[%/T]A CQ A/I,ZB+1Zﬁ/f]A}_WaZB Cg
AkFv:C nCut

FIGURE 4.8: Primitive operations.

First order linear logic with least and greatest fixed points 44

Al Fu: Ay A’2|—z5:A2®R CA,l Al Fu’: A CA’Q A’Q}—zﬁ:Ag ot
C AR el T AFuw: 4, "CU AR A, ®R"“
Al,Agl—Z’BiAl(@AQ n m Al,AQ}—Z/BiAl(@AQ

Cay in the above reduction is a subset of the tape C connected to A'. By definition of tape, two sets C Ay and Cpy partition C.

ANouh: ALz Ao Fwe: B Ci Au’:A,z° Ay w*:B (G
6 AN Aehrw B OF ¢ A’ AyzP: Ak v:C nCut
Azl A QA FV:C nCut % Azl A QA FV:C
A0l - w® : B'[0] V6 € mgu(t, s)
Cq AN, zP s=t+w*:B N 5
Azl s=t-w*:B nCut %
C110] A'[0] Fw>: B[] Csf]
Al we : BIj] nCU ¢ mgu(t, s)
AzPis=t-w*:B
Cq XO‘:AI—W”’:AID Co C1 Co[x*/w7]
AFz’.C nCut DB TN O

Ci

ANrEzP:A A ZP.A+-w*: B

AA - we: B Cut

=L

Ci ANrzP:A AN Z8:A-w*:B (C

2
nCut Merge
:g

AFv:C ArFv:C

FIGURE 4.8: Primitive operations.
Lemma 4.7. For every input tape M, computation of Treat(M) halts.

Proof. We show that Treat(M) does not have an infinite computation. Assume for the sake of
contradiction that Treat(M) has an infinite computation and iterates indefinitely. Put M; for

i > 1 to be the branching tape before the ¢-th iteration of the loop, with M; = M.

We build the full trace T of the algorithm. T is a tree with nodes of the form (n, k) and a
designated root (0,0). A node (n, k) corresponds to the k-th element of the branching tape
M,,. We produce T coinductively with a level order traversal: when the n-th iteration of the
loop in the Treat function creates a new tape M, from M,, we add the nodes (n + 1, k)
corresponding to the sequents in M, 11 to the n+ 1-th level of the tree and connect them with
labeled edges to the nodes in the n-th level of the tree. We provide the rules for building the
edges from level n to n + 1 based on the step that is used to create the tape M,y from M,,
i.e. internal cut reductions, merging a cut, and identity elimination. For merging a cut, identity
elimination, and internal cut reductions for additive connectives, we use essentially the same
rules as in Fortier and Santocanale[36]. The rules for multiplicative internal cut reductions are

different but based on a similar idea.

nCut

First order linear logic with least and greatest fixed points 45

Algorithm 1: Cut elimination algorithm

Description: () is a queue with the elements of the form (w, M) where M is a tape, and
w is the node that was previously computed. The output of the algorithm is a tree labelled
by {0, 1}. Each node of the tree is identified with a sequent of 0 and 1s: w € {0, 1}*. For
each node in the tree, we also compute the corresponding sequent, s(w), and the rule
applied on it, 7(w). p(s) is the rule applied on formula labelled with variable s, it can
either be an Ip, CuT, a L rule, or a R rule. Ift(M) and rgt(M) are defined in Definition
4.5. The FLip rules return the rule that is permuted down after the external reduction step
to prove w, the sequent corresponding to w, and a list List of one or two tapes to
continue with.

Initialization: A < 0; Q < [(e, [v])]; v is the root sequent.
while Q # () do
(w, M) + pull(Q);
A AU{w}k;
M <« Treat(M);
if s € Ift(M).p(s) € L then
| (r(w), s(w), List) < LFlip(M);
else
if ds € rgt(M).p(s) € R then
‘ (r(w), s(w), List) <— RFlip(M);
end
end
if List = [M'] then
| push((w0, M’), Q);
else
if List = [M{), M{] then
push((w0, M), Q);
pUSh«wL M{)v Q;

end

end
end

The initial step is to add an edge labeled by ¢ from the root to each node corresponding to the
i-th sequent in the initial tape My, i.e. (1,7).

For 1 <i < |Mjl, (0,0) =% (1,4).

Next, we provide the rules for producing edges of 7' when the Treat function applies an identity

elimination or merges a cut on the tape M,

« If My4q = ID — Elim(M,,,) then

- (n,k) =+ (n+1,k) for k < i,
- (n,k) =+ (n+1,k—1)fork > i.

First order linear logic with least and greatest fixed points 46

Algorithm 2: Treat Function

Description: M is a branching tape. i and j in PRd(M, i, j) are the index of the two
sequents in tape on which the reduction rules are applied. Similarly 7 in Merge(M, ¢) and
ID — Elim is the index of the sequent in the tape on which the corresponding rule is
applied. p’(i) is the rule applied on the i-th sequent of the tape, it can either be an Ip,
Cur, a L rule, or a R rule.

while p(Ift(M)) ¢ Land p(rgt(M)) ¢ Rand |M| > 0 do

if 3i € M : p/(i) = ID then

| M < ID — Elim(}M,);

else

if 3i € M : p/(i) = Cur then

‘ M <« Merge(M,1);

else
if 3i.35.30 € {1,®,&,®,—}.0/(i) = oR and p' (i) = oL then
| M <« PRd(M,i,j);
end

end

end
end

o« If M,,41 = Merge(M,,, 1) then

n,k) =+ (n+1,k) for k < 4,
=1 (n+1,4),

=2 (n+1,i+1),

n,k) =+ (n+1,k+ 1) for k > i.

Edges labeled by | mean that the sequent has not evolved by the operation. We use labels 1
and 2 in the step corresponding to Merge(M,,, 7). Edges labeled by 1 and 2 connecting (n, %)
with (n 4+ 1,7) and (n + 1,7 + 1), respectively, show that the sequent i-th of the tape M,
evolves to two new sequents: the ¢-th and ¢ + 1-th sequents of the tape M), . Naturally, we
have the relation 1 < 2 between the labels. Observe that the sequents corresponding to the
nodes (n+1,7) and (n+ 1,7+ 1) are connected via the fresh generational variable created by

the cut rule.

Recall from Algorithm 2 that function PRd(M,,, 7, j) receives a tape M and two indices i, j
corresponding to the position of two sequents in the tape, applies an internal cut reduction
on the sequents at positions ¢ and j and outputs the new tape M, ;1. One difference between
our algorithm, and Fortier and Santocanale’s is that in our algorithm the sequents subject to
reduction may not be next to each other. Thus, in our case the PRd function needs to receive
the index of both sequents. Moreover, having the multiplicative connectives we need to deal
with branching internal reductions too. All reductions except those corresponding to ® and
—o are non-branching(nb). For the non-branching reductions the rules for creating the edges

of T" are quite similar to the ones introduced by Fortier and Santocanale[36]. For brevity, we

First order linear logic with least and greatest fixed points 47

put function PRd,,; (M, 7, j) to stand for all internal reductions except ® and —o. The rules

for building the next level of T for this collection of reductions is as follows:

« fMpy1 = PRdnb(Mn,i,j) then

- (n,k) -4 (n+1,k)fork & {i,j},
= (ny3) =% (n+1,i),
- (n7j) _>O (n+ 17])

The label O connecting (n, ¢) and (n+1, ¢) for example indicates that the sequent corresponding
to the node (n,) evolves to a new sequent corresponding to (n + 1,4) but it does not spawn

any new sequent and thus does not create a branch.

The reductions corresponding to ® and —o, however, produce a branch. We define the rules

for building 7" when the algorithm applies such branching steps separately:

. Ian+1 = PRd@(Mn,Z,]) then

n, k) =+ (n+1,k) for k < i,

n,i) = (n+1,i) and (n,7) =% (n+ 1,5 + 1),

n,j) =% (n+1,5+1),

(
(
(
(

7)
n,k) =t (n+1,k+1)fori <k <jork>j.

« If Mypy1 = PRd_,(M,, i, ;) then

n,k) =+ (n+1,k) for k < 4,

n,i) =0 (n+1,7),

n,k) =+ (n+1,k—1)fori < k < j,

n,j) =' (n+1,j— 1) and (n,5) = (n+ 1,5 + 1),

|
~—~~ o~

J
n,k) =+ (n+1,k+1) for k > j.

Labels | and 0 are used with a similar meaning as before. In the internal reduction for the
multiplicative conjunction (®), the i-th sequent of the tape M, is replaced by two sequents,
the i-th and ¢ 4 1-th sequents of the tape M,,;. We connect the nodes corresponding to both
these new sequents to (n, %) using two distinct labels 1, and 1;. We extend the order < on
natural numbers N to an order on NU {1,, 15} such that 1, and 1; are incomparable to each
other. (We can also extend the order to include 1 < 1,,1; < 2, but it is not significant in our

proof.)

The internal reduction of the linear implication (—o) creates a branch too: the j-th sequent
of the tape M, is replaced by two sequents, the j — 1-th and j + 1-th sequents of the tape

M, +1. We connect the nodes corresponding to these new sequents to (n, j) using labels 1 and

First order linear logic with least and greatest fixed points 48

2. More importantly, the reduction rule shifts the i-th element of M, to position j at the tape
M,,+1: in the new tape the sequent corresponding to (n + 1, j) is at the right of the sequent
corresponding to (n + 1,5 — 1).

Labels 1,4, 15,1, 2 are to distinguish between two types of branching in U: (i) the branching
that occurs in Merge and PRd_, rules are labeled with 1 and 2, and (ii) the branching in the
PRdg is labeled with 1, and 1. In the first case the branch labeled with 1 is lexicographically
less than the branch labeled with 2 since 1 < 2, while in the second case the branches are

incomparable (1, is incomparable to 1;).

Recall that the edges labelled by L connect two identical sequents. We get the real trace ¥ by
collapsing these L-edges. VU is an infinite, finitely branching labelled tree with prefix order C
and lexicographical order < (based on the order on natural numbers extended with labels 1,
and 1p). A branch in ¥ is a maximal path with respect to C. The set of all branches of ¥ ordered
lexicographically forms a chain complete partially ordered set, meaning that a set of branches
that form a <-chain has a least upper bound and a greatest lower bound. We provide a simple
productive procedure of computing the greatest lower bound [for a chain of branches {; }ics
as it will be used later in the proof. The procedure assumes that (a) the greatest lower bound
is constructed up to (not including) its ¢-th element, and (b) it receives a chain of branches as
an input such that they all have the same prefix up to (not including) the ¢-th element. With
these assumptions the following provides an algorithm to find the i-th element of the greatest
lower bound S. The assumptions clearly hold when we call the procedure for the first time to

construct the first element of 3, and it is preserved by each recursive call:

Compare the i-th elements of the given branches and choose the least one (the number of labels
is finite and all of them are comparable). Put the i-th element of 3 to be the chosen label. Next,
discard all branches that their i-th element is any other label, and repeat the procedure on the

remaining branches to find the i 4+ 1-th element.

Before proceeding with the proof, we state and prove the main observations that we use in the

rest of the proof.

Observation 1. Consider two sequents I” - x® : Aand I',x® : A+ y® : B on a branching
tape M,, where A is not an atomic formula. The path in W starting from the root and ending
in the node corresponding to I'" F x : A is lexicographically less than the path starting from
the root and ending in the node I',x® : A+ y? : B.

Proof. We prove that this property holds as an invariant of each tape. By Definition 4.5, the
invariant holds for the starting tape M. We assume that the invariant holds for tape M,, and
prove that it holds for tape M, created by each possible step of the Treat function, i.e. a
principal reduction, Merge, or Identity elimination. The proof is straightforward for all cases
except the principal reduction for — and identity elimination. Consider the case of reduction
for —o, in which the principal reduction is applied on the sequents at positions ¢ and j of

tape M,, (with ¢ < j) as shown in Figure 4.8. Two new connections are formed in the new
tape M,.1: A = u” : Aj is connected to A’,u” : Ay F z° : Ay and A/, u" @ Ay F

First order linear logic with least and greatest fixed points 49

z% . Ay is connected to A, z% : Ay F w® : B. By the restriction on the assumption of a
linear implication we know that A; is an atomic formula and thus the first connection can be
dismissed. It is enough to prove that the path from the root to node (n + 1, j) is less than the
path from the root to the node (n + 1,5 + 1). To get this we can simply use the assumption
that the Tape M, satisfies the invariant.

Next, consider identity elimination applied on the i-th sequent of the tape M,,. The interesting
case is when the i-th sequent is of the form x*:A - w?:A and is connected to two sequents
' x*Aand IV, w7:A I- 2°:C. In the resulting tape M, 1, x*:A - w?:A is deleted and by
renaming the variables a new connection is created between I' F x*: A and T, x*: A - z°:C.
If A is an atom this connection is not significant for our proof and can be dismissed. If A is not
an atom then by assumption M, satisfies the invariant and by transitivity of the lexicographic
order we know that the path from the root to the nodes corresponding to sequents I' - x*: A

and IV, x*: A I 2°:C already satisfies the required condition.

Definition. An infinite branch in ¥ is a y-branch (resp. v-branch) if its corresponding path

in the derivation is a u-trace (resp. v-trace).

Observation 2. Our validity condition implies that the (infinite) label of a v-branch has only

finitely many occurrences of 1.

Proof. Whenever we create a branch labeled by 1 (either when merging a cut or in a principal
reduction for —), we introduce a fresh variable as a succedent that does not relate to any
other prior generational variable. As a result, a v-trace whose definition depends on the chain

of relationships formed between its succedents can only accept infinitely many 1 labels.

We prove the following three contradictory statements:

(i) An infinite branch of ¥ which is not less than any other infinite branches (a maximal

infinite branch) exists and it is a u-branch:

We first prove that such a maximal branch exists. Assume that we add 1, < 1; to the
ordering, then the set of all branches of ¥ forms a complete lattice, and by Konig’s lemma
it has a greatest infinite branch 7. This branch is maximal if we dismiss the relation

14 < 1j from the ordering.

Consider a maximal infinite branch 7 in W. By validity of the derivation, it is either a
W~ or a v-branch. Assume it is a v-branch. There is an infinite chain of inequalities for

generational variables x1*!, x2%2 ... on the succedents of :
snap(x1%") >qy snap(x2%?) >qy -

Recall that no logical rule can be applied on an atomic formula. As a result, by the
way we defined our validity condition, none of the variables xi” annotate an atomic
formula. Moreover, by the definition of the Treat function each generational variable

xi% occurs as an antecedent of a branch. For each generational variable xi* we can

First order linear logic with least and greatest fixed points 50

(if)

(iii)

build a branch ;: we start by connecting the root to the node corresponding to a sequent
in which xi* is an antecedent. We then follow the path starting from the sequent to the
next generational variable that it has in common with 7. By the structure of ¥ and
duality of the left and right rules, we can either find the next common generational
variable between [3; and -, or f3; is a finite branch and terminates. In both cases, we can
productively build a branch §;. We form a set {3; };cs from the branches we built. This

set can have one or more elements. By Observation 1, we get v < [3; for every ¢ € I.

If there is an infinite branch S in {f; };cs, we can form a contradiction with the maxi-

mality of «y since v < .

Otherwise all branches in {f3; };cs are finite and thus the index set I has to be infinite.
Next, we show in this case we can also build an infinite branch 5 > 7 productively. The
procedure assumes that (a) the infinite branch S is constructed up to (not including) its
i-th element, and (b) it receives an infinite set of branches as an input such that they all
have the same prefix up to (not including) the i-th element. With these assumptions the
following provides an algorithm to find the i-th element of 5. The assumptions clearly
hold when we call the procedure for the first time to construct the first element of 3, and

it is preserved by each recursive call:

Compare the i-th elements of the given branches and choose one that appears infinitely
often (the number of distinct labels is finite and at least one of them has to appear infinitely
often). Put the i-th element of 3 to be the chosen label. Next, discard all branches that their
i-th element is any other label, and repeat the procedure on the remaining branches to find
the i + 1-th element.

By the way [is synthesized, it is greater or equal to . Assume v = f, it means that
each prefix of 7 is the prefix of infinitely many branches in {3; };c1. By v < [3; for every
¢ € I, we conclude that v = /3 has infinitely many occurrences of 1 on its label. This
forms a contradiction with v being a v-trace. As a result, we know that v < 3 and we

can again form a contradiction with the maximality of ~.

Let v be a maximal infinite branch (an infinite branch of ¥ which is not less than any
other infinite branches with respect to the lexicographic ordering). Form a decreasing
chain of p-branches in W starting from : - - - < 3 < 81 < . Put E to be the elements
of this chain. Then 7 = /\ E exists since ¥ is chain complete and it is a pu-branch: If
n € E then it is trivially true. Otherwise, by the way we construct 1 each prefix of 7
is the prefix of infinitely many branches in E. By a similar reasoning to the previous
case we get that n has infinitely many occurrences of 1 on its label. By Observation 2, it

cannot be a v-branch and thus is a u-branch.

If B is a pu-branch, then there exists another p-branch g’ < 3:

is a p-branch so for infinitely many generational variables x1%!,x2%2, ... on the
K y y &

antecedents of 3 we can form an infinite chain of inequalities

snap(x1?!) >.5 snap(x2?) >s - -
1 2

First order linear logic with least and greatest fixed points 51

Recall that none of the variables xi% annotate an atomic formula. Moreover, by the
definition of the Treat function each generational variable xi% occurs as the succedent
of a branch. We build the branch f3; for each xi®* similar to part (i): for each generational
variable xi% we can build the branch f;: we start by connecting the root to the node
corresponding to the sequent in which xi® is the succedent. We then follow the path
starting from the sequent to the next generational variable that it has in common with .
By the structure of ¥ and duality of the left and right rules, we can either find the next
common generational variable between (; and 3, or f3; is a finite branch and terminates.

In both cases, we can productively build the branch ;.

We form a set of branches {3; };c; with one or more elements. By Observation 1, we get
B1 < B for every i € I. Observe that two branches (; and ;41 have a close relation:
either (1) 3; is equal to (;41, or (2) (; is finite and terminates by an identity rule that
forward its antecedent y to its succedent z. Case (2) has two sub-cases: either (2-1) z is

an antecedent of 3,11, or (2-2) y is the succedent of 5; 1.

In Case (2-1) we know that [3;1 has a common prefix with g at least up to z and thus
B later spawns ;41 by introducing a fresh variable x as the succedent of ;1 which is
not related to the variable z. This results in a contradiction with the chain of inequalities

formed above. In (2-2) we have 3; > ;41 where (3; is a finite branch.

As a result the set {;};c; of branches form a chain, and we can produce its greatest
lower bound /3. 1t is strightforward to observe that 3’ is less than (3, and also is infinite.

By the way that we created it, one of the followings hold for 3':

(@) B’ < f is an infinite branch with infinitely many generational variables
xi%, x{i+ 1}%*, ..

as its succedents. These generational variables connect sequents in § to the se-
quents in 3 infinitely many times. So every p/vL rule in 3 reduces with a 1/vR
rule in 4’. This means that a R rule with priority 7 is applied on the succedent of

B’ infinitely often but no priority j < 4 has an infinitely many vR rule in 3.

(b) B’ < B is an infinite branch with infinitely many occurrences of 1 on its label.

In both cases /3’ cannot be a v-branch and thus is a y-branch.

Items (i)-(iii) form a contradiction. We can form the nonempty collection £ of all p-branches
in ¥ that from a maximal decreasing chain starting from v by (i) and (iii). By (ii) we get
(n = NE) € E is the minimum of this chain. This forms a contradiction with (iii) and

maximality of E.

With a similar reasoning, we can prove that the output of the cut elimination algorithm is also
a valid derivation. Since the reasoning of the proof is similar to the above, we only provide
a high level description here. Consider a branch b in the output derivation of Algorithm 1.

Using a similar set of rules in the above proof we can build a tree 7} for the full algorithm

First order linear logic with least and greatest fixed points 52

corresponding to branch b (including the treating part). Defining the flip (external reduction)
rules for creating tree 7} is straightforward: If the flip rule creates two branches we continue
with the branch corresponding to b and dismiss the other one. For example in RFlip for ® R, if
b corresponds to the left branch, we add an edge from the node corresponding to the sequent

1,AL = 28 © A] ® Ay to the node corresponding to the sequent A} = u” : A; labeled
by 0. For nodes corresponding the sequents in C Ay we add an edge labeled by L and for the
nodes corresponding to the sequents in Cx, we do not add any edges and simply terminate
their branches. For non-branching external reductions we use a set of rules similar to the
non-branching principal ones. Consider Wy, to be the real trace built based on branch b in the
derivation produced by collapsing the edges in T} labeled by L. It is straightforward to see
that Wy, is a chain complete partially ordered set, and Observations 1 and 2 hold in this setting

too.

If b is finite we are done. Assume that branch b is not finite.

(") Similar to item (i) we can show that the tree has a maximal infinite branch with regard
to the lexicographic ordering. If this branch is a v-branch then we can either form a set
of branches {; }icr such that 8; > ~, or infinitely many RFlip rules are applied to the
succedents of v to create the branch b. In the first case, we can form a contradiction
similar to the reasoning above and it means that has to be a u-branch. In the second

case, the proof is complete since b is a valid v-trace.

(i’) In the previous case we established that v is a p-branch. Form a decreasing chain of
p-branches in ¥ starting from «: - - - < f2 < 1 < . Put E to be the elements of this
chain. Then n = /\ E exists since VU is chain complete and it is a p-branch by a similar

reasoning to item (ii).

(iii’) Put E to be a maximal decreasing chain of u-branches in ¥ starting from y: - - - < 3 <
p1 < 7. Let n = /\ E be the greatest lower bound of E. By a similar reasoning to item
(iii), we get that either there is a p-branch ' < f or the antecedents that make (3 a
p-trace are the antecedents of branch b in the output derivation. In the first case, we

form a contradiction. In the second case, the proof is complete since b is a u-trace.

Theorem 1. A valid (infinite) derivation enjoys the cut elimination property.

Proof. We annotate a given derivation in the system of Figure 4.1 to get a derivation in the
system of Figure 4.6 productively (as described in Section 4.3). As a corollary to Lemma 4.7 the
cut elimination algorithm (Algorithm 1) produces a potentially infinite valid cut free proof for
the annotated derivation. By simply ignoring the annotations of the output, we get a cut free

proof in the calculus of Figure 4.1. O

Chapter 5

Session-typed processes

5.1 Background

Communication centered programming (CCP) is an alternative to sequential programming and
a central element in software development. CCP is a computational model with the expressive
power of A-calculus [69] and has a broad range of applications. Its applications include net-

working, business protocols, and multicore programming.

Honda proposed session types as a potential typed foundation for structuring communication
centered programming [51]. This model’s central objects are interrelated units called sessions
or processes, with their name originating from the networking community. The interactions
between processes are governed by protocols associated with them. The protocols are called

session types and describe the pattern in which processes interact with each other.

The original work introduced session types based on 7-calculus and described interactions
between sessions based on input/output communication and binary choice [51]. Channels
connect processes and transfer the interactions between them. Binary channels, in particu-
lar, conduct the interaction between exactly two processes. Honda et al. [52] generalized the
actions in session types to sending labels (as opposed to binary choice) and passing channels
over channels (session delegation). A duality is central in all interactions between processes:

one sends while the other receives.

Other variants of session types have been introduced since the original formulation. Honda et
al. [53] proposed multiparty session types that describe interactions containing more than two
parties. We are interested in binary session types, with every channel occurring exactly once in
a collection of interrelated processes. Binary session types have been recognized as arising from
linear logic (either in its intuitionistic [15, 16] or classical [98] formulation) by a Curry-Howard
interpretation. The connectives in linear logic can model all actions in session types: additive

connectives simulate choosing a label, while multiplicative ones simulate session delegation

53

Session-typed processes 54

and termination. Under this correspondence, propositions correspond to types, logical proof

rules to typing rules, proofs as programs, and cut reduction to communication along channels.

For the intuitionistic binary session types, a configuration of processes connected along their
mutual channels forms a tree. The tree’s acyclicity guarantees an important safety property
called progress (deadlock-freedom): the configuration will never get stuck. Another key prop-
erty is type preservation (session fidelity), ensuring a configuration remains well-typed after a

step of computation [97].

This thesis focuses on subsingleton session-typed processes, which is the fragment correspond-
ing to subsingleton logic [29, 31, 73]. In this fragment, the configuration of connected processes
forms a chain rather than a tree. We extend the Curry-Howard interpretation of derivations in
infinitary subsingleton logic with fixed points as recursive communicating processes. Along
with the standard progress and preservation results, we present a strong version of the progress
property that ensures each process communicates along its left or right channel in a finite
number of steps. Interestingly, the subsingleton fragment with recursive types already has the

computational power of Turing machines [31].

5.2 Session typed processes

Under the Curry-Howard interpretation a subsingleton judgment A - B is annotated as
x:AFP:(y:B)

where z and y are two different channels and A and B are their corresponding session types.

One can understand this judgment as [31]:

Process P provides a service of type B along channel y while using channel z of type A, a

service that is provided by another process along channel x.

However, since a process might not use any service provided along its left channel, e.g. - -
P :: (y : B), or it might not provide any service along its right channel, e.g. z : AF Q :: (+),

the labelling of processes is generalized to be of the form:
T:wkP:u(y:CO),
where Z is either empty or x , and w is empty given that T is empty.
We can form a chain of processes Py, Py, - - - , P, with the typing
“F Py (xo:Ag), wo:AgkPy(x1:A1), -+ xp_1:Apn_1FPyu(x,: An)

which we write as

P ’xo Py ‘331 ‘:vnq Py

Session-typed processes 55

in analogy with the notation for parallel composition for processes P | @, although here it
is not commutative. In such a chain, process P; ;1 uses a service of type A; provided by the
process P; along the channel x;, and provides its own service of type A;;1 along the channel
x;+1. Process Pg provides a service of type A along channel zy without using any services. So,
a process in the session type system, instead of being reduced to a value as in functional pro-
gramming, interacts with both its left and right interfaces by sending and receiving messages.
Processes P; and P, 1, for example, communicate with each other along the channel x; of type
A;: if process P; sends a message along channel z; to the right and process P, receives it
from the left (along the same channel), session type A; is called a positive type. Conversely, if
process P; ;1 sends a message along channel x; to the left and process P; receives it from the

right (along the same channel), session type A; is called a negative type.

In general, in a chain of processes, the leftmost type may not be empty. Also, strictly speaking,
the names of the channels are redundant since every process has two distinguished ports: one
to the left and one to the right, either one of which may be empty. Because of this, we may
sometimes omit the channel name, but in the theory we present in this thesis it is convenient

to always refer to communication channels by unique names.

Definition 5.1. We define session types with the following grammar, where L ranges over
finite sets of labels denoted by £ and k.

A= @{€ : AZ}ZeL ’ &{E : AZ}@GL ’ 1 ‘ 1

The binary disjunction and conjunction are defined as A ® B = ®{m : A,my : B} and
A&B = &{m : A, my : B}, respectively. Similarly, we define 0 = &{} and T = &{}.

The restricted judgment of the subsingleton fragment cannot capture the binary multiplicative

connectives, i.e. we cannot handle session delegation in this fragment.

All processes we consider in this thesis provide a service along their right channel so in the
remainder of the thesis we restrict the sequents to be of the formz : w - P :: (y : A). We
therefore do not need to consider the rules for type | anymore, but the results of this thesis

can easily be generalized to the fully symmetric calculus.

A summary of the operational reading of session types is presented in Table 5.1. The first
column indicates the session type before the message exchange, the second column the session
type after the exchange. The corresponding process terms are listed in the third and fourth
column, respectively. The fifth column provides the operational meaning of the type and the

last column its polarity.

Session-typed processes 56

Session type (curr./cont.) Process term (curr./cont.) Description Pol

x:® {l:A}per, x:Ap Rx.k; P P provider sends label k along z +
caseLx({ = Qq)ecr, Qi client receives label k along x

:&{l:A e, Ay caseRxz({ = Py)ecr, Pr provider receives label k along x -
Lx.kQ Q client sends label k along x

x:1 - close Rz - provider sends “close” along x and terminates ~ +
wait Lz; Q Q provider receives “close” along x

TABLE 5.1: Overview of intuitionistic linear session types with their operational meaning.

5.3 Typing rules

The process typing rules are based on the sequent calculus given in Section 2.2.1, which leads to
a left and a right rule for each connective. The left and right rules for each connective describe

the interaction from the point of view of the provider and client, respectively.

Internal () and external (&) choice are the branching constructs. An internal choice gives the

choice to the provider, an external choice to the client.

T:wkP:(y:Ar) (kel)
T:whk Ry.k;P:(y:®{l: Ag}ocr)

®R

Vel z:A-Pp(y:C)
x:@®{l: Apteer b case Lz (£ = Ppyer :: (y: C)

®L

TiwkPpu(y:Ay) WelL
T:whkcaseRy (0 = Pplocr = (y: &{l: Ap}ocr)

&R

kel z:AyFP:(y:0)
x:&{0: Aptper b Le.k; P (y: C

&L

The multiplicative unit (1) denotes process termination.

-FcloseRy :: (y: 1) 1R

FQ:u(y:0)
z:1FwaitLz;Q :: (y:C)

1L

Identity and cut are the two rules that do not result in any communication. Identity amounts
to termination after identifying the involved channels and cut to process spawning. The pro-
cess executing (w < P,; Q) spawns a new process P, and continues as @,,. To ensure

uniqueness of channels, we need w to be a fresh channel.

r:AFy+zu(y: A Ip

Session-typed processes 57

TiwkPyu(w:A) w:AFQy:(y:C)
T:whk (w4 Py;Qu) = (y:C)

w

Cur

Since the system is entirely syntax-directed we may sometimes equate (well-typed) programs

with their typing derivations.

5.4 Recursive types

In this section, we extend subsingleton session types with recursive types, allowing them to
capture unbounded interactions. We differentiate between least and greatest fixed points to
maintain a Curry-Howard correspondence between recursive session-typed processes and in-

finitary subsingleton logic presented in Section 3.3.

Definition 5.2. We extend the grammar of session types to include least and greatest fixed
points:
A= @{f : Ag}geL ‘ &I{f : Ag}geL ‘ 1 | €L | t

where ¢ ranges over type variables whose definition is given in a signature :
So=- | t=) A3t =, A,

with the conditions that

. ift = AcYandt' =i B € ¥, thena = b, and

. ift=t AcYandt=) Be ¥, theni=jand A= B.

For a fixed point ¢ defined as t = A in ¥ the subscript a is the polarity of t: if a = p, then ¢
is a fixed point with positive polarity and if a = v, then it is of negative polarity. Finitely rep-
resentable least fixed points (e.g., natural numbers and lists) can be represented in this system
as defined propositional variables with positive polarity, while the potentially infinite great-
est fixed points (e.g., streams and infinite depth trees) are represented as those with negative

polarity.

As a first programming-related example, consider natural numbers in unary form (nat) and a
type to demand access to a number if desired (ctrl).
Example 5.1 (Natural numbers on demand).

nat :Z @®{z:1,s: nat}

ctrl =L &{now : nat, notyet : ctrl}

In this example, 3 consists of an inductive and a coinductive type; these are, respectively: (i) the

type of natural numbers (nat) built using two constructors for zero and successor, and (ii) a type

Session-typed processes 58

to demand access to a number if desired (ctrl) defined using two destructors for now to request
the number and notyet to send a postpone message. With ctrl being a negative fixed point, the
request for the number can be postponed indefinitely. To define nat nested in ctrl, we associate 2

and 1 as priorities of nat and ctrl, respectively (“ctrl has higher priority than nat”).

Example 5.2 (Binary numbers in standard form). As another example consider the signature
with two types with positive polarity and the same priority: std and pos. Here, std is the type
of standard bit strings, i.e., bit strings terminated with $ without any leading 0 bits, and pos is
the type of positive standard bit strings, i.e., all standard bit strings except $. Note that in our

representation the least significant bit is sent first.

std =), ©{b0 : pos, b1 : std,$: 1}
pos :L ®{b0 : pos, b1 : std}

Example 5.3 (Bits and cobits).

bits =), &{b0 : bits, b1 : bits}
cobits =2 &{b0 : cobits, b1 : cobits}

In a functional language, the type cobits would be a greatest fixed point (an infinite stream of
bits), while bits is recognized as an empty type. However, in the session type system, we treat
them in a symmetric way. bits is an infinite sequence of bits with positive polarity. And its dual

type, cobits, is an infinite stream of bits with negative polarity.

We treat fixed points in an isorecursive way, that is, a message is sent to unfold the definition
of a fixed point ¢. This message is written as p; for a least fixed point and 14 for a greatest fixed
point. The language of process expressions dealing with fixed points and their operational

readings is given in Table 5.2.

The typing rules for processes that receive or send fixed point messages is based on the fixed
point rules presented in the sequent calculus of Section 3.3. A least fixed point receives from
the left (client) and send to the right (provider), while the negative one sends to the left (client)

and receive from the right (provider).

T:whkPyu(y:A) t:LA
T:whk Ry Py (y:t)

uR

T AFQyu(y:C) t=l A I
a::tl—caseLa;(ut:>Q$)::(y:C)'u
TiwhkPyu(y:A) t=LA
T:whkcaseRy (1= Py) :: (y:t) vt
T AFQ.u(y:0) t=L A
vL

x itk Lraw;Qq i (y: C)

Session-typed processes 59

Session type (curr./cont.) Process term (curr./cont.) Description

Tt T:A Rx.pg; P P provider sends unfolding message /i along
(t :L Aey) caseLz(us = Q) Q client receives unfolding message ji; along x
Tt T:A caseRz(vy = P) P provider receives unfolding message v, along x
(t=Laey) Lx.vy Q Q client sends unfolding message v along x

Pol

TABLE 5.2: Intuitionistic linear fixed point session types with their operational meaning.

The above fixed point rules are not enough to capture recursive processes. Recall from Chap-
ter 3 that in the logic with similar fixed point rules, we need to allow infinitary derivations to
get the full power of fixed points in inductive and coinductive reasoning. In the context of pro-
cesses, we follow a similar approach by introducing process variables X, Y, - - - to the syntax
of processes. Process definitions are of the form Z : w - X = Pz 5 :: (y : C) representing that

variable X is defined as process P.

T:wkPrgu(y:C) n:whkX=FPgp:(w:0)eV
Tiwky— Xz (y:0)

DEer(X)

A program P is defined as a pair (V| S), where V is a finite set of process definitions, and S is

the main process variable.

These typing rules interpret pre-proofs: a circular derivation is represented as a collection of
mutually recursive process definitions in P = (V, S), with S referring to the root of the deriva-

tion.

As can be seen in the rule DEF, the typing rules inherit the infinitary nature of deductions from
the logical rules in Section 3.3 and are therefore not directly useful for type checking. The rule
DEF corresponds to forming cycles in the circular derivations of the system of Figure 3.1. We
obtain a finitary system to check circular pre-proofs by removing the first premise from the
DEF rule and checking each process definition in V' separately, under the hypothesis that all

process definitions are well-typed.

tiwFX=Pigu(w:0)eV
Tiwkyg+— Xz (y:0)

DEFf(X)
Example 5.4. With signature
Y1 :=nat :L ®{z :1,s: nat}

we define process Copy
x : nat - Copy :: (y : nat)

Session-typed processes 60

as

Yy < Copy < =

case Lz (finat = % receive inqs from left (i)
case Lx % receive a label from left (i)
(z = Ry.linat; % send pinqt to right (ii-a)
Ry.z; % send label z to right
wait Lx; % wait for x to close
close Ry % close y
| s = Ry.pnat; % send jinqt to right (ii-b)
Ry.s; % send label s to right
y < Copy « x)) % recursive call

This is an example of a recursive process over the signature 1. The computational content of Copy
is to simply copy a natural number given from the left to the right:

(i) It ‘waits until it receives a positive fixed point unfolding message from the left, (ii) waits for
another message from the left to determine the path it will continue with:

(a) If the message is a z label, (ii-a) the program sends a positive fixed point unfolding message
to the right, followed by the label z, and then waits until a closing message is received from the
left. Upon receiving that message, it closes the right channel.

(b) If the message is an s label, (ii-b) the program sends a positive fixed point unfolding message
to the right, followed by the label s, and then calls itself and loops back to (i).

5.5 Operational semantics

The operational semantics for process expressions under the proofs-as-programs interpretation
of linear logic has been treated exhaustively elsewhere [15, 16, 46, 97]. We therefore only briefly

sketch the operational semantics here.

5.5.1 Configuration typing

A configuration C is a list of processes that communicate with each other along their private
channels. It is defined with the grammar C ::= - | proc(z, P) | (C1 |z.a C2), where | is an
associative, noncommutative operator and () is the unit. The typing judgment for a configu-
rationis of the formz : w |- C :: (y : B). We call z and y the external channels of configuration

C. The type checking rules for configurations are:

z: AR (z: A) EMP

Session-typed processes 61

T:wlkC(2z:A) z:AlFCy:: (y: B)
T:wlkFCilzaCoi(y: B)
Z:wkP:(y:B)

Z:wlF proc(y, P) :: (y: B)

COMP

PROC

In comp we introduce a fresh channel z internal to the composition of C; and Cs.

A given program P = (V,S) is well-typed, if for every process definition z : w - X = P =
(y : B), we have:
Z:wlFproc(y, P) :: (y: B)

5.5.2 Synchronous semantics

In a synchronous computation, both sender and receiver block until they synchronize. A sig-
nificant difference to much prior work is that we treat types in an isorecursive way, that is, a
message is sent to unfold the definition of a type ¢. This message is written as y; for a least

fixed point and v, for a greatest fixed point.

The computational semantics is defined on a configuration C. The transitions given in Figure 5.1
can be applied anywhere in a configuration. The forward rule removes process y < « from
the configuration and replaces channel x in the rest of the configuration with channel y. The
rule for z <— P ;) spawns process [z/z|P and continues as [z/x](Q). To ensure uniqueness of
channels, we need z to be a fresh channel. For internal choice, Rz.k; P sends label £ along
channel z to the process on its right and continues as P. The process on the right, case Lx (¢ =
Qy), receives the label k sent from the left along channel x, and chooses the kth alternative
Q@ to continue with accordingly. The last transition rule unfolds the definition of a process
variable X while instantiating the left and right channels @ and w in the process definition

with proper channel names, Z and y respectively.

5.5.3 Asynchronous semantics

In this section we define an asynchronous dynamics for subsingleton logic. Asynchronous
communication is a more practical model of computation and we will see in Section 5.7 that
it allows a more realistic statement of a strong progress property. In an asynchronous seman-
tics only receivers can be blocked, while senders output the message and proceed with their

continuation.

The grammar and typing rule of configurations are extended to allow appearance of such out-

putted messages as follows:

C =:=-|msg(M) | proc(z, P) | (C1 |za C2),

Z:wkM: (y:B)
T:wlF-msg(M): (y:B)

MSG

Session-typed processes 62

Cla proc(y,y <) | C' = [y/=]C [y ¢
forward
proc(w,z < P ; Q) — proc(z, [z/x]P) |, proc(w, [z/z]Q)
(z fresh), spawn

proc(z, close Rx) |, proc(w, wait Lz ; Q) — proc(w, Q)

close channel

proc(x, Rz.k ; P) |, proc(w,case Lx (¢ = Qy)ec,) +— proc(z,P) |, proc(w, Q)

send label £ € L right

proc(z,case Rx (¢ = Pp)cyr) |» proc(w, Lz.k ; Q) +— proc(z, Py) |, proc(w, Q)

send label £ € L left

proc(z, Rz ; P) |, proc(w,case Lz (i = Q)) — proc(z, P) |, proc(w, Q)

send p; unfolding message right

proc(z,case Rx (v = P)) |, proc(w, Lz.vs 5 Q) — proc(z, P) | proc(w, Q)

send 14 unfolding message left

proc(z,y <+ X <) — proc(z, [y/w,z/u]P)

whereu: whk X =P :: (w:C)

FIGURE 5.1: Synchronous computational semantics

where M is a special process defined with the grammar
M = La.kyw + z | Re.k;x < w | Le.u; w < x | Re.ay; x + w.

We model messages as special processes that contain the value of a particular message followed
by a forwarding [9, 21, 30, 38]. The forwarding is necessary to ensure that an outputted message

is properly sequenced with the sender’s continuation.

The asynchronous dynamics is given in Figure 5.2. It is defined in terms of rewriting rules that
can be applied anywhere in the configuration. A fresh channel is allocated whenever a new
message is spawned, except for closing channels because there is no continuation. The forward

then links the fresh channel and the previous one.

5.6 Type safety

In this section we present the usual preservation and progress theorems. The preservation the-
orem ensures types of a configuration are preserved during computation in both synchronous
and asynchronous semantics [31]. For simplicity, we only present preservation for a closed

configuration, i.e. a configuration that does not use any resources.

Theorem 5.3. (Preservation) For a configuration - I+ C :: (y : A), if C — C’ by one step of
computation, then - I C' : (y : A).

Proof. The proof is by considering cases of — and inversion on the typing derivation. O

Session-typed processes

63

C |z proc(y,y <) |, C’

proc(w,z < P ; Q)

proc(zx, close Rz)

msg(close Rz) |, proc(w, wait Lx; P)

proc(z, Rx.k; P)

msg(Rz.k;x < 2) |, proc(w, caseLx({ = Py)ecr,)
proc(w, Lz.k; P)

proc(z,case Rx({ = Pp)icr) |» msg(La.k;z < x)
proc(z, Rx.uy; P)

msg(Rx.p; x < z) |z proc(w, case Lz (s = P))
proc(w, Lz.vy; P)

proc(z,case Rx(v; = P)) |, msg(Lz.vy;z « x)

proc(z,y + X <)

2/alC |, ©
forward
proc(z, [z/z]P) |. proc(w, [z/2]Q)
(z fresh), spawn
msg(close Rz)
send close message
proc(w, P)
close channel
proc(z, [z/x]P) |, msg(Rx.k; z < x))
send label £ € L right
proc(w, [2/2]P)
receive label k € L from left
msg(Lz.k; z < x) |, proc(w, [z/x]P)
send label k € L to left
proc(zx, [z/x]Py)
receive label k£ € L from right
proc(w, [w/z|P) |, msg(Rx.u; x < w)
send j1; unfolding message right
proc(w, [z/z]|P)
receive p; unfolding message from left
msg(Lx.v; z <+ x) |, proc(w, [z/x]P)
send 14 unfolding message left
proc(z, [z/x]P)
receive v; unfolding message from right
proc(z, [y/w,z/u]P)
where v :whk X =P (w:C)

FIGURE 5.2: Asynchronous computational semantics

The progress property as stated below ensures that computation makes progress or it attempts

to communicate with an external process [73].

Theorem 5.4. (Progress) IfZ : w I C :: (y : A), then either

1. C can make a transition,

2. orC = (-) is empty,

3. orC cannot make a transition and attempts to communicate either to the left or to the right;

in a synchronous semantics it has one of the following forms:

proc(w, case Lx(u; = P)) | C' proc(w,case Lz:(¢ = P)cr,) |w C'

proc(w, Lz.pug; P) | C
C' |w proc(z, case Rz(vy = P))
C' |y proc(z, Rz.vy; P)

where C' cannot make any transitions.

proc(w, Lz.k; P) |, C'
C' |w proc(z, case Rz:(¢ = P)ycr)
C' | proc(z, Rx.k; P)

Session-typed processes 64

Proof. The proof is by structural induction on the configuration typing from right to left. [

5.7 Strong progress

The progress property ensures that a configuration can always take a step or terminates. In the
presence of (mutual) recursion, it is not strong enough to ensure the termination of a config-
uration either in an empty configuration or one attempting to communicate with its external
channels. As aresult, a well-typed configuration may fall into an infinite inner communication
loop and never communicate with its external channels. This section defines a stronger form

of progress that prevents such non-terminating behavior.
Example 5.5. Take the signature
Y1 :=nat :;11 ®{z:1,s: nat}.

We define a process
- F Loop :: (y : nat),

where Loop is defined as

y < Loop < - = Ry.linat; % send pinqt to right (i)
Ry.s; % send label s to right (ii)
y < Loop + - % recursive call (iii)

Py := ({Loop},Loop) forms a program over the signature ¥1. It (i) sends a positive fixed
point unfolding message to the right, (ii) sends the label s, as another message corresponding

to successor, to the right, (iii) calls itself and loops back to (i).

In an asynchronous semantics, Loop runs forever, sending an infinite stream of successor labels
to the right, without receiving any messages from the left or the right. In the synchronous
semantics, the process is blocked before each send by waiting for another process willing to
receive. Even in the synchronous semantics Loop has a non-terminating nature: we will see
that composing - - Loop :: (y : nat) with process y : nat - Block :: (z : 1), defined in the

next example, results in exchanging an infinite number of messages between them.

Example 5.6. Define process
y:natk Block:: (2:1)

Session-typed processes 65

over the signature ¥ as

z < Block <~y =

case Ly (finat = % receive finqt from left (i)
case Ly % receive a label from left (ii)
(z = wait Ly; % wait fory to close (ii-a)
close Rz % close z
| s = z < Block + y)) % recursive call (ii-b)

Py := ({Block}, Block) forms a program over the signature 3 :

(i) Block waits, until it receives a positive fixed point unfolding message from the left, (ii) waits
for another message from the left to determine the path it will continue with:

(a) If the message is a z label, (ii-a) the program waits until a closing message is received from
the left. Upon receiving that message, it closes the left and then the right channel.

(b) If the message is an s label, (ii-b) the program calls itself and loops back to (i).

The infinite computation of the composition - I+ y <= Loop |, z - Block <= y :: (2 : 1) in

the synchronous semantics can be depicted as follows:

y < Loop |, z < Block <y

Ry.inat; Ry.s;y < Loop |, z < Block <y

Ry.pinat; Ry.s;y < Loop |, case Ly (finat = case Ly ---)

Ry.s;y < Loop |, case Ly (s = z <~ Block < y | z = wait Ly; close Rxz)

11111

y < Loop |, z < Block <y

In this computation, the configuration can always take a step, but it does not communicate to
the left or right and a never ending series of internal communications takes place. To avoid

such infinitary computations, we define strong progress as follows.

Definition 5.5. (Strong Progress) Configuration Z : w I C' :: (y : A) satisfies the strong

progress property if after finite number of steps, either

1. C = (-) is empty,

2. or C is blocked by waiting to communicate to the left or right.

The definition of strong progress in the asynchronous setting is more realistic. In the asyn-
chronous semantics, only receive can block a configuration; a process that keeps sending un-
folding messages, e.g. Loop, does not satisfy strong progress. In the synchronous semantics,
a process can be blocked by both send and receive. Therefore process Loop satisfies strong
progress, even though it clearly sends infinitely many messages when composed with a pro-

cesses willing to receive, e.g. Block.

Session-typed processes 66

Clearly, not all well-typed programs satisfy strong progress. We devote the rest of this thesis to
proving the strong progress property for a subset of well-typed programs that can be identified
algorithmically.

Chapter 6

Strong progress as termination of cut

elimination

In Chapter 5 we showed that by defining type variables in the signature and process variables
in the program, we can generate (mutually) recursive processes which correspond to circular

pre-proofs in the sequent calculus.

In Section 5.5, we introduced process configuration C as a list of processes connected by the
associative, noncommutative parallel composition operator |,. Alternatively, considering C;
and Cy as two processes, configuration C; |, Co can be read as their composition by a cut rule
(z <= C1;C2). In Section 5.5, we defined a synchronous operational semantics on configura-
tions using transition rules. Similarly, these computational transitions can be interpreted as
the internal cut reductions in the infinitary calculus of subsingleton logic with fixed points.

For example, for configuration
C = (i |, proc(z, Rx.u; P) |, proc(w, case Lz (uy = Q)) |w C2

the internal communication transition

Ci |» proc(z, Rz.ju; P) |, proc(w, case Lz (i = Q)) | C2 +—
G |z pI‘OC(I‘,P) ‘x proc(w,Q) ’w Ca

can be interpreted as the following cut reduction step:

z:AFP:u(z:B) t=,B z:AFQ:(w:C) t=,B
Ci z:AF Rx.uy;P(z:t) K x:th case Lx (i = Q) = (w: C)
Z:whkC:(v:D)

L
e

2
nCut PRd
—

Ci z:AFP:u(x:B) 2:BFQ:(w:C) Cy
Z:whkC:(v:D)

nCut

67

Session-typed processes 68

Recall from Section 3.3 that Fortier and Santocanale [36] introduced a cut-elimination algo-
rithm for derivations in infinitary singleton logic with fixed points. As a part of their cut-
elimination algorithm, they defined a function TREAT that applies internal cut reductions on
infinitary derivations. They proved that this function terminates on a list of pre-proofs fused
by consecutive cuts if all of them satisfy their validity condition. In our system, the function
TREAT corresponds to computation on a configuration of processes. Termination of this func-
tion corresponds to the computation’s termination either in an empty configuration or one

attempting to communicate with an external channel, i.e. the strong progress property.

In this chapter, we introduce a type system as an algorithm to check a stricter version of Fortier
and Santocanale’s validity condition (FS validity condition) generalized to the subsingleton
fragment. Our algorithm is local in the sense that we check the guard condition for each process
definition separately, and it is stricter in the sense that it accepts a proper subset of the proofs
recognized by the FS validity condition. Since our local guard condition implies the FS validity
condition, we can use their results to show that a locally guarded program satisfies strong
progress. The results of this chapter are built upon the correspondence between internal cut
reductions and synchronous semantics of session types, and are confined to the synchronous

semantics.

We develop a local guard condition through a sequence of refinements in Sections 6.2-6.5. We
capture this condition on infinitary proofs in Section 6.6 and reduce it to a finitary algorithm in
Section 6.7. We prove that our local guard condition implies Fortier and Santocanale’s validity
condition (Section 6.8) and therefore cut elimination. In Section 6.9 we explore the computa-
tional consequences of this, including the strong progress property, which states that every
guarded configuration of processes will either be empty or attempt to communicate along ex-
ternal channels after a finite number of steps. We conclude by illustrating some limitations
of our algorithm (Section 6.10) and pointing to some additional related and future work (Sec-
tion 9).

A key aspect of our type system is that our guard condition is a compositional property (as we
generally expect from type systems) so that the composition of guarded programs defined over
the same signature are also guarded and therefore also satisfy strong progress. In other words,
we identify a set of processes such that their corresponding derivations are not only closed
under cut elimination, but also closed under cut introduction (i.e., strong progress is preserved

when processes are joined by cut).

6.1 Ensuring communication and a local guard condition

In this section we motivate our algorithm as an effectively decidable compositional and local
criterion which ensures that a program always terminates either in an empty configuration or

one attempting to communicate along external channels.

Session-typed processes 69

Example 6.1. Take the signature

¥ :=nat :;11 ®{z :1,s: nat},

and process
- F Loop :: (y : nat),
y < Loop < - = Ry.finat; % send finat to right (i)
Ry.s; % send label s to right (ii)
y < Loop + - % recursive call (iii)

We can obtain the following infinite derivation in the system of subsingleton logic with fixed points

via the Curry-Howard correspondence of the unique typing derivation of process Loop:

- nat
F®f{z:1,s:nat} BEs
R
- = nat

Process
x :nathk Block : (y:1)

over the signature X1 defined as

Yy < Block <~z =

case Lx (finqt = % receive fiyq; from left (i)
case Lx % receive a label from left (ii)
(z = wait Lx; % wait and close x (ii-a)
close Ry % close y
| s = y <~ Block < x)) % recursive call (ii-b)

corresponds to the following infinite derivation:

1

1-1 nat 1 7

@®{z:1,s:nat} 1 I
nat -1 H

Derivations corresponding to both of these programs are cut-free. Also no internal loop takes
place during their computation, in the sense that they both communicate with their left or
right channels after finite number of steps. For process Loop this communication is restricted
to sending infinitely many unfolding and successor messages to the right. Process Block, on

the other hand, receives the same type of messages after finite number of steps as long as they

Session-typed processes 70

are provided by a process on its left. Composing these two processes as in z <— Loop < - |
y ¢ Block ¢ x results in an internal loop: process Loop keeps providing unfolding and
successor messages for process Block so that they both can continue the computation and
call themselves recursively. Because of this internal loop, the composition is not acceptable: it
never communicates with its left (empty channel) or right (channel y). The infinite derivation
corresponding to the composition z < Loop < - | y < Block < x therefore should be

rejected as unguarded:

F1y
- nat R 1-1 nat -1 oL
‘F@®{z:1,s:nat} * ®f{z:1,s:nat} -1
- nat ph nat -1
CuT,az

1

The cut elimination algorithm introduced by Fortier and Santocanale, similar to the general-
ization of it that we introduced in Section 4.4, uses a reduction function TREAT and may never
halt. They proved that for derivations satisfying the validity condition TREAT is locally termi-
nating since it always halts on valid proofs [36]. The above derivation is an example of one that
does not satisfy the FS validity condition and the cut elimination algorithm does not locally

terminate on it.

Like cut elimination, strong progress is not compositional. Processes Loop and Block both
satisfy the strong progress property but their composition 2 < Loop - | y < Block « =
does not. We will show in Section 6.9 that FS validity implies strong progress. But, in contrast
to strong progress, FS validity is compositional in the sense that composition of two disjoint
valid proofs is also valid. However, the FS validity condition is not local. Locality is particularly
important from the programming point of view. It is the combination of two properties that
are pervasive and often implicit in the study of programming languages. First, the algorithm
is syntax-directed, following the structure of the program and second, it checks each process
definition separately, requiring only the signature and the types of other processes but not their
definition. One advantage of locality is asymptotic complexity, and, furthermore, a practically
very efficient implementation. In Remark 6.19 we show that the time complexity of our guard
algorithm is linear in the total input, which consists of the signature and the process definitions.
Another is precision of error messages: locality implies that there is an exact program location
where the condition is violated. The guard condition is a complex property, so the value of
precise error messages cannot be overestimated. The final advantage is modularity: all we
care about a process is its interface, not its definition, which means we can revise definitions
individually without breaking the guard condition for the rest of the program as long as we
respect their interface. Our goal is to construct a locally checkable guard condition that accepts

(a subset of) programs satisfying strong progress and is compositional.

In functional programming languages a program is called terminating if it reduces to a value

in a finite number of steps, and is called productive if every piece of the output is generated

Session-typed processes 71

in finite number of steps (even if the program potentially runs forever). As in the current
work, the theoretical underpinnings for terminating and productive programs are also least
and greatest fixed points, respectively, but due to the functional nature of computation they

take a different and less symmetric form than here (see, for example, [10, 45]).

Going back to Examples 5.5 and 5.6, process Loop seems less acceptable than process Block:
process Loop does not receive any least or greatest fixed point unfolding messages. It is nei-
ther a terminating nor a productive process. We want our algorithm to accept process Block
rather than Loop, since it cannot accept both. This motivates a definition of finite reactivity on

session-typed processes.

Definition 6.1. A program defined over a signature X is (finitely) reactive to the left if for a
positive fixed point ¢t € ¥ with priority ¢ it does not continue forever without receiving a fixed
point unfolding message p; from the left infinitely often. Moreover, for any negative fixed
point s € X with priority j < i, the program does not send infinitely many s messages to the
left.

A program is (finitely) reactive to the right if for a negative fixed point ¢ € X with priority ¢ it
does not continue forever without receiving a fixed point unfolding message v; from the right
infinitely often. Moreover, for any positive fixed point s € ¥ with priority j < ¢, the program
does not send infinitely many ps messages to the right.

A program is called (finitely) reactive if it is either reactive to the right or to the left.

By this definition, process Block is reactive while process Loop is not. Finite reactivity corre-
sponds to the FS validity condition on the underlying circular derivation of a process. Although
reactivity is not local we use it as a motivation behind our algorithm. We construct our local
guard condition one step at a time. In each step, we expand the condition to accept one more
family of interesting finitely reactive programs, provided that we can check the condition lo-
cally. We first establish a local algorithm for programs with only direct recursion. We expand
the algorithm further to support mutual recursions as well. Then we examine a subtlety re-
garding the cut rule to accept more programs locally. The reader may skip to Section 6.7 which
provides our complete finitary algorithm. Later, in Sections 6.8 and 6.9 we prove that our

algorithm ensures the FS validity condition and strong progress.

Priorities of type variables in a signature are central to ensure that a process defined based
on them satisfies strong progress. Throughout the thesis we assume that the priorities are

assigned (by a programmer) based on the intuition of why strong progress holds.

We conclude this section with an example of a reactive process Copy. This process, similar to
Block, receives a natural number from the left but instead of consuming it, sends it over to the

right along a channel of type nat.

Example 6.2. With signature 31 := nat :}; @®{z : 1, s : nat} we define process Copy

x : nat - Copy :: (y : nat)

Session-typed processes 72

as

Yy < Copy < =

case Lz (finat = % receive inqs from left (i)
case Lx % receive a label from left (i)
(z = Ry.linat; % send pinqt to right (ii-a)
Ry.z; % send label z to right
wait Lx; % wait for x to close
close Ry % close y
| s = Ry.pnat; % send jinqt to right (ii-b)
Ry.s; % send label s to right
y < Copy « x)) % recursive call

This is an example of a recursive process, and forms a left reactive program over the sighature 3.1.
Process Copy does not involve spawning (its underlying derivation is cut-free) and satisfies the
strong progress property. This property is preserved when composed with Block as y <— Copy <
x| z < Block <+ y.

6.2 A local guard algorithm: naive version

In this section we develop a first naive version of our local guard algorithm using Examples
6.3-6.4.

Example 6.3. Let the signature be
3y = bits =), &{b0 : bits, b1 : bits}
and define the process BitNegate

x : bits - BitNegate :: (y : bits)

Session-typed processes 73

with

Yy < BitNegate <~z =

case Lz (upits = % receive jup;rs from left (i)
case Lx % receive a label from left (i)
(b0 = Ry.pwpits; % send ppits to right (ii-a)
Ry.bl; % send label b1 to right
y < BitNegate < x % recursive call
| b1 = Ry.pupits; % send puyizsto right (ii-b)
Ry.b0; % send label b0 to right
y < BitNegate < x)) % recursive call

Py = ({BitNegate},BitNegate) forms a left reactive program over the signature 3o quite
similar to Copy. Computationally, BitNegate is a buffer with one bit capacity that receives a bit
from the left and stores it until a process on its right asks for it. After that, the bit is negated and

sent to the right and the buffer becomes free to receive another bit.

Example 6.4. Dual to Example 6.3, we can define coBitNegate. Let the signature be
»3 := cobits =), &{b0 : cobits, b1 : cobits}

with process

x : cobits - coBitNegate :: (y : cobits)

where coBitNegate is defined as

Yy < coBitNegate <— x =

case Ry (Veobits = % receive Veopits from right (i)
case Ry % receive a label from right (i)
(00 = Lx.Veopits; % send Veopirs to left (ii-a)
Lz.bl, % send label b1 to left
Yy < coBitNegate <— = % recursive call
| b1 = Lx.Veobits; % send Veopirs to left (ii-b)
Lx.b0; % send label b0 to left

y < coBitNegate <— x)) % recursive call

Ps := ({coBitNegate}, coBitNegate) forms a right reactive program over the signature >s.
Computationally, coBitNegate is a buffer with one bit capacity. In contrast to BitNegate in
Example 6.3, its types have negative polarity: it receives a bit from the right, and stores it until a
process on its left asks for it. After that the bit is negated and sent to the left and the buffer becomes

free to receive another bit.

Session-typed processes 74

Remark 6.2. The property that assures the reactivity of the previous examples lies in their
step (i) in which the program blocks until an unfolding message is received, i.e., the program
can only continue the computation if it receives a message at step (i), and even after receiving
the message it can only take finitely many steps further before another unfolding message is

needed.

We first develop a naive version of our algorithm which captures the property explained in
Remark 6.2: associate an initial integer value (say 0) with each channel and define the basic
step of our algorithm to be decreasing the value associated to a channel by one whenever it
receives a fixed point unfolding message. Also, for a reason that is explained later in Remark
6.3, whenever a channel sends a fixed point unfolding message its value is increased by one.
Then at each recursive call, the value of the left and right channels are compared to their initial

value.

For instance, in Example 6.2, in step (i) where the process receives a ji,4; message via the left
channel (z), the value associated with x is decreased by one, while in steps (ii-a) and (ii-b) in
which the process sends a fi,,4; message via the right channel (y) the value associated with y

is increased by one:

x Y

Yy < Copy « x = 0
case Lz (finqt = -1 0

case Lz (z = Ry.jinat; -1 1

R.z;wait Lz;close Ry —1 1

s = Ry.linat; -1 1

Ry.s;y < Copy + x)) -1 1

When the recursive call occurs, channel x has the value —1 < 0, meaning that at some point in
the computation it received a positive fixed point unfolding message. We can simply compare
the value of the list [z, y] lexicographically at the beginning and just before the recursive call:
[—1, 1] being less than [0, 0] exactly captures the property observed in Remark 6.2 for the par-
ticular signature 2. Note that by the definition of X1, y never receives a fixed point unfolding
message, so its value never decreases, and x never sends a fixed point unfolding message, thus

its value never increases.

Session-typed processes 75

The same criteria works for the program Ps over the signature Y5 defined in Example 6.3, since

9 also contains only one positive fixed point:

r oy

y < BitNegate <z = 0 0
case Lz (tpits = —1 0

case Lz (b0 = Ry.upits; -1 1

Ry.bl;y < BitNegate <z -1 1

bl = Ry.ppits; -1 1

Ry.b0;y < BitNegate < x)) —1 1

At both recursive calls the value of the list [z, y] is less than [0, 0]: [-1, 1] < [0, 0].

However, for a program defined on a signature with a negative polarity such as the one defined

in Example 6.4, this condition does not work:

x
Yy ¢ coBitNegate <— x = 0

case Ry (Veobits = 0 -1

case Ry (b0 = Lx.Veopits; 1 -1

Lz.bl;y < coBitNegate <z 1 -1

b1 = Lx.veopits; 1 -1

Lz.b0;y < coBitNegate <— x)) 1 -1

By the definition of X3, y only receives unfolding fixed point messages, so its value only de-
creases. On the other hand, x cannot receive an unfolding fixed point from the left and thus
its value never decreases. In this case the property in Remark 6.2 is captured by comparing
the initial value of the list [y, x], instead of [x, y], with its value just before the recursive call:

[—1,1] < [0,0].

For a signature with only a single recursive type we can form a list by looking at the polarity
of its type such that the value of the channel that receives the unfolding message comes first,
and the value of the other one comes second. With this generalization, we can check all three

programs that we have seen so far, Copy, BitNegate, and coBitNegate.

6.3 Priorities in the local guard algorithm

The property explained in Remark 6.2 of previous section is not strict enough, particularly
when the signature has more than one recursive type. In that case not all programs that are

waiting for a fixed point unfolding message before a recursive call are reactive.

Session-typed processes

76

Example 6.5. Consider the signature

Y4 :=ack :L ®{ack : astream},

astream =2 &{head : ack, tail : astream},

nat :i ®{z:1, s:nat}

astream is a type with negative polarity of a potentially infinite stream where its head is always

followed by an acknowledgement while tail is not. ack is a type with positive polarity that, upon

unfolding, describes a protocol requiring an acknowledgment message to be sent to the right (or

be received from the left).

Ps := ({Ping, Pong, PingPong}, PingPong) forms a program over the signature >4 with the

typing of its processes

x : nat bk Ping :: (w : astream)

w : astream - Pong :: (y : nat)

x : nat F PingPong :: (y : nat)

We define processes Ping, Pong, and PingPong over ¥4 as:

Yy < PingPong <~ = =
w < Ping < x;

Yy < Pong < w

Yy < Pong <~ w =
Lw.vastreams
Lw.head;
case Lw (pger =
case Lw (
ack = Ry.lnat;
Ry.s;

y < Pong « w))

w < Ping <~ x =
case Rw (Vgstream =
case Rw (
head = Rw.gck;
Rw.ack;

w < Ping <~z

| tail = w < Ping « x))

% spawn process Ping (i)

% continue with a tail call

% send Vgstream to left (ii-Pong)
% send label head to left (iii-Pong)
% receive fiqcr, from left (iv-Pong)

% receive a label from left
% send pupqt to right
% send label s to right

% recursive call

% receive Vgsiream from right (ii-Ping)
% receive a label from right
% send pigck to right (iii-Ping)
% send label ack to right

% recursive call

% recursive call

Session-typed processes 77

(i) Program Pg starting from PingPong, spawns a new process Ping and continues as Pong:
(ii-Pong) Process Pong sends an astream unfolding and then a head message to the left, and then
(iii-Pong) waits for an acknowledgment, i.e., ack, from the left.

(ii-Ping) At the same time process Ping waits for an astream fixed point unfolding message from
the right, which becomes available after step (ii-Pong). Upon receiving the message, it waits to
receive either head or tail from the right, which is also available from (ii-Pong) and is actually a
head. So (iii-Ping) it continues with the path corresponding to head, and acknowledges receipt of
the previous messages by sending an unfolding messages and the label ack to the right, and then
it calls itself (ii-Ping).

(iv-Pong) Process Pong now receives the two messages sent at (iii-Ping) and thus can continue by
sending a nat unfolding message and the label s to the right, and finally calling itself (ii-Pong).
Although both recursive processes Ping and Pong at some point wait for a fixed point unfolding
message, this program runs infinitely without receiving any messages from the outside, and thus

is not reactive.

The back-and-forth exchange of fixed point unfolding messages between two processes in the
previous example can arise when at least two mutually recursive types with different polarities
are in the signature. This is why we need to incorporate priorities of the type variables into

the guard algorithm.

Remark 6.3. In Example 6.5, for instance, waiting to receive an unfolding message vgstreqm of
priority 2 in line (ii-Ping) is not enough to ensure that the recursive call is guarded because

later in line (iii-Ping) the process sends an unfolding message of a higher priority (1).

To prevent such a call from being guarded we form a list for each process. This list stores the
information of the fixed point unfolding messages that the process received and sent before a

recursive call for each type variable in their order of priority.

Example 6.6. Consider the signature and program Pg as defined in Example 6.5. For the process
x :nat - w < Ping < x :: (w : astream) form the list

[ack — received, ack — sent, astream — received, astream — sent, nat — received, nat — sent].

Types with positive polarity, i.e., ack and nat, receive messages from the left channel (x) and send
messages to the right channel (w), while those with negative polarity, i.e., astream, receive from

the right channel (w) and send to the left one (x). Thus, the above list can be rewritten as

[xacka Wack; Wastreams Lastream Lnat wnat] .

To keep track of the sent/received messages, we start with [0, 0,0, 0,0, 0] as the value of the list,
when the process x : nat - Ping :: (w : astream) is first spawned. Then, similar to the first ver-
sion of our algorithm, on the steps in which the process receives a fixed point unfolding message,
the value of the corresponding element of the list is decreased by one. And on the steps it sends a

fixed point unfolding message, the corresponding value is increased by one:

Session-typed processes 78

w < Ping «+ x = [0,0,0,0,0,0]
case Rw (Vgstream = [0,0,—1,0,0,0]

case Rw (head = Rw.[iqck; [0,1,-1,0,0,0]

Rw.ack;w < Ping < x [0,1,—1,0,0,0]

| tail = w «+ Ping < x)) [0,0,—1,0,0,0]

The two last lines are the values of the list on which process Ping calls itself recursively. The guard
condition as described in Remark 6.3 holds iff the value of the list at the time of the recursive
call is less than the value the process started with, in lexicographical order. Here, for example,
[0,1,—1,0] £ [0,0,0,0], and the guard condition does not hold for this recursive call.

We leave it to the reader to verify that no matter how we assign priorities of the type variables in

34, our condition rejects PingPong.

The following definition captures the idea of forming lists described above. Rather than directly
referring to type variables such as ack or astream we just refer to their priorities, since that is

the relevant information.

Definition 6.4. For a process
T:wk P (y:B),

over the signature ¥, define list(Z,y) = [fi]i<n such that

L fi = (Zi,y:) if (i) = p, and
2. fi = (yi,@;) if e(i) = v,
where n is the lowest priority in X.
In the remainder of this section we use n to denote the lowest priority in ¥ (which is numeri-

cally maximal).

Example 6.7. Consider the signature ¥1 and program P3 := ({Copy}, Copy), from Example
6.2:
Y1 := nat :L ®{z :1,s: nat}, and

y < Copy — x = case Lz (inqt = case Lz (z = Ry.pinat; Ry.z; wait Lz; close Ry

| s = Ry.finat; Ry.s;y < Copy < x))

By Definition 6.4, for process x : nat - Copy :: (y : nat), we have n = 1, and list(x,y) =

[(x1,y1)] since (1) = p. Just as for the naive version of the algorithm, we can trace the value of

Session-typed processes 79

list(x,y):

Yy < Copy <= = [0,
case Lz (fipqt =

case Lz (z = Ry.pnat;

[
[

R.z; wait Lx; close Ry [—
[

Ry.s;y + Copy « x

Here, [—1,1] < [0, 0] and the recursive call is classified as guarded.

To capture the idea of decreasing/increasing the value of the elements of list(_,_) by one, as
depicted in Example 6.6 and Example 6.7, we distinguish between different generation of chan-
nels. A channel transforms into a new generation of itself after sending or receiving a fixed

point unfolding message.

Example 6.8. Process z : nat - y <— Copy < x :: (y : nat) in Example 6.7 starts its computa-

tion with the initial generation of its left and right channels:

2% : nat - ° « Copy « 2 :: (3" : nat).
The channels evolve as the process sends or receives a fixed point unfolding message along them:

y° Copy < i

case L (finat = 20~ 2t
case Lz' (z = Ry .jinat; Y0~ gyl

Ry'.z; wait Ly'; close Ra!
| s = Ry finar; Y0 syt

Ry'.s;yt « Copy xl))

On the last line the process

1

2t :nat Fy! « Copy < ! :: (y! : nat)

is called recursively with a new generation of variables.

In the inference rules introduced in Section 6.6, instead of recording the value of each element
of list(-,) as we did in Example 6.6 and Example 6.7, we introduce €2 to track the relation
between different generations of a channel indexed by their priority of types.

Remark 6.5. Generally speaking, :U?H < z¢ is added to €2, when x receives a fixed point

a+1

unfolding message for a type with priority ¢ and transforms to x*"". This corresponds to the

decrease by one in the previous examples.

Session-typed processes 30

If x* sends a fixed point unfolding message for a type with priority ¢ is sent on x*, which then
+1 a+1

evolves to %7, x and x;""" are considered to be incomparable in 2. This corresponds to
increase by one in the previous examples, since for the sake of lexicographically comparing the
value of list(_,) at the first call of a process to its value just before a recursive call, there is no

a+1

difference whether £ is greater than ® or incomparable to it.

When 2 receives/sends a fixed point unfolding message of a type with priority ¢ and trans-

a+1

forms to z®*1, for any type with priority j # 4, the value of xf and 7" must remain equal.

In these steps, we add a:?‘ = :U]Q‘H for j # i to (2.
A process in the formalization of the intuition above is therefore typed as
2% Arq P (y°: B),

where £ is the a-th generation of channel 2. The syntax and operational semantics of the pro-
cesses with generational channels are the same as the corresponding definitions introduced in
Section 5.5; we simply ignore generations over the channels to match processes with the previ-
ous definitions. We enforce the assumption that channel x* transforms to its next generation
22+ upon sending/receiving a fixed point unfolding message in the typing rules of Section
6.6.

The relation between the channels indexed by their priority of types is built step by step in {2
and represented by <. The reflexive transitive closure of {) forms a partial order <g. We extend
<q to the list of channels indexed by the priority of their types considered lexicographically.
We may omit subscript €2 from < whenever it is clear from the context. In the next examples,

we present the set of relations (2 in the rightmost column.

6.4 Mutual Recursion in the Local guard algorithm

In examples of previous sections, the recursive calls were not mutual. In the general case,
a process may call any other process variable in the program, and this call can be mutually

recursive. In this section, we incorporate mutual recursive calls into our algorithm.

Example 6.9. Recall signature ¥4 from Example 6.5

Y4 = ack :}L ®{ack : astream},
astream =2 &{head : ack, tail : astream},

nat :i @&{z:1, s:nat}
Define program P; = ({Idle,Producer}, Producer), where

z:ack F w < Idle < z :: (w: nat)
x : astream k- y < Producer < x :: (y : nat),

Session-typed processes 81

and processes Id1le (or simply I) and Producer (or simply P) are defined as:

w4 I+ z=caseLz (g = case Lz (ack = Rw.finq; Rw.s;w < P < 2))

Yy < P x = Lax.Vostream; Lx.head;y < I < x.

We have list(

T, y) = [(xla yl)’ (Z/Q, 932), (x37 y3)] andli3t<2’ w) = [(Zh wl)? (w27 22)7 (2’3, w3)]
since €(1) = €(3)

=pande(2) =v.

By analyzing the behavior of this program step by step, we see that it is a reactive program that

counts the number of acknowledgements received from the left. The program starts with the process

0

xY : astream k¢ y° < Producer < 20 :: (y° : nat).

It first sends one message to left to unfold the negative fixed point type, and its left channel evolves
to a next generation. Then another message is sent to the left to request the head of the stream and

after that it calls process 3y° < Idle < z'.

y° < Producer « 2" = [0,0,0,0,0,0]
La° Vastream; [0,0,0,1,0,0] i =29, 2} = 29
Lz'.head;y° + Idle + z' [0,0,0,1,0,0]

Process x' : ack - y¥ <+ Idle < z! :: (y°

: nat), then waits to receive an acknowledgment
from the left via a positive fixed point unfolding message for ack and its left channel transforms
into a new generation upon receiving it. Then it waits for the label ack, upon receiving it, sends
one message to the right to unfold the positive fixed point nat (and this time the right channel

evolves). Then it sends the label s to the right and calls y* < Producer < z? recursively:

y¥ Idle « z! = [0,0, 0, 1, 0,0]
case L' (pack = [~1,0,0,1,0,0] 22 < z},22 = 2}, 23 = a}
case Lz? (ack = Ry°.jinas; [-1,0,0,1,0,1] =1 9 =49
Ry'.s;y' < Producer « 2?)) [-1,0,0,1,0,1]

Observe that the actual recursive call for Producer occurs at the last line (in red) above, where
Producer eventually calls itself. At that point the value oflist(x?, y') isrecorded as|—1,0,0,1,0, 1],

which is less than the value of list(x°,y°) when Producer was called for the first time:
(—1,0,0,1,0,1] < [0,0,0,0,0,0].
The same observation can be made by considering the relations introduced in the last column

list(a®,y") = (@3 91). (yh23). (a3 uh)] < (@D, 90), (03, 29), (S,)] = List(a®, 4")

Session-typed processes 82

since x% < x% = x[l). This recursive call is guarded regardless of the fact that [0,0,0,1,0,0] £
[0,0,0,0,0,0], ie.

list(x',4°) = [(x1,99), (43, 23). (w35, 93)] £ [(21, 91), (43, 29), (2§, 93)] = list(2®,°)

since 1 = 20 but x} is incomparable to x3. Similarly, we can observe that the actual recursive

call on Id1le, where Idle eventually calls itself, is guarded.

To account for this situation, we introduce an order on process variables and trace the last seen
variable on the path leading to the recursive call. In this example we define Id1le to be less than
Producer at position 2 (I Cy P). We incorporate process variables Producer and Idle into the
lexicographical order on list(_,) such that their values are placed exactly before the element in

the list corresponding to the sent unfolding messages of the type with priority 2.

We now trace the ordering as follows:

y" < Producer « z° = [0,0,0,P,0,0,0]
L2° Vastreams 0,0,0,P, 1,0,0] ot =20 2l = 2
Lat head; y° + Idle + z! [0,0,0,1,1,0,0]
YV Idle + z! = [0,0,0,1,1,0,0]
case L' (fack = [~1,0,0,1,1,0,0] 22 <2l 22 =2l 22 =2}
case Lz?(ack = Ry°.jinas; [-1,0,0,1,1,0,1] oyl =9 92 =43
]

Ry'.s;y* < Producer < 2% [-1,0,0,P,1,0,1

[—1,0,0,P,1,0,1] < [0,0,0,I,1,0,0] and [0,0,0,1I,1,0,0] < [0,0,0,P,0,0,0] hold, and both
mutually recursive calls are recognized to be guarded, as they are, without a need to substitute

process definitions.

However, not every relation over the process variables forms a partial order. For instance,
having both P Co I and I Cy P violates the antisymmetry condition. Introducing the position
of process variables into list(_, _) is also a delicate issue. For example, if we have both I C; P
and I Co P, it is not determined where to insert the value of Producer and Idle on the
list(-, -). Definition 6.6 captures the idea of Example 6.9. It defines the relation C, given that
the programmer introduces a family of partial orders such that their domains partition the set
of process variables V. We again assume that the programmer defines this family based on the
intuition of why a program satisfies strong progress. Definition 6.9 ensures that C is a well-
defined partial order and it is uniquely determined in which position of list(_, -) the process
variables shall be inserted. Definition 6.8 gives the lexicographic order on list(_,) augmented
with the C relation.

Session-typed processes 33

Definition 6.6. Consider a program P = (V,.S) defined over a signature X. Let {C; }o<i<n
be a disjoint family of partial orders whose domains partition the set of process variables V,
where (a) X =2, Yiff X C; YandY C; X,and(b) X C; Y it X C; YV but X 2, Y.

We define C as Ui<n C;,ie. F C Giff F C; G for some (unique) ¢ < n. It is straightforward
to see that C is a partial order over the set of process variables V. Moreover, we define (c)

X =Y iff X =, Y for some (unique) ¢, and (d) X C Y iff X C; Y for some (unique) <.

To integrate the order on process variables (C) with the order <, we need a prefix of the list
from Definition 6.4. We give the following definition of list(x,y, j) to crop list(x,y) exactly
before the element corresponding to a sent fixed point unfolding message for types with pri-

ority j.

Definition 6.7. For a process
Z:AFP:y: B,

over signature 3, and 0 < j < n, define list(Z,y, j), as a prefix of the list list(Z,y) = [vi]i<n
by

1 [ifi =0,

2. [[vilicys (25)]if €(4) = n,

3. [[vili<js (yj)]if e(j) = v.

We use these prefixes in the following definition.

Definition 6.8. Using the orders C and <, we define a new combined order (C, <) (used in

the local guard condition in Section 6.7).
F,list(z,y) (C,<) G, list(Z,w)
iff
1. If F C G, ie, F C; G for a unique i, then list(Z,y, i) < list(Z,w, i), otherwise,

2. if F = G and list(z,y) < list(Z,w), otherwise

3. list(Z,y, min(i, 7)) < list(Z,w, min(i, j)), where F is in the domain of C; and G is in

the domain of C;.

By conditions of Definition 6.6, (C, <) is an irreflexive and transitive relation and thus a strict

partial order.

Session-typed processes 84

Example 6.10. Consider the signature of Example 6.9

Y4 :=ack :}L ®{ack : astream},
astream =2 &{head : ack, tail : astream},

nat =, ®&{z: 1, s:nat}

and program P; := ({Idle,Producer},Producer) with the relation C defined over process

variables as Idle Cy Producer. For process x : astream | Producer :: (y : nat):

list(z,y) = [(x1,91), (Y2, x2), (3, y3)],
list(z,y,3) = [(z1,v1), (Y2, 2), (z3)],
list(x,y,2) = [(x1,y1), (y2)],
list(z,y,1) = [(1)], and

list(z,y,0) = [].

To check that the recursive calls in Example 6.9 are guarded we observe that

« Producer, list(z?,y') (C, <) Idle, list(x!,y°) since list(x?,y',2) < list(z', 4, 2),

and

. Idle,list(x!,y") (C, <)Producer,list(x?,y") since list(x!,4°,2) = list(2°,9°,2)
and Idle Co Producer.

6.5 A modified rule for cut

There is a subtle aspect of the local guard condition that we have not discussed yet. We need
to relate a fresh channel, created by spawning a new process, with the previously existing
channels. Process y® : A F (z < P.;Q,) :: (2% : B), for example, creates a fresh channel
wV, spawns process P,0 providing along channel w”, and then continues as Q0. For the sake
of our algorithm, we need to identify the relation between w?, y%, and 2P, Since w? is a fresh
channel, a naive idea is to make w” incomparable to any other channel for any type variable
t € X. To represent this incomparability in our examples we write “co” for the value of the
fresh channel. While sound, we will see in Example 6.11 that we can improve on this naive

approach to cover more guarded processes.

Example 6.11. Define the signature

Y5 := ctr =), &{inc : ctr, wval : bin},
bin =2, &{b0 : bin, b1 : bin,$: 1}.

Session-typed processes 85

which provides numbers in binary representation as well as an interface to a counter. We explore

the following program Pg = ({BinSucc, Counter, NumBits,BitCount},BitCount), where

: bin F y + BinSucc <« z :: (y : bin)
: bin - y < Counter < z :: (y : ctr)
: bin F y <~ NumBits <— z :: (y : bin)
: bin -y < BitCount < x :: (y : ctr)

8 8 &8 8

We define the relation C on process variables as BinSucc Cg Counter Cg BitCount and
BinSucc Cy NumBits Cg BitCount. Process yﬁ < Counter <« w% as its name suggests
works as a counter wherew : bin is the current value of the counter. When it receives an increment
message inc it computes the successor of w, accessible through channel z. If it receives a val
message it simply forwards the current value (w) to the client (y). Note that in this process, both
calls are guarded according to the condition developed so far. This is also true for the binary
successor process BinSucc, which presents no challenges. The only recursive call represents the

“carry” of binary addition when a number with lowest bit b1 has to be incremented.

The process w” < NumBits < 2% counts the number of bits in the binary number x and sends
the result along w, also in the form of a binary number. It calls itself recursively for every bit
received along x and increments the result z to be returned along w. Note that if there are no

leading zeros, this computes essentially the integer logarithm of x.

The process definitions are as follows, shown here already with their termination analysis.

w? « BinSucc + 2% = [0,0, 0, 0]
case Lz% (fipin = [0,0,—1,0] 20T1 =28 2971 < 29
case Lzt (b0 = Rw” jiyin; [0,0,—1,1] wf“ = wf
RwPHL b1, whHt « zot! [0,0,—1,1]
| b1 = Rw” puyin; [0,0,—1,1] wf“ = wy
Rw’*1.b0;wt! « BinSucc « 21! [0,0,—1,1]
| $ = Rw”.ppin; RwPt1.01; [0,0,—1,1] wf“ = wf
Ruw* pipin; RwPt2.$; wht? zothy) [0,0,—2,2] wf” = wf“
y? < Counter + w® = [0,0, 0, 0]
case Ry’ (vey, = [-1,0,0,0] 3™ <yl iy =08
case Ry?*1 (inc = 2° « BinSucc + w®; BinSucc C(Counter
yPt1 «— Counter « 2° [—1, oo, o0,0]

| val = P+ w®)) [-1,0,0,0]

Session-typed processes

86

w? « NumBits + 2z =

case Lz*T! (b0 = 2° < NumBits < 2*T;

case Lz® (ppin =

1

w” + BinSucc + 2°

| b1 = 2° < NumBits < 2!,

w? <« BinSucc « 2°

[0,0, 0, 0]
[0,0,—1,0] ¢t = o a5t < af
[7,0,—1,7] 23 = w? | 2 = wd

BinSucc Co NumBits

‘ - ? B 7 B
[7,0,—1,7] 20 = w29 = wh

BinSucc Cp NumBits

| $ = Rw” ppin; RwPHL.$; wlth « gothy) [0,0,—1,1]
y? < BitCount < 2% = w® < NumBits «+ z%;y” + Counter + w’

The program starts with process BitCount which creates a fresh channel w®, spawns a new process

w® < NumBits < z%, and continues as yﬁ + Counter + wV.

The process NumBits is reactive. However with our approach toward spawning a new process,
the recursive calls have the list value [00,0,—1,00] £ [0,0,0,0], meaning that the local guard

condition developed so far fails.

Note that we cannot just define 2 = wlﬂ and 29 = wg, or2Y = 2§ = 0. Channel 2° is a

fresh one and its relation with the future generations depends on how it evolves in the process
w? < BinSucc < 2°. But by definition of type bin, no matter how z° : bin evolves to some 2"
in process BinSucc, it won’t be the case that 2" : ctr. In other words, the type ctr is not visible
from bin and for any generation n), channel 2" does not send or receive a ctr unfolding message.
So in this recursive call, the value of z{ is not important anymore and we safely put 2y = wf. In

the improved version of the condition we have:

w” + NumBits + z% = [0,0, 0, 0]
[0,0,—1,0] ¢t =2 a5t <

case Lz (b0 = 2" < NumBits + 2*™; [0,0, -1, c0] 2 = w?

case Lz® (ppin =

BinSucc Cy NumBits

[0,0,—1, o] 20 = w

w® + BinSucc + 2°
| b1 = 2° < NumBits ¢+ 2>
w? < BinSucc « 2° BinSucc C NumBits

| $ = Rw” pupin; RwPTL.$; wltt « zoth)) [0,0,-1,1]

This version of the algorithm recognizes both recursive calls as guarded. In the following definition

we capture the idea of visibility from a type more formally.

Session-typed processes 87

Definition 6.9. For type A in a given signature ¥ and a set of type variables A, we define
c(A; A) inductively as:

C

(1;4) =

(@{f: AE}KGLa A) =c(&{l: Agtrer; A) = UéeL c(Ap A),
c(t; A) ={t}Uc(A;AU{t})ift =, AcXandt & A,

(t; A) ={t}ift =, A€ X andt € A.

C

C

We put priority i in the set c(A) iff for some type variable t with i = p(t), t € c(A; (). We say
that priority i is visible from type A if and only if i € c(A).

In Example 6.11, we have c(bin) = {p(bin)} = {2} and c(ctr) = {p(bin), p(ctr)} = {1,2}
which means that bin is visible from ctr but not the other way around. This expresses that the

definition of ctr references bin, but the definition of bin does not reference ctr.

6.6 Typing rules for session-typed processes with channel or-

dering

In this section we introduce infinitary inference rules for session-typed processes correspond-
ing to derivations in subsingleton logic with fixed points. This is a refinement of the process
typing rules presented in Chapter 5 to account for channel generations and orderings intro-
duced in previous sections. This system rules out communication mismatches without forcing
processes to actually communicate along their external channels. It is the basis for our finitary
system for the local guard condition in Section 6.7, and Section 6.8 where we prove that our

local guard condition is stricter than Fortier and Santocanale’s validity condition.

The judgments are of the form
Cwkq P (yP: A),

where P is a process, and 2 (the a-th generation of channel x) and 3° (the 3-th generation
of channel y) are its left and right channels of types w and A, respectively. The order relation
between the generations of left and right channels indexed by their priority of types is built
step by step in (2 when reading the rules from the conclusion to the premises. We only consider
judgments in which all variables z occurring in are such that o/ < « and, similarly, for
y%" in Q we have 8/ < . This presupposition guarantees that if we construct a derivation
bottom-up, any future generations for x and y are fresh and not yet constrained by). All our

rules, again read bottom-up, will preserve this property.

We fix a signature ¥ as in Definition 5.2, a finite set of process definitions V' over ¥, and define
% :whq P (y? : A) with the rules in Figure 6.1. To preserve freshness of channels and

their future generations in €2, the channel introduced by CuT rule must be distinct from any

Session-typed processes 38

variable mentioned in 2. This system is infinitary, i.e., an infinite derivation may be produced
for a given program. However, we can remove the first premise from the DEF rule and check

typing for each process definition in V' separately.

6.7 A local guard condition

In Sections 6.1 to 6.4, using several examples, we developed an algorithm for identifying guarded
programs. Illustrating the full algorithm based on the inference rules in Section 6.6 was post-
poned to this section. We reserve for the next section our main result that the programs
accepted by this algorithm satisfy the validity condition introduced by Fortier and Santo-
canale [36].

The condition checked by our algorithm is a local one in the sense that we check the guard
condition for each process definition in a program separately. The algorithm works on the

sequents of the form
(fﬂ,X,v5>;2°‘ twhkoc P (w’B (),

where @” is the left channel of the process the algorithm started with and can be either empty
or u?. Similarly, v is the right channel of the process the algorithm started with (which cannot
be empty). And X is the last process variable a definition rule has been applied to (reading the
rules bottom-up). Again, in this judgment the (in)equalities in {2 can only relate variables z

and w from earlier generations to guarantee freshness of later generations.

Generally speaking, when analysis of the program starts with @” : w F v° < X « @7 :: (v9 :
B), a snapshot of the channels %" and v? and the process variable X are saved. Whenever
the process reaches a call 2% : _ F w® «+ Y < 2% = (w® :), the algorithm compares
X, list(a",v?) and Y, list(2*,w®) using the (C, <) order to determine if the call is (locally)
guarded. This comparison is made by the CALL rule in the rules in Figure 6.2, and is local in
the sense that only the interface of a process is consulted at each call site, not its definition.
Since it otherwise follows the structure of the program it is also local in the sense of Pierce and

Turner [75].

Definition 6.10. A program P = (V,.S) over signature ¥ and a fixed order C satisfying the
properties in Definition 6.6 is locally guarded iff forevery 2 : A- X = Pz, 2 (w: C) € V,

there is a derivation for
(2%, X, w%; 2%t w iy Pso 0 (w0’ : O)

in the rule system in Figure 6.2. This set of rules is finitary so it can be directly interpreted
as an algorithm. This results from substituting the DEF rule (of Figure 6.1) with the CALL rule
(of Figure 6.2). Again, to guarantee freshness of future generations of channels, the channel

introduced by CuT rule is distinct from other variables mentioned in €.

Session-typed processes

I
@ Abqy® « x% (yP: A) P

r(v) = {wd =v; | i & c(A)andi < n}
T w Fqup(ys) Puo & (w: A) w1 Abqup(ze)y Quo (y?: C)

T whkq (W< Pu;Qy) :: (47 : O)

T :wkq P (y? A (kel)
T whq RYP.E P (yP {0 Apdeer)

OR

Vel x%:Aikq P (yP:0)
@l : Agdoer Fo case La® (0 = Py) = (y2 : C)

®L

Vel z%:whkq P (y?: Ay
T :whqcase Ry’ ({ = P)) :: (y° : &{l: Ag}ocr)

&R

keL a%:AptqP:(yf:0)
@ &{l: Ajyper Fo La® k; P (yP : C)

&L

1R
.Fq close Ry” :: (y7 : 1)

o Q@ (yP A
% : 1 kg wait La®; Q = (y° : A)

1L

Q= QU{)ps) = @) | p(s) # p(1)}
T w ko Py (yBFl: A) t=, A

% whkq Ryﬂ.,ut;PyB s (y?ot)

uR

V= QU ey < ULegi) =) [p(s) # p(0)
2t Abg Quotr i (vP 1 O) t=, A
x:thq case La® (up = Quo) = (vP : C)

uL

¥=Qu {?/5(;1 < yf(t)} U {yg(t)l = 3/5(5) | p(s) # p(t)}
T whq Py (yP+l . A) t=, A

% whkq case Ry? (v = Pys) (y® : 1)

VR

O =QU{(E)y(s) = (@%)p(s) | P(s) # p(1)}
xo“"l A |—Q/ QJ:O‘H i (yﬁ : C) t=, A
%t L% Que i (y° 1 C)

vL

T whqg Pra s W0 GrwkE X =Py (w:C)eV
% wkqyf «— X 2% (P O)

Der(X)

FIGURE 6.1: Infinitary Typing Rules for Processes with Channel Ordering

Cur

w

Session-typed processes 90
— Ip
(W, X,0°);2% : Abq c w? + 2% (v @ A)
r(y) = {2} =vi | i & c(A)andi < n}
(a7, X,v%); 2% 1w Fur(ws),c Peo = (202 A) (a7, X,v%);20: A Four(ze),c Qa0 = (w? : O) Cur”
(7, X,v%); 2%t wkqc (x4 Pp;Qy) 2 (wP : O) vt
(", X,v°);2% whqc P (w: Ay) (keL) R
S
(W, X,v9); 2%t wq.c RwP.k; P (wh: @{0: A}eer)
Vee L (a",X,v%);2%: Aglqc P (wf:C) oL
(¥, X,v°); 2% : @{0 : Alyer Fa.c case Lz® ({ = P) =2 (v’ : C)
VeeL {(ua7,X,v9);2% :whkqc P (wf: Ay OR
(a7, X,v°); 2% : whq.c case Rw® (0 = Pp) = (wP : &{l: Ar}oer)
(ke L) (@, X,v0);2%: Ay Fqc P (w?:0) oL
(", X,v0); 2% 1 &{l: Ag}oer Fa.c L2k P (wP: O)
Y, X, 00); - s (wf A
R ()i Fa,c @ () oL

(@7, X,v%); Fq.c close R :: (w” : 1)

0 = QU {wl, =l p(s) £ b))
(", X, 1)6>;2a twhqrc Pys+1 ot (U)BJrl : A) t=, A
(@7, X,v%); 2% 1w Fq.c RwP.ug; Pys 2 (0P 0 t)

uR

Q' =QU{z) < 7 ULzl = 2 [pls) # p(0)}
(a7, X,v°); 2% s Abqr e Quavn i (WP C) t=, A
(", X,v%); 2% 1 t bq.c case Lz (yy = Qo) :: (wP : C)

wL

V= QU fuyy) < wp bU L) = wy | pls) # p(6)}
<’U,’7,X, ”U6>; Z4w '_(2/7C P s+1 (wB“ : A) t=, A
(@7, X,v%); 2% : w o ¢ case RwP (v, = P,s) = (wP i t)

VR

O = QU = 23 | pls) £ p(0)}
(@, X,0°); 2t D Ak c Qo (WP :C) t=, A
(W, X,00);2% it c Lz Que = (WP 1 C)

vL

Y, list(2%,w?) (C,<q) X, list(@w",v°) ZT:whkY =P, = (y:C)eV
(W7, X,0°);2% twhqgcw’ + Y « 2% (wf: 0)

FIGURE 6.2: Finitary rules for the local guard condition

(@7, X,v%);2% 1 1 b c wait Lz%;Q = (w® : A)

CALL

Session-typed processes 91

The starting point of the algorithm can be of an arbitrary form
(2%, X, wP); 2% s w kg c P s i (w”:),

as long as 2+ and w?*? do not occur in Q for every i > 0. In both the inference rules and the
algorithm, the next generation of channels introduced in the /v — R/ L rules do not occur in

Q2. Having this condition we can convert a proof for
(2, X, w%; 2wy - Poo 0 (w® : C),

to a proof for
(2%, X, wP); 2% s whqc P s (w? : C),

by rewriting each z7 and w? in the proof as 277® and w%t?, respectively. This simple propo-
sition is used in the next section where we prove that every locally guarded process accepted

by our algorithm is a valid proof according to the FS validity condition.
Proposition 6.11. If there is a deduction of

(2%, X, 0"); 2%t whg c Poo o it (w”: 0),
then there is also a deduction of

(2%, X, wP); 2% s w kg c P s i (W’ :),

z

if for all 0 < i, 22" and w”** do not occur in Q.
Proof. By substitution, as explained above. O]

To show the algorithm in action we run it over program P3 := ({Copy}, Copy) previously

defined in Example 6.2.

Example 6.12. Consider program Ps := ({Copy}, Copy) over signature ¥, where Copy has
types x : nat - Copy :: (y : nat).

Y1 := nat :;1; ®{z:1,s: nat},

y < Copy «— x = case Lz (inqt = case Lz (z = Ry.pinat; Ry.z; wait Lz; close Ry

| s = Ry.pinat; Ry.s;y < Copy < x)).

In this example, following Definition 6.6 the programmer has to define Copy C; Copy since the
only priority in 3 is 1. To verify local the guard condition for this program we run our algorithm

over the definition of Copy. Here we show the interesting branch of the constructed derivation:

Session-typed processes 92

[21,Copy, y1] (T, <{a1<a0y) [2F, Copy, y?] @ : nat - Copy = (case La (-++))a,y = (y : nat) € V

CaLL
z' : nat el <0} y! « Copy « z! :: (y! : nat)
a'inat b0y Rytiss-o- i (y' o 1@ nat) 5
u
et 1 pa1ca0y RYO pnars -+ (0 s nat) @b nat b g0y Ry pinar; - - o (y° @ nat) .
2

z' 1@ nat 1,0y case La' (---) = (y0 : nat)

20 : nat by case La° (pipar = - -+) = (y¥ @ nat)

As being checked by the CaLL rule, [x1, Copy, y1] (C, ol <a0}) [29, Copy, y}] and the recursive
call is accepted. In this particular setting in which Copy calls itself recursively, the condition of

the CALL rule can be reduced to [z}, y1] <{al<al} [29,49].

Note that at a meta-level the generations on channel names and the set 2 are both used for
bookkeeping purposes. We showed in this example that using the rules of Figure 6.2 as an
algorithm we can annotate the given definition of a process variable with the generations and
the set (2.

6.8 Local guard condition and FS validity

Fortier and Santocanale [36] introduced a validity condition for identifying valid circular proofs
among all infinite pre-proofs in the singleton logic with fixed points. They showed that the pre-
proofs satisfying this condition, which is based on the definition of left ;- and right v-traces,
enjoy the cut elimination property. In Chapter 4, we generalized their results to the infinitary
first-order intuitionistic multiplicative additive linear logic. In this section, we translate their
validity condition into the context of session-typed concurrency and generalize it for subsin-
gleton logic. It is straightforward to show that the cut elimination property holds for a proof
in subsingleton logic if it satisfies the generalized version of the validity condition. The key
idea is that cut reductions for individual rules stay untouched in subsingleton logic and rules
for the new constant 1 only provide more options for the cut reduction algorithm to terminate.
We prove that all locally guarded programs in the session typed system, determined by the
algorithm in Section 6.7, also satisfy the validity condition. We conclude that our algorithm
imposes a stricter but local version of validity on the session-typed programs corresponding

to circular pre-proofs.

Here we adapt definitions of the left and right traceable paths, left - and right v-traces, and
then wvalidity to our session type system. These definitions are phrased differently from their
counterparts in Section 4.3. Here, we phrase them similar to Fortier and Santocanale’s pa-
per [36]. Theorem 6.18 proves that our earlier definition of y- and v-traces in Section 4.3,

when restricted to the subsingleton fragment, implies the definitions as phrased here.

Session-typed processes 93

Definition 6.12. Consider path P in the (infinite) typing derivation of a program Q = (V, S)

defined on a signature X:
W g Q (Y C)

2% whkq Q (W C)
P is called left traceable if Z and Z are non-empty and z = . It is called right traceable if w = y.

Moreover, Pis called a cycle over program Q, if for some X € V, we have Q = wh — X « 7@
and Q' = ¢ «+ X + 1.

Definition 6.13. A path IP in the (infinite) typing derivation of a program Q = (V. S) defined
over signature X is a left p-trace if (i) it is left-traceable, (ii) there is a left fixed point rule applied
on it, and (iii) the highest priority of its left fixed point rule is i < n such that (i) = u. Dually,
P is a right v-trace if (i) it is right-traceable, (ii) there is a right fixed point rule applied on it,
and (iii) the highest priority of its right fixed point is ¢ < n such that (i) = v.

Definition 6.14 (FS validity condition on cycles). A program Q = (V, S) defined on signature
3 satisfies the FS validity condition if every cycle C

VW gy — X 37 (y° o)

7% whkquwf « X < 2% (WP 0)

over Q is either a left y-trace or a right v-trace. Similarly, we say a single cycle C satisfies the

validity condition if it is either a left y-trace or a right v-trace.

Definitions 6.12-6.14 are equivalent to the definitions of the same concepts by Fortier and San-
tocanale using our own notation. As an example, consider program P3 := ({Copy}, Copy)

over signature 31, defined in Example 6.2, where Copy has types = : nat - Copy :: (y : nat).
¥ = nat :; ®{z :1,s: nat}
y < Copy — x = case Lz (nq = case Lz (z = Ry.fina; Ry.z; wait Lz; close Ry
| s = Ry.pinat; Ry.s;y < Copy < x))

Consider the first several steps of the derivation of the program starting with 2° : nat -y 3 «

Copy + 2% :: (y° : nat):

Session-typed processes 94

x! :nat F a1 <o y! < Copy « ! :: (y* : nat)

DR
x! :nat el <a0) Ryt.s;--- (y': 1@ nat)
uR
zl:1 l_{w%<z(1)} Ry° pinae; - 2 (y° @ nat) z! : nat "{m}<x€f} RyY° pinar; - 2 (y° @ nat) .
3
2! 1@ nat F a1 <20} case Lat (--+): (y° : nat)
ulL
20 : nat by case La° (pipar = -+) = (y° @ nat)
DEer(Copy)
29 : nat Fo y“ < Copy < 29 (g/“ : nat)
The path between
2V nat -y y° < Copy « 2% :: (3° : nat)
and
xtinat b0y yt < Copy « 2! = (! : nat)
. {z]<al} Yy Py Sy

is by definition both left traceable and right traceable, but it is only a left y-trace and not a
right v-trace: the highest priority of a fixed point applied on the left-hand side on this path
belongs to a positive type; this application of the uL rule added 2} < ¥ to the set defining
the < order. However, there is no negative fixed point rule applied on the right, and y{ and 3"

are incomparable to each other.

This cycle satisfies the validity condition by being a left u-trace. We showed in Example 6.12 that
it is also accepted by our algorithm since list(z!, yt) = [(x1,y1)] < [(29, yD)] = list(x®, 4°).

Here, we can observe that being a left u-trace coincides with having the relation #] < ¥

between the left channels, and not being a right v-trace coincides with not having the relation
yt < 99 for the right channels. We can generalize this observation to every path and every

signature with n priorities.

Definition 6.15. Consider a signature > and a channel 7. We define the snapshot of a channel
z* as a list snap(z®) = [x]i<n = 2], ,z.], where n is the maximum priority in X. For

brevity, we write [27] instead of snap(z®).

As explained in Section 6.3, the reflexive transitive closure of Q in judgment 27 : w Fq P :: (3 : O)
forms a partial order <q. To enhance readability of proofs, throughout this section we may

use entailment € |- z < y instead of x <¢ ¥.

Lemma 6.16. Consider a finite path P in the (infinite) typing derivation of a program Q = (V, S)

defined on a signature 3,
2w b P (10)

2% whkq P (wf: O)

Session-typed processes 95

with n the maximum priority in 3.

(a) Foreveryi € c(w') withe(i) = p, ifx] <o/ 2% thenz = z and i € c(w).
(b) Foreveryi < n,ifz] <q 2, theni € c(w) and a L rule with priority i is applied on P.
(c) Foreveryc < n withe(c) = v, ifw] <o/ 2%, then no v L rule with priority c is applied on

P.

Proof. Proof is by induction on the structure of P. We consider each case for last (topmost)

step in P. The judgment 27 : w’ ko P :: (y° : C') is a premise of the last step.

Case
2wk P00z X =P (y:C)eV

Der(X)
7w oy = X a2 (y?)

None of the conditions in the conclusion are different from the premise. Therefore, by

the induction hypothesis, statements (a)-(c) hold.

Case We need to distinguish two cases for the cut rule, since the typing judgment for P’ can

be the the first or left premise of CuT.
Subcase.

VW FQ”UI‘(UQ) P;o b (yU : C/) yO : ¢’ FQ”Ur(xW) Qyo bt (Q}g : C//)

Cut?
27w ban (y < P Qy) = (v . C")

where r(u) = {y;-) =uj | j & c(C)andj < n}and Q' = Q" Ur(?). Al
conditions in the conclusion are the same as the first premise (27 : W' For (y
P Qy) (v? : C")): the equations in 7(v?) only include channels 3° and v. As a
result Q" Ur(v?) IF 2] < 28 implies Q” IF 2] < 2%, and Q" Ur(v?) IF z] < 2¢
implies Q" I 2] < z{. Therefore, by the induction hypothesis, statements (a)-(c)
hold.

Subcase.

u W Fgniey Qao = (201 A) 2 1 Abquip(uny Plo = (y? . C")

xT

U AR 6.0/ Cur
u'w Q//(x<—Q$, :c)(y :)

where r(v) = {x? =vj|jéc(A)andj < n}and Q' = Q" Ur(u).

() Q"Ur(u") IF 29 < 2% does not hold for any i € ¢(A): x is a fresh channel and
does not occur in the equation of 2. Moreover, since i € ¢(A), there is no
equation in the set r(u") including z¥. Therefore, this part is vacuously true.

(b) By freshness of z, if Q" U r(u") IF 2¥ < 22, then 2) = u] € r(u") and
Q" IF u] < 2. By the induction hypothesis, i € c(w) and a L rule with
priority ¢ is applied on P.

Session-typed processes 96

(c) By freshness of z, if Q" U r(u") IF 20 < 22, then 20 = ul € r(u”) and

Q" I ud < z2. By the induction hypothesis, no v L rule with priority c is
applied on P.

Case
. |—Q/ P (y5 : C,)

1L
u' : 1 ko wait Lu; P = (y° : C7)

This case is not applicable since by the typing rules ' I . < z& for any i < n.

Case

2w kg P (PO =00 = QUL) = 7)) [0(s) # p(D)

/ ! MR
W For Ry g P (y o t)
For every i < n, if Q" U {(y°)) = (¥ 5,+1)p(s) | p(s) # p(t)} Ik z] < 22, then
Q" I+ z] < z2. Therefore, by the induction hypothesis, statements (a)-(c) hold.
Case
t=p W
’ 1 / ! 1 /
sVt W kg P (0) Y =Q" U {xz(:r < x;(t)} U {xz(:) = xz(s) | p(s) # p(t)} .
! / M
27 it g case Lx (uy = P (y0 - C7)

By definition of ¢(x), we have c(w’) C ¢(t). By uL rule, for all i < n, ZC;Y/—H < :v?/ e Q.
But by freshness of channels and their generations, 27+ is not involved in any relation
in Q.

(a) For every i € c(w') with (i) = p, if Q' IF leﬂ < z% then Q" I+ xz/ < z. By
the induction hypothesis, we have z = z and i € c(w).

(b) We consider two subcases: (1) If Q' I+ J:Z/H < z& for i # p(t), then Q' I+ xglﬂ =

z] and Q" I+ z] . Now we can apply the induction hypothesis. (2) If ' I+

;(ng < 2y then Q Il— xz(:gl <! (, and Q" - xzzt) < %y Since a pL rule is
applied in this step on the priority p(t), we only need to prove that p(t) € c(w).
By definition of ¢, we have p(t) € c(t) and we can use the induction hypothesis
on part (a) to get p(t) € c(w).

(c) For every ¢ < n with e(c) = v, Q@ |- 2l = 2l as e # p(t). Therefore, if
2l = 22, then Q" |F 2l = 22. By the induction hypothesis no v L rule
with priority c is applied on P.

Case
t=,C"
2w b Pyt O 0 = QN0 {yp < UL =) [p(s) # p(1)
vR

27w For case RyY (vy = P') = (v 1)

Session-typed processes 97

For every i < n,if Q" U {yz,(;;l < yz’(t)} U {yg/(:')l = ygl(s) | p(s) # p()} Ik) < 28,

then Q" IF 2] < 2. Therefore, by the induction hypothesis, statements (a)-(c) hold.

Case

W e Qi) =, Y =Q"U {93;2?)1 = x;gs) | p(s) # p(t)}

) - vL
Y i tbqr LY g P (0 C7)

By definition of c(z), we have c(w’) C c(t). By vL rule, for all i # p(t) < n, xZI'H =
,Y/
L

freshness of channels and their generations, 7 ™! is not involved in any relation in 2",

€ Q. In particular, for every i < n with €(i) = pu, 2/ = 2} € Q. But by

A A

(a) Foreveryi € c(w') with e(i) = p, if ' IF xZ,H < 2%, then Q' I+ leﬂ = le and
Q" - x?l < z{. By the induction hypothesis z = z and i € c(w).

(b) IfQ I+ a:;yurl < z¥, then by freshness of channels and their generations we have
i # p(t), I+ x?url = :czl and Q" I+ wzl < z%. By the induction hypothesis
i € c(w) and a pL rule with priority i is applied on the path.

(c) For every ¢ < n with €(¢) = v and ¢ # p(t), if ' IF xZIH < z¢, then @ |-
xZ,H = xz/ and Q" I 2’ < z2. Therefore, by induction hypothesis, no v L rule
with priority c¢ is applied on the path. Note that Q' Iff leﬂ(t) < 25 (1).

Case

2 iwhke Qruy’ i Ay Vel
27w o case Ry (0= Q) = (y° : &{l: Ag}eer)

&R

None of the conditions in the conclusion are different from the premise. Therefore, by

the induction hypothesis, statements (a)-(c) hold.

Case

2V Ao Q (0 C)

&L
Y &{l: Ayper For La ks Q = (0 2 C)

By definition of c(x), we have c(Ax) C c(&{¢ : As}ver). Therefore, statements (a)-(c)

follow from the induction hypothesis.

Cases The statements are trivially true if the last step of the proof is either 1R or Ip rules.

O]

Lemma 6.17. Consider a path P in the (infinite) typing derivation of a program Q = (V. S)

defined on a signature ¥,
VW kg P (10)

2% whkq P (wf: C)

with n the maximum priority in 3.

Session-typed processes 98

(a) Foreveryi € c(w') withe(i) = v, ify) <o wf, theny = w andi € c(w).
(b) Ify? <qr w?, theni € c(w) and a vL rule with priority i is applied on P .
(c) Foreveryc < n withe(c) = p, ify} <q wt, then no 1R rule with priority c is applied on
P.
Proof. Dual to the proof of Lemma 6.16. O
Theorem 6.18. A cycle C

Ty — X2y O

2% whkquwd « X < 2% (WP 0)

on a program Q = (V. S) defined over signature 3 is a left u-trace if T and z are non-empty and

the list [x7] = [x], -+ , 3] is lexicographically less than the list [z*] = [2{, - - - , 22| by the order
<q built in Y. Dually, it is a right v-trace, if the list [y°] = [0, - , 4] is lexicographically less
than the list [w®] = [wf, -+ wh] by the strict order <y built in Q'

Proof. This theorem is a corollary of Lemmas 6.16 and 6.17. O

We provide a few additional examples to elaborate Theorem 6.18 further. Define a program
Py := ({Succ, Copy, SuccCopy}, SuccCopy), over the signature 31, using the process w :
nat - Copy :: (y : nat) and two other processs: = : nat F Succ :: (w : nat) and z : nat -

SuccCopy :: (y : nat). The processes are defined as

w < Succ < = = Rw.ppq; Rw.s;w < x

y < Copy < w = case Lw (finqt = case Lw (s = Ry.ppat; Ry.s;y < Copy + w

| 2 = Ry.pinat; Ry.z; wait Lw; close Ry))

Y < SuccCopy < = = w < Succ < z;y < Copy < w,

Process SuccCopy spawns a new process Succ and continues as Copy. The Succ process
prepends an s label to the beginning of the finite string representing a natural number on
its left hand side and then forwards the string as a whole to the right. Copy receives this finite

string representing a natural number, and forwards it to the right label by label.

The only recursive process in this program is Copy. So program Py, itself, does not have a
further interesting point to discuss. We consider a bogus version of this program in Example

6.13 that provides further intuition for Theorem 6.18.

Session-typed processes 99

Example 6.13. Define program Py := ({Succ, BogusCopy, SuccCopy }, SuccCopy) over the

signature
¥ :=nat :llt @®{z:1, s:nat},

The processes x : nat F Succ :: (w : nat), w : nat - BogusCopy :: (y : nat), and z : nat b
SuccCopy :: (y : nat), are defined as

w +— Succ ¢ = = Rw.lpg; Rw.s;w

y < BogusCopy «— w = case Lw (finqt = case Lw (s = Ry.pinat; Ry.s;y < SuccCopy + w

| 2 = Ry.pinat; Ry.z; wait Lw; close Ry))

1 < SuccCopy < = = w ¢ Succ < z;y < BogusCopy <+ w

Program 'Pyg is a non-reactive bogus program, since BogusCopy instead of calling itself re-
cursively, calls SuccCopy. At the very beginning SuccCopy spawns Succ and continues with
BogusCopy for a fresh channel w. Succ then sends a fixed point unfolding message and a succes-
sor label via w to the right, while BogusCopy receives the two messages just sent by Succ through
w and calls SuccCopy recursively again. This loop continues forever, without any messages being

received from the outside.

The first several steps of the derivation of z° : nat -y SuccCopy :: (y° : nat) in our inference

system (Section 6.6) are given below.

Ip 1

2% nat by w! + 20 (w! : nat) --- w :nat "{w}<w?} y¥ < SuccCopy + w? :: (y° : nat) S
®R ®
2% :nathky Rw'.s;-- - (wh: 16 nat) w! 1@ nat F fw! <w?} case Lw! (--+) 2 (y° : nat)
uR uL
20 nat by Rw®. pipae; -+ o (w0 @ nat) w? : nat kg case Lw® (pinat = -+) = (y° @ nat)
DEF DEF
20 : nat Fyp w° < Succ + 20 :: (w° : nat) w : nat - y° + BogusCopy + w" :: (y° : nat)
Cut®

29 : nat by w < Succ; y” <+ BogusCopy < w :: (y° : nat)

- DEr
20 : nat kg 3° < SuccCopy < 20 :: (y¥ : nat)

Consider the cycle between

0 0

2% : nat kg 3° < SuccCopy « 20 :: (° : nat)

and

0

w' : nat F fw! <wt} y? « SuccCopy «+ w' :: (¥ : nat).

Session-typed processes 100

By Definition 6.13, this path is right traceable, but not left traceable. And by Definition 6.12, the

path is neither a right v-trace nor a left ji-trace:

1. No negative fixed point unfolding message is received from the right and 3y° does not evolve
to a new generation that has a smaller value in its highest priority than 0. In other words,

yY £ oY since no negative fixed point rule has been applied on the right channel.

2. The positive fixed point unfolding message that is received from the left is received through
the channel w®, which is a fresh channel created after SuccCopy spawns the process Succ.
Although wi < w9, since 2 is incomparable to w9, the relation wi < x9 does not hold.

This path is not even a left-traceable path.

Neither [w!] = [wi] < [20] = [2°], nor [y°] = [1] < [¥9] = [v°] hold, and this cycle does not

satisfy the validity condition. This program is not locally guarded either since [wi,4Y] £ [29,yY].

As another example consider the program Ps = {Ping, Pong, PingPong}, PingPong) over
the signature ¥4 as defined in Example 6.5. We discussed in Section 6.3 that this program is

not accepted by our algorithm as locally guarded.
Example 6.14. Recall the definition of signature >.4:
Y4 = ack :L ®{ack : astream},

astream =2 &{head : ack, tail : astream},

nat :i @{z:1, s:nat}

Processes
x :nat k- Ping :: (w : astream),
w : astream I Pong :: (y : nat),
x : nat - PingPong :: (y : nat)
are defined as

w < Ping < x = case Rw (Vgstream = case Rw (head = Rw.piger; Rw.ack;w < Ping < x

| tail = w < Ping < z))

y < Pong < w =Lw.Vastream; Lw.head;

case Lw (lqer, = case Lw (ack = Ry.inat; Ry.s;y < Pong < w))

Yy < PingPong <— x = w <~ Ping < z;y < Pong < w

The first several steps of the proof of z° : nat -y PingPong :: (y° : nat) in our inference system

(Section 6.6) are given below (with some abbreviations).

Session-typed processes 101

20 : nat Fp w? < Ping < 20 :: (w? : astream)

OR
20 : nat b Rw?.ack;--- :: (w? : ©{astream})
uR
20 i nat b4 Rwl piger; -+ (w! : ack) 2% :nathq -+ o (w : astream)
&R
20 : nat -4 case Rw?! (---) :: (w! : ack & astream)
vR
20 : nat by case Ruw® (Vastream = -+)t (w® : astream)
DEF
2% : nat g w® < Ping < 2% :: (w' : astream) w? : astream k¢ + -+ =2 (3 : nat)
Cur
20 : nat by w < Ping < 2%;y" < Pong < w :: (y° : nat)
DEer
20 : nat by 3° < PingPong < 20 :: (y" : nat)
where A = {w] = w{, w} < wd, wl =wl}, and B = {w} = v, w3 = wl < wd, w3 = wi =

wY}. The cycle between the processes

T 0 0

:nat Fp w” < Ping < 20 :: (w” : astream)

and

2V : nat g w? « Ping « 2 :: (w? : astream)

is neither a left u-trace, nor a right v-trace:

1. No fixed point unfolding message is received or sent through the left channels in this path
0 ,.0 0 .0 ,0

and thus [2°] = [29, 29, 23] £ [29, 29, 23] = [29].

2. On the right, fixed point unfolding messages are both sent and received: (i) w® receives an
unfolding message for a negative fixed point with priority 2 and evolves to w', and then
later (i) w" sends an unfolding message for a positive fixed point with priority 1 and evolves
to w?. But the positive fixed point has a higher priority than the negative fixed point, and
thus this path is not a right v-trace either.

This reasoning can also be reflected in our observation about the list of channels in Theorem 6.18:
When, first, w° evolves to w' by receiving a message in (i) the relations wi = w9, wi < w9,

and wi = wY are recorded. And, later, when w' evolves to w? by sending a message in (ii) the

relations w3 = wi, and w3 = w} are added to the set. This means that w? as the first element of

the list [w?] remains incomparable to w{ and thus [w?] = [w?, w3, w3] £ [w}, wd, wI] = [w].

By Theorem 6.18, a cycle C

VW gy X 37 (v)

2% wkquw? « X 2% (WP 0)

Session-typed processes 102

is either a left yu-trace or a right v-traceif either [27] <q [2] or [y°] <o [w®] holds. Checking
a disjunctive condition for each cycle implies that the FS validity condition cannot simply
analyze each path from the beginning of a definition to a call site in isolation and then compose
the results—instead it must unfold the definitions and examine every possible cycle in the

infinitary derivation separately.

In our algorithm, however, we merge the lists of left and right channels, e.g. [27] and [y°]
respectively, into a single list list(z7,y°). The values in list(z7, %) from Definition 6.4 are
still recorded in their order of priorities, but for the same priority the value corresponding
to receiving a message precedes the one corresponding to sending a message. As described
in Definition 6.8 we merge this list with process variables to check all (immediate) calls even
those that do not form a cycle in the sense of the FS validity condition (that is, when process
X calls process Y # X).

By adding process variables to our guard condition there is no need to search for every possible
cycle in the infinitary derivation. Instead, our algorithm only checks the condition for the
immediate calls that a process makes. As this condition enjoys transitivity, it also holds for all

possible non-immediate recursive calls, including any cycles.

Remark 6.19. We briefly analyze the asymptotic complexity of our algorithm. Let n be the
number of priorities and s the size of the signature, where we add in the sizes of all types A
appearing in applications of the CuT rule. In time O(n s) we can compute a table to look up

i € c(A) for all priorities 7 and types A appearing in cuts.

Now let m be the size of the program (not counting the signature). We traverse each process
definition just once, maintaining a list of relations between the current and original channel
pairs for each priority. We need to update at most 2n entries in the list at each step and compare
at most 2n entries at each CALL rule. Furthermore, for each CuTt rule we have a constant-time
table lookup to determine if ¢ € ¢(A) for each priority i. Therefore, analysis of the process

definitions takes time O(mn).

Putting it all together, the time complexity is bounded by O(mn + ns) = O(n(m + s)).
In practice the number of priorities, n, is a small constant so checking the guard condition is
linear in the total input, which consists of the signature and the process definitions. As far

as we are aware of, the best upper bound for the complexity of the FS validity condition is

PSPACE [33].

It is also interesting to note that the complexity of type-checking itself is bounded below by
O(m + s2) since, in the worst case, we need to compute equality between each pair of types.

That is, checking the guard condition is faster than type-checking.

Another advantage of locality derives from the fact that our algorithm checks each process
definition independent of the rest of the program: we can safely reuse a previously checked
locally guarded process in other programs defined over the same signature and order C without

the need to verify the local guard condition again.

Session-typed processes 103

We are now ready to state our main theorem that proves the local guard algorithm introduced
in Section 6.7 is stricter than the FS validity condition. Since the FS validity condition is defined
over an infinitary system, we need to first map our local condition into the infinitary calculus

given in Figure 6.1.

Lemma 6.20. Consider a path P on a program Q = (V, S) defined on a signature ¥, with n the

maximum priority in 3.
0w g P (y°: O)

Ywhkq P (w:0)

Q' preserves the (in)equalities in Q. In other words, for channels u, v, generationsn,7" € N and
type priorities i, 7 < n,

(@ IfFQ I <o, then Y IF u? < o7

b) IfQUIFu? < o7, then ' Ik uf <.

() f 7 7

o) IfQ I] —vn then Q' IF u] =7,

© If :

Proof. Proof is by induction on the structure of P. We consider each case for topmost step in

P. Here, we only give one non-trivial case. The proof of other cases is similar.

Case

2w b P (0N 1=, 0" Q=2 UL)y = (87 sy | 0(s) # p(1)}

@ bgr RyY g P (v 1 t)

@@ QI u < ’U then by the inductive hypothesis, Q" |F] < v By fresh-

5 +1

ness of channels and their generations, we know that y does not occur in any

(in)equalities in " and thus y® *1 # u”, v"". Therefore Q' IF u] < v

Following the same reasoning, we can prove statements (b) and (c).

Lemma 6.21. Consider a finitary derivation (Figure 6.2) for
(1, X,0); 7% :whac P (y°: 0),

on a locally guarded program Q = (V, S) defined on signature ¥ and order C. There is a (poten-
tially infinite) derivation D for

Cwkq P (Y 0),

uR

Session-typed processes 104

in the infinitary system of Figure 6.1.

Moreover, for every " : w' For 20 <~ Y « w" =2 (2° : C") on D, we have

Y, list(w?,2°) (C, <) X, list(z,y).

Proof. We prove this by coinduction, producing the derivation of 2% : w Fq P :: (y° : C). We
proceed by case analysis of the first rule applied on (@i, X,v); 2% : w Fq P :: (y? : C), in its

finite derivation.

Case

Y, list(z%,9°) (C,<q) X, list(w?,0°) Z:wkY =P, =(y:C)eV

Carr(Y)
(", X,0%); 2% : w Fa,c v Y 2% (yP O)

The program is guarded, so there is a finitary derivation for
(Y, y"); 2%t w by o Pg%O,yO sy 0).

Having Proposition 6.11 and freshness of future generations of channels in €2, there is

also a finitary derivation for

(@Y, y7) 2% whoc Pl

= (yP e 0).
We apply the coinductive hypothesis to get an infinitary derivation D' for
% whkq,c Paéayyﬂ s (PO,

and then produce the last step of derivation

]D)/
i"o‘:wl—QP%a’yﬁ sy 0) T:wkY =P u(y:C)eV

Der(Y)
T wkqy <« Y 2% (3P 0)

in the infinitary rule system.

Moreover, by the coinductive hypothesis, we know that for every
0" W b 2 = W (2O

on I, we have
W, list(w"", 2%) (C, <q) Y, list(z%, y°).

By Lemma 6.20, we conclude from Y, list(z%,9%) (C, <q) X, list(a",v°) that

Y, list(2%,y°%) (C, <q) X, list(@",v%).

Session-typed processes 105

By transitivity of (C, <¢), we get
W, list(w?,2%) (C, <qr) X, list(@?,0?).

This completes the proof of this case as we already know Y, list(z%, y?) (C, <q) X, list(a?, v%).

Case

<ﬁ7’X7 vé>§ja ‘W }_Qur(yﬁ),c on - (ZO : Cl) <ﬂﬂy,X7 Ué>;zo ey l_QUr(z”),C szo - (yﬂ : C)

z

Cur
(@7, X,v%); 7% : w Fac (z+ Q. Q%) = (y?:) ,

where r(w) = {z? = w; | j € c(A)andj < n}. By coinductive hypothesis, we
have infinitary derivations D" and D" for 2 : w g e) Q0 (20 : C") and 2V :
C" FQur(zey QLo = (y® : O), respectively. We can produce the last step of the derivation

as
]D), D//

T whgupe) @0 = (2°: ") 2% O Foup(pey QLo = (y?: 0)

% whg (24 QxQL) = (¥ : O)

z

Cur

Moreover, by the coinductive hypothesis, we know that for every
07w b 2 = W@ (200)
on D' and D, and thus D, we have

W, list(w?,2°) (C, <) X, list(z%,yP).

Cases The proof of the other cases are similar by applying the coinductive hypothesis and the

infinitary system rules.

O
Theorem 6.22. A locally guarded program satisfies the FS validity condition.
Proof. Consider a cycle C on a (potentially infinite) derivation produced from (u, Y, v); 2% :
whqw? + X < 2% (w?: O) as in Lemma 6.21,

TV rw b Pry g i (¥°:C) Z:wkFX=Pspu(w:0)eV
DEF
P rwbkg P — X 17y 0)
2% whkq Pays (W :C) ZiwbEX=Puu(w:C)eV
DEF

2 whkquwl «— X 2% (w?: 0)

Session-typed processes 106

By Lemma 6.21 we get
X, list(z7,9°) (C, <o) X, list(z*, W),
and thus by definition of (C, <¢qy),
list(Z7,1°) <o list(z*, wP).

Therefore, there is an 7 < n, such that either

1 €(i) = p, x] < 2% and a] = z{* for every | < i, having that z = z and zZ = z are

non-empty, or

2. e(i) = v,y < wiﬁ, and y? = wf for every [< i.

In the first case, by part (b) of Lemma 6.16, a 1L rule with priority ¢ € c(w) is applied on C.
By part (a) of the same Lemma = = z, and by its part (c), no vL rule with priority ¢ < ¢ is
applied on C. Therefore, C is a left u- trace.

In the second case, by part (b) of Lemma 6.17, a ¥R rule with priority ¢ € c(w) is applied on
C. By part (a) of the same Lemma y = w and by its part (c), no xR rule with priority ¢ < ¢ is
applied on C. Thus, C is a right v- trace. O

6.9 Computational meta-theory

In this section we use Fortier and Santocanale’s result to prove a stronger compositional progress

property for (locally) guarded programs.

Theorem 6.23. (Strong Progress) Configuration z : w I C :: (y : A) of (locally) guarded

processes satisfies the progress property. Furthermore, after finite number of steps, either

1. C = () isempty,

2. or C attempts to communicate to the left or right.

Proof. There is a correspondence between the TREAT function’s internal operations and the
synchronous computational transitions introduced in Section 5.5. The only point of difference
is the extra computation rule we introduced for the constant 1. Fortier and Santocanale’s
proof of termination of the function TREAT remains intact after extending TREAT’s primitive
operation with a reduction rule for constant 1, since this reduction step only introduces a new
way of closing a process in the configuration. Under this correspondence, termination of the

function TREAT on valid proofs implies the strong progress property for guarded programs. [

Session-typed processes 107

As a corollary to Theorem 6.23, computation of a closed guarded program P = (V,S) with
-+ S = P (y:1) always terminates by closing the channel y (which follows by inversion
on the typing derivation).

We conclude this chapter by briefly revisiting sources of unguardedness in computation. In
Example 6.1 we saw that process Loop is not guarded, even though its proof is cut-free. Its
computation satisfies the strong progress property as it attempts to communicate with its right
side in finite number of steps. However, its communication with left and right sides of the
configuration is solely by sending messages. Composing Loop with any process y : nat F
P :: (z: 1) results in exchanging an infinite number of messages between them. For instance,
for Block, introduced in Example 6.1, the configuration - I y < Loop |, z < Block <
y = (2 : 1) does not communicate to the left or right and a never ending series of internal
communications takes place. This internal loop is a result of the infinite number of unfolding
messages sent by Loop without any unfolding message with higher priority being received by

it. In other words, it is the result of Loop not being guarded.

6.10 Incompleteness of guard conditions

In this section we provide a straightforward example of a program with the strong progress
property that our algorithm cannot identify as guarded. Intuitively, this program seems to
preserve the strong progress property after being composed by other guarded programs. We

show that this example does not satisty the FS validity condition, either.

Example 6.15. Define the signature

Y5 :=ctr =), &{inc : ctr, wval : bin},
bin =2 @{b0 : bin, b1 : bin, § : 1}

and program P11 = ({Bit0Ctr,Bit1Ctr, Empty}, Empty), where

x :ctr -y < BitOCtr < z :: (y : ctr)
x:ctrby <« BitlCtr < z :: (y: ctr)
- F y < Empty :: (y : ctr)

with
y? < BitOCtr + 2% = (0,0, 0, 0]
case Ry’ (Ve = [—1,0,0,0] ylﬁ+1 <
case Ry *! (inc = y°*! « Bit1Ctr « 2 [—1, 0, 0,0]
]

| val = Ry’ piyin; RyPT2.00; Lo vepr; LT wal; y? 2 < 2ot)) [-1,1,0,1

v

)

v

+1

= Ys

Session-typed processes 108

y? < Bit1Ctr + 2% = [0,0, 0, 0]
case Ry’ (Ve = [~1,0,0,0] o7
case Ry’ (inc = La®.ve,; Le®tine;y T « Bit0Ctr < 2! -1, 1, 0,0] gt =2xg
| val = Ry’ puyin; RyPT2.01; La® vey; Le® ™ wal; P42 « z2t1)) [=1,1,0,1]
y? « Empty « - = [0,_, -, 0]
case Ry® (Verr = -1, 0] y eyt ,y§+1
case Ry’ (inc = w® « Empty « -; [c0, -, _,00] ctr,bin € c(ctr)
0] ctr,bin € c(ctr)

yP*! « Bit1Ctr « w’ [—1, o0, 00,0]
| val = Ryﬁﬂ.ubm; Ry®*2.$: close Ryﬁ”)) -1, 1]

7

In this example we implement a counter slightly differently from Example 6.11. We have two
processes BitOCtr and Bit1Ctr that are holding one bit (b0 and bl respectively) and a counter
Empty that signals the end of the chain of counter processes. This program begins with an empty
counter (representing value 0). If a value is requested, then it sends $ to the right and if an in-
crement is requested it adds the counter Bit1Ctr with bl value to the chain of counters. Then
if another increment is asked, Bit1Ctr sends an increment (inc) message to its left counter (im-
plementing the carry bit) and calls BitOCtr. IfBitOCtr receives an increment from the right, it

calls Bit1Ctr recursively.

All (mutually) recursive calls in this program are recognized as guarded by our algorithm, except
the one in which Empty calls itself. In this recursive call, y® < Empty < - callsw® < Empty «
., where w is the fresh channel it shares with y®+1 « Bit1Ctr < w®. The number of increment
unfolding messages Bit1Ctr can send along channel w® are always less than or equal to the
number of increment unfolding messages it receives along channel y+1. This implies that the

O « Empty ¢ - may receive along channel w® is strictly less than the

number of messages w
number of messages received by any process along channely®. There will be no infinite loop in the
program without receiving an unfolding message from the right. Indeed Fortier and Santocanale’s
cut elimination for the cut corresponding to the composition Empty | Bit1Ctr locally terminates.
Furthermore, since no guarded program defined on the same signature can send infinitely many
increment messages to the left, P11 composed with any other guarded program satisfies strong

progress.

This result is also a negative example for the FS validity condition. The path between y® <«

0

Empty < - and w’ < Empty < - in the Empty process is neither left traceable not right

traceable since w # y. By Definition 6.14 it is therefore not a valid cycle.

Example 6.15 shows that neither our condition nor the FS validity condition are complete. In

fact, using Theorem 6.23 we can prove that no effective procedure, including our algorithm,

+1
<y17y

=y

B+

1
=Y

B
2

Session-typed processes 109

can recognize a maximal set = of programs with the strong progress property that is closed

under composition.

Theorem 6.24. It is undecidable to recognize a maximal set = of session-typed programs in

subsingleton logic with the strong progress property that is closed under composition.

Proof. Pfenning and DeYoung showed that any Turing machine can be represented as a process
in subsingleton logic with equirecursive fixed points [31, 73], easily embedded into our setting
with isorecursive fixed points. It implies that a Turing machine on a given input halts if and
only if the closed process representing it terminates. By definition of strong progress, a closed
process terminates if and only if it satisfies strong progress property. Using this result, we
reduce the halting problem to identifying closed programs P := (V,S) with - - S =t x : 1
that satisfy strong progress. Note that a closed program satistying strong progress is in every

maximal set =. O

Chapter 7

Strong progress as a predicate

7.1 Background on processes as formula

The process-as-formula paradigm has been introduced by Miller [68] in 1993. He embedded
processes in the m-calculus as formulas in a linear logic with non-logical constants. He fur-
ther identified computation of processes as a search for a cut-free sequent proof. He proposed
conjunctive and disjunctive translations as two alternative but dual approaches for embedding
processes as linear logic formulas. In both approaches, the translation is defined by induction
over the structure of processes. The conjunctive translation uses multiplicative and additive
conjunctions (®, &) and the existential quantifier (), while the disjunctive one uses multi-
plicative and additive disjunctions (*®, @) and the universal quantifier (V). The conjunctive and
disjunctive translations identify reduction steps in the 7-calculus with entails and entailed-by,
respectively. For example, reducing process P; to P, in multiple steps (P, —* P5) is identified
as the entailment [P;| F [P»] in linear logic, where formula [P;] is the conjunctive translation

of process P;.

Revisions of this embedding to more expressive (finitary) extensions of linear logic [14, 55, 96]
are used to prove properties about processes, e.g. proofs of progress (deadlock-freedom) for
circular multiparty sessions [54] and bisimilarity for 7-calculus processes [96]. Horne and
Tiu [55] studied the embedding of 7-calculus processes into a logic called BV, a multiplicative
linear logic extended with a non-commutative self-dual logical operator. They showed that
linear implication is strictly finer than any interleaving preorder in their settings. In partic-
ular, they showed that linear implication is sound with respect to weak simulation and trace
inclusion. Cervesato and Scedrov [17] also described encoding of both synchronous and syn-
chronous semantics of concurrent 7-calculus processes in first-order linear logic. They prove
the soundness and completeness of their encoding with regard to the notions of structural

equivalence and computation.

In this chapter, we follow the approach of Miller to embed session-typed processes with an

asynchronous semantics as formulas in the infinitary first-order multiplicative linear logic with

110

Session-typed processes 111

fixed points (FIMALL;’,) that we introduced in Chapter 4. Our embedding is closely related
to Miller’s conjunctive translation, but we present it as a predicate defined over configurations
using mutual induction and coinduction. Our principal motivation for introducing this embed-
ding is to prove strong progress for binary session types. To achieve our goal, we formalize
the strong progress property as a predicate indexed by session types. We show that the em-
bedding of a configuration entails the strong progress predicate: we build a derivation for the
entailment in FIMALL, and prove that the derivation is a valid proof if the underlying con-
figuration is guarded. Finally, we build a cut-free valid proof for this entailment and show that
it ensures strong progress of the underlying configuration when the configuration is executed

with any synchronous scheduler.

A synchronous scheduler synchronizes sends and receives along internal channels of the con-
figuration; a message can be spawned only if there is a process in the configuration ready to
receive it. However, a process may spawn a message along an external channel of the con-
figuration without waiting for a receiver. As a result, even after restricting the scheduler to
be synchronous, we can prove the strong progress property stated for asynchronous seman-
tics: a configuration either terminates in an empty configuration or one attempting to receive
along an external channel (see Section 5.7). We will leave it to future work to build a derivation
that ensures strong progress of the underlying configuration when executed with an arbitrary

scheduler.

In essence, in this chapter, we use FIMALL, as an infinitary metalogic to carry out proof of
strong progress in it. The formalization of strong progress as a predicate defined with nested
least and greatest fixed points and the structure of the strong progress proof in a substructural
metalogic with circular proofs provides a better understanding of the nature of the strong

progress property.

In Section 7.2, we present infinitary inference rules for session-typed processes similar to the
one introduced in Section 6.6. Similar to its counterpart, programs derived in this system
are all well-typed, but not necessarily enjoy strong progress. We impose a guard condition
on processes and prove strong progress using a processes-as-formulas approach for guarded
processes. The guard condition introduced in this chapter is not a local one. However, it is
straightforward to adapt the proof in Chapter 6 to show that the local guard condition we
described in Section 6.7 is a stricter condition than the one we introduce here; the results of

this chapter also hold for locally guarded processes.

Several notations introduced for FIMALL;’, calculus overlap with the notations we use in the
context of session-typed processes. For example in both, a signature stores definitions and the
relative priority of fixed points. The overloaded notation is inevitable since our metalogic is
a generalization of the infinitary subsingleton logic with fixed points based on which binary
session typed processes are defined. We use it to our advantage in the last section to prove our
main result using a bisimulation. Whenever possible, we distinguish between the notations
in FIMALL, and session-type processes by using different fonts. For example, we refer to

the first-order signature that contains predicates as ¥, and to the signature in session-typed

Session-typed processes 112

processes that contains (not dependent) session types as 3. In particular, for the rest of this
chapter, we fix a signature 3 with n being the maximum priority in it. We use the type-setting
A for session types, and P for process terms to emphasize that they are different from formulas
in FIMALLF,.

7.2 Typing rules for session-typed processes

This section presents an infinitary type system for session-typed processes with the least and
greatest fixed points and a guard condition on the typing derivations. The calculus and the
guard condition imposed upon it are refinements of their counterparts in Chapter 6. Here a
channel evolves to its next generation after any sort of communication, not only by sending
or receiving a fixed point unfolding message. This change is needed to establish a bisimulation
critical to the proof of our main theorem (see Section 7.5). Moreover, we relax the condition
on the cut rule since we are not looking for a local guard condition here. We do not annotate

process terms with generations in the calculus presented in this chapter for brevity.

The process typing judgments are of the form
T whkq P (yP :8),

where P is a process, and 2 (the a-th generation of channel) and y? (the 3-th generation of
channel y) are its left and right channels of types w and A, respectively. We build €2 to collect
the relation between the generations of left and right channels indexed by their priority of
types. We only consider judgments in which all variables 2 (y?) occurring in {2 are such
that o/ < «a (8’ <), and impose a freshness condition on the channel introduced by the cut
rule. This presupposition guarantees that if we construct a derivation bottom-up, any future
generations for x and y are fresh and not yet constrained by (2. All our rules, again read

bottom-up, will preserve this property.

Programs derived in this system are all well-typed, but not necessarily guarded. We use a

list notation to define a guard condition on processes. For a given signature X, snapshot of

a channel z? is a list snap(z®) = [x¢

*)i<n, where n is the maximum priority in ¥. Having

the relation between annotated channel in €2, we can define a partial order on snapshots of

channels *. The left y-trace and right v-trace are defined similar to previous definitions.

""This notation is the same as the list [z®]i < n introduced in Section 6.8 and similar to snap used over gener-
ational variables in Section 4.3. We avoid using the [£%]i < n notation here to avoid confusion with the notation
that we will use in Figure 7.3

Session-typed processes 113

Definition 7.1. An infinite branch of a derivation is a left u-trace if for infinitely many chan-

nels 141 £2%2, - . . appearing as antecedents of judgments in the branch as

x3% 1 A3 Fq, Q3 :: (2" : C3)

x2%% : Ay b, Qo (y‘S : Co)

x1® Ay b, Qp (w? : C)

we can form an infinite chain of inequalities

snap(x1?t) >q, snap(22%?) >q, - -

Dually, an infinite branch of a derivation is a right v-trace if for infinitely many channels

y1%1 4282 ... appearing as the succedents of judgments in the branch as

@0 : wy Fo, Q2 = (3/252 : Co)

% w1 b @ (ylﬁ1 :C1)

we can form an infinite chain of inequalities

snap(ylﬁl) >0, snap(y252) >0,

Definition 7.2 (Guard condition for processes). A program defined over signature 33 and the
set of process definitions V' is guarded if any infinite branch in the derivation of 2% : w - y +
X z:yl :Bforeveryz:wh X = Pzy ity : B € V is either a left u-trace or a right

v-trace.

It is straightforward to adapt the proof in the previous chapter to show that if a program is

locally guarded, it is also guarded by Definition 7.2.

Session-typed processes

114

Ip
r®:Abquy < x:(yP:a)

T whq Py (w:8) wh:Akq Qy: (yP:0)

w

Cur
T whq (w:A) & Py Qu) : (¥°: C)

1R
-tq close Ry :: (y7 : 1)

~|—QQ::(y5:A)

% :1Fq wait Lz; Q :: (7 : A)

1L

Y w bqupys—yst1y P (y%*1 . a) (ke€l)

®R
T whkq Ry.k;P:: (yP : o{l: Adier)

Vee L x°T':Apbguqgagety Py (y%: C)

®L
x®: ®{l: Ap}yep b case Lz (£ = Py) = (yﬁ :C)

VeeL 7%:whkqypp_yst1y Po (v . Ay

&R
T%:whqcase Ry (0 = Py) = (v2 : &{l: Ardeer)
kel z9t:a, Fou{ze—gat1y P (y%: C)
&L
@ &{l: MYyer Fao Lak;P i (yP 2)
X =u{@");=0"";li#i}
T whkq Py (yP o) t=i A
wR
T whkq Ry.u; Pys o (yP . t)
Q' =Qu {z! <:L‘f‘}U{:L“JO.‘Jrl =xf | j#i}
2ot A Fgr Qo i (71 C) t=i A
uL
z : t kg case La (s = Qga) 2 (y° : C)
r_ B+l _ B B+l _ By .
Y =QU{y " <y tu{y;" =y; [i#5}
T whqg P (yPthoa) t=,A
vRiR
T :whqcase Ry (v = P) : (v7 1 1)
Q' =QU{(a*h); = (a%); | j # i}
ot Ao Q (¥ 1 Q) t=,A
vL

% thq Lr.wvg;Q: (yP : Q)

T¥:whkqPzyn (¥P:C) @iwhkFX=Pgy:(w:C)eV

T iwhkqy— X<z (y:0)

FIGURE 7.1: Infinitary typing rules for processes with an ordering on channels.

Der(X)

Session-typed processes 115

7.3 Asynchronous Semantics

In this section, we follow the approach of processes-as-formulas to provide an asynchronous

semantics for session-typed processes.

Recall the definition of configuration C as a list of processes that communicate with each other

along their private channels:
C :=-|msg(M) | proc(P) | (Ci |z Ca2),

where | is an associative, noncommutative operator and (-) is the unit. The type checking
judgment and rules for configurations can be adapted to include generation of channels. The

type checking rules for 2 : w IF C :: (® : B) are:

EMP
v AlF - (% A)

T wlFCp i (22:8) 20:AIFCy (yP i B)

COMP
T wlk Ciloa Co : (yP 1 B)

ijo‘:wl—P::(y*B:B)

PROC
2wl P (y8:B)

T :whk M: (y?: B)

MSG
°: wl- msg(M) :: (y° : B)

By assumption, the original configuration that the computation starts from does not contain
any messages; it only consists of processes, and messages appear in the configuration through-

out the computation.

We read predicate Msg(z®.b(y”)) as message b is sent along =® and z® is substituted by its
continuation %%, It can be interpreted as a translation for msg(Rz®.b; 2% < 3%) when 2 is

of a positive type and msg(Lz®.b; y® « x%) when 2 is of a negative type.

For a configuration of processes (2 : w) IF C :: (y” : B), we define the recursive predicate
Cfg o,y 8.8(C) as its translation (Figure 7.2). Similar to Miller’s conjunctive translation we
define spawning by multiplicative conjunction (®), choosing between branches by additive
conjunction (&), and bounding channels by existential quantifier (3). For example, the trans-
lation for process z% : w F (2 : C) <= Q1; Q2 :: (y":B) that spawns 2% : A F Qq :: 2:C and

continues as z":C F Qg :: yB:B is as follows:

dz.3n. Cfgi‘" :A,27:C (Ql) ® Cfgz’l :C,yP:B (QQ)

Session-typed processes 116

The translation of a forwarding process z®:A I (y +) :: y®:A, is simply to make the channels
equal to each other z® = yﬁ . Here, o and § range over natural numbers, and channels are
names. To find the most general unifier(mgu) for z* and y” in the logic, we treat a channel
and its generation as an abstract variable indexed by a natural number. In this case, the mgu

of z® and y” can be either of them.

Miller’s work is in the synchronous semantics of 7w-calculus. In a synchronous setting, mes-
sages are not spawned as a special form of processes. Instead, senders and receivers wait until
both are ready to perform the message transfer. To model this behavior, Miller added two
non-logical constants send and get to the language of linear logic for receiving and sending
a message, respectively. He described the computation when a pair of matching send and get

appear in the configuration using a first-order Horn clause:
Vz,y, P, Q. ((get zw; Py, ® sendzy; Q) —o (P, ®Q))

send x y; () is the translation for a process that is ready to send message y along channel x and
continues as (). And get x w; P, is the translation for a process that is ready to receive any
messages w offered along x and continue according to the content of w as P,,. This translation

is compatible with the synchronous nature of Miller’s setting.

In an asynchronous semantics, the senders output a message and proceed with their continua-
tion. In Section 5.5.3 we modeled outputted messages as specific processes containing the value
of the message followed by a forwarding and extended the configuration grammar to include
them as well. In this chapter, we translate messages as a specified predicate Msg(2®.b(y?)) in

our logic.

Similar to other cases of spawning a process, we use multiplicative conjunction (®) for spawn-
ing a message. Recall from Section 5.5.3 that in an asynchronous semantics a fresh channel is
allocated whenever a new message is spawned. The forward then links the fresh channel and
the previous one. In this chapter we set the new allocated channel to be the next generation
of the previous one. For example, the process z : &{l:A;}ser F La®.k;P :: y’:B spawns a
message msg(Lx®.k; ! < z%) and continues as z®*! : A F P :: y”:B. We embed process
z*.k; P as

Msg(ma‘k(‘raJrl)) ® Cfg:):”‘*‘l:Ak,yB:B(P)'

To describe receiving a message, we use the dual operator —o. Even if we always introduce
the continuation of a spawned message to be the next generation of the previous one, we still
need to consider a general form of the message predicate Msg(x®.b(w")) since forwarding may

a+1) with another channel (w"). As a result, the

substitute the new generation of a channel (z
continuation channel of the receiving process depends on the content of message it receives.
For example, process 2° : w - case Rz®({ = Q) :: x®:&{{ : Ay}eer, waits to receive a

message Lz®.0; w" « z® for any channel w" and label ¢ € L to continue as 2° : w F Q ::

Session-typed processes 117

x%:Ay. Following Miller’s conjunctive approach, we translate this process as

V' &{ Msg(2®.£(w")) —o Cfg.s.y, yna, (Qu) }eer-

The following derivation provides an example to show the relation between asynchronous
transitions of configurations and entailment of their translations?. As apparent in this example
derivation, the use of multiplicative conjunction (®) and linear implication (—o) for modeling
sending and receiving messages is not surprising; they model producing and consuming a

resource in linear logic, respectively.

Ip Ip
Msg<$a_k,($a+1)) t Msg(xa'k(anrl)) Cfgz‘s:wg;aJFl:Ak(Qk) - Cfgz‘szw,:vaJrl:Ag(Qk)

Msg(xa'k(xa+1))a Msg(xa‘k(xa-l-l)) - Cfgz‘szw,xa‘*'l:Ak(Qk) + Cfgz‘s:w,xa‘*l:A[(Qk)
Msg(xa'k(xa+l))7 &{ Msg(xa.g(anrl)) - Cfgz‘s:w,xa+1:Ag (QZ)}EEL t Cfgzézw,x“+1:Ag (Qk)

MSg(l‘a'k(xa—’_l))?vwn' &{ Msg(:no‘.f(w")) - Cfgz5:w,w":Ag (Qf)}fEL t Cfgz5:w,ma+1:Ak (Qk‘)

— L

&L

VL

Using the specified predicate for the messages, we can avoid introducing Miller’s non-logical
constants send and get to the language. There will be no need for a Horn clause to capture the
connection between sending a label and receiving it either; the duality between multiplicative
conjunction and linear implication handles this connection. However, our formulation results
in asynchronous semantics: spawning a message is not necessarily synchronized with receiv-

ing it.

As a special case, when a configuration is of the form - |- closeRy :: y*:1, we spawn a message

Msg(y“.closed(.)) with no continuation, and terminate the translation:
Msg(y“.closed()) ® 1

Similarly, we embed the process of the form y™:1 F+ waitLy; Q : (z5 : B) that waits on a
closing message as:
Msg(y®.closed(.)) — Cfg..s.5(Q)

One essential difference between our logic and Miller’s is that our underlying logic has the
apparatus to internalize inductive and coinductive predicates in the language. The predicate
Cfg is defined inside the language using mutual induction and coinduction. In Figure 7.2 we
present a definition of Cfg based on pattern matching. The first two cases in the definition
of Cfg reflect the rules for composition of configurations and an empty configuration. In the

second line where two configurations are composed, a fresh channel 2" is created. Channel 2"

’It is out of this thesis’s scope to prove formally that configuration transitions are identified with entailment. In
particular, because the transition of a program by definition has a finite nature, one may need to restrict entailment
only to sequents with finite proofs to get such a result.

Session-typed processes 118

is an internal channel in the composition of configurations C; and C; and is used by them to
communicate with each other. Channels 7% and y” are the externals channels of this compo-

sition.

The rest of the cases in Figure 7.2 refer to the configuration consists of a single process (z¢ :
w) F P :: (y? : B). For identity (row 3) we put the generational channels to be equal to each
other. Cut (row 4) spawns a new process Q; offering along a fresh variable 2" and continues
as Q2 which is using the resource offered along z". Processes Qi and Q2 communicate along

their private channel z".

The definition of predicate Cfg in rows 5-14 of Figure 7.2 captures the operational meaning
of session types presented in Tables 5.1 and 5.2. For the cases in which the process sends a
message along a channel (rows 5,8,9,12,13), we first declare the message and then proceed the
computation with the rest of the process. In the cases where the process needs to receive a
message to continue (rows 6,7,10,11,14), the predicate is defined as a conjunction of the pos-
sible continuations, universally quantified for the possible continuations. The definition may
proceed with each continuation channel and label provided that the label is declared via a

message predicate Msg.

In the last case a process variable is unfolded while instantiating the left and right channels @
and w in the process definition with proper channel names T and y, respectively. All cases of
Cfg except the last one are defined recursively on a process with a smaller size; we define the
predicate in these cases as a least fixed point. In the last case a process variable Y is replaced by
its definition Q of a possibly larger size; accordingly the predicate is defined as a greatest fixed
point in this case. Since the behaviour of a recursive process cannot be defined by induction
on its size, we put the priority of the v-term in the last case to be higher than p-terms in the
other cases to express that the behaviour is defined coinductively. The first n priorities in the
signature are reserved for the recursive cases in the definition of the strong progress predicate

which we will introduce in Section 7.4.

The process terms and session types are not part of the Cfg predicate; they are parameters.
We build the equivalent formula for Cfg using existential quantifiers for each pattern and & to
unify the cases into a single formula. Here, we show a part of the equivalent formula corre-
sponding to the first 7 lines of Figure 7.2, where ¢; and d; stand for variables in FIMALL

oo .,
v

Cfgzo.d, yoa,(d3) = (Jer, 2,2, ¢ (d3 = c1]zec2) ®@ 32.30.Clgga.g, ono(c1) @ CfgLn.c 5.4, (c2))
®((ds=-)®1)
Sldz=y+z) @ =y~
@ (Jer,e2,2,¢.(dg = (2 : ¢) <= c1362) ®@ 32.30.Clggag, ono(c1) @ Clgn.p 5.4, (C2))
@ dy = 1® (d3 = closeRy) ® Msg(y®.closed(_)) ® 1
@©3e1.dy = 1®ds = waitLa; ¢y ® Msg(y”.closed(_)) —o Cfg. 5.4, (c1)
®3er, L, Aper.dy = &{l:Ap} o1 ®
d3 = caseRy(l = co)rer, @ Vw.&{l : Msg(yP .£(w")) —o Clgga.g, wn.a,(ce)}
@ e

10.

11.
12.

13.
14.

15.

Session-typed processes

119

Cfgz“:A,aj“:A(') :2+2
Cfgi“:w,yﬁ:B (Cl ‘Z:CCQ) :E+2
Cfgma:A,yﬁ:A (y — £B) :2+2
. . _n+2

Cfgi’“:w,yﬁ:B((z : C) — Ql) Q2) “u
Cfg. ,6.1(closeRy) —/Yﬁ?
Cfgw:Lyﬁ:A(waith; Q) —2“
Cfgfo‘:w,yﬂt&{e:Bg}gEL (CaseRy(g = QZ)KEL) :2+2
Cfgxai&{Z:Ag}ZQL,yE:B(Lx'k; Q) :2+2
_n+2

Cfgia:w,yﬁz@{Z:Bg}geL (ka7 Q) —u
Cfgxa:GB{Z:Ag}ggL,yﬂtB(caseLx(g = QE)EGL) ~n

Cfgia:w,yﬂ:t(caseRy(Vt = Q)) :2+2
Cfg:c“:t,yﬂ:B (LJE.Vt; Q) :/1:+2
Cfgi":w,yﬂtt (Ry,u‘tv Q) :2+2
Cfg oy yop(caseLr(uy = Q)) =2+2
Cfgio‘:w,yﬁzB(Y) :T/H—l

empty configuration

3237] Cfg'i”‘ 1w, 2M:C (Cl) ® Cfgz” :C,yB:B (CQ)

composition of configurations

forward

3Z'HTI'Cfgi‘“:A,z":C (Ql) ® Cfgz":c,yﬁ :B (QQ)
spawn

Msg(y?.closed(.)) ® 1
Msg(z“.closed(.)) — Cfg. ,5.,(Q)
session type: 1
Y. &{L - Msg(y” L(w")) —o Cgza g, s, (Qu)}eer
Msg (2. k(1)) @ Cfgatiy, yo5(Q)
session type: &{0 : Ap}ecr,
Msg(y” k(y" ™)) @ Clgza.y, yoi15,(Q)
V™. &{ L : Msg(x® L(w")) —o Cfgyyn.p, 4o.8(Qe) beer
session type: & {€: Ap}eer
V' Msg(y” vy (w")) —o Cfgza .y, yno(Q)
Msg(2.v4(2°71)) @ Cfgparnicye.5(Q)
session type: t =, C € 3

Msg(yﬁy’t(yﬁ+1)) ® Cfgi“:w,y5+1:C(Q)
Vw".Msg(xo‘.ut(w")) - Cfgw":C,yﬁzB(Q))
session type:t =), C € X
Cfgi:o‘:w,yB:B(Q[y/wa j/aD
t:wkEY=Q:u:(w:B)eV

FIGURE 7.2: Definition of predicate Cfg.

The last case (row 15 in Figure 7.2) where the predicate is a greatest fixed point is defined using

an abbreviation. We can unfold this abbreviation using finitely many intermediate predicates

Cally (foreach Y € V) as:

Cfg:i“:w,yB:B(Y)
Cally (2% : w,9% : B)

:n+2
"

_n+1
v

Ca”y(fa
Cfgfa:wyygtB(Q[y/w,f/ﬂ]) t:wkFY=Q: (w:B)eWV.

tw,y® :B)

For a signature consisting of only two fixed point definitions t =, A, s =, B and a program

with two process variables @ : w Y = Q :: (w:B),and @ : w’' F X = P :: (w : C), the part of

equivalent formula corresponding to lines 13 and 15 in Figure 7.2 is defined as:

Cfgi"‘:dl,yﬁ:dg (d3) =

®©3cy.dy =t ®dz = Ry.pe; c1 @ Msg(y?. e (¥ 1)) @ Cfgga.a, yor1.alcr)
@ 3er.ds = s®@dy = Ry.pus; 1 @ Msg(y” s (y° 1)) © Clggasg, yorria(cr)
@ ds = X @ Callx (2%:dy,y%:dy)
ds3=Y® Cally(f‘l:dl,yﬁ:dg)

Session-typed processes 120

7.4 A predicate for strong progress

Strong progress in an asynchronous setting states that a program eventually terminates either
in an empty configuration or one attempting to receive along an external channel. In Section
5.7, we showed that recursion destroys strong progress similar to the way adding circularity to
a calculus breaks down cut elimination. In this section, we introduce a predicate that formalizes

the concept of strong progress for a configuration of processes in the language of FIMALL},.

We first focus on a particular case in which the configuration is closed, i.e. it does not use any
services on the left. We need to show the computational behavior of configuration - I+ C ::
(y® : B) as defined in Figure 7.2 ensures that its external channel y°:B will be eventually closed
or blocked by waiting to receive a message. In the latter case, as soon as the message becomes
available, y/” evolves to the continuation provided by the message (w"), and the continuation

has to maintain the same property. In Figure 7.3 we define a predicate [y° : B] to formalize this

property.

Similar to the definition of Cfg we use pattern matching to define [y* : B] (Figure 7.3). We intro-
duce a case for each session type such that [y® : B] in each case is defined using the main con-
nective of its underlying session type B. The first line in the definition of [y : B] corresponds to
the case in which y® terminates; in this case we declare that y° is closed (Msg(y”.closed(_)))
and terminate (1). For positive types (¢ and positive fixed points), the provider declares a mes-
sage of a correct type along y” while the continuation channel y”*! has to enjoy the strong
progress property. For negative types (& and negative fixed points), the channel waits on a
message along y”. Upon receipt of such a message, the continuation channel w" has to main-

tain the strong progress property.

The recursive definitions in all cases are defined based on the underlying session type structure.
The structure of the underlying session type is itself defined using a mutual inductive and
coinductive: a session type is either built using a composition of types with smaller sizes,
or defined inductively as a positive fixed point, or defined coinductively as a negative fixed
point. When the underlying session type is a positive fixed point t, the predicate [y° : t] is
inductively defined on the structure of t and inherits its priority from t. When the session
type is a negative fixed point t =!, A, the predicate is defined as a greatest fixed point based
on the structure of t and again inherits its priority from t. In the latter case, predicate [y : t]
ensures a property that is desired by strong progress: the channel i is blocked until it receives
a message. In this case the property is defined coinductively since after a message along y”:t

is received, the predicate holds for the continuation.

Moreover, when the message is received, the continuation w" continues to maintain the desired
property. If the underlying session type is a composition of smaller ones (rows 2 and 4), the
predicate is defined inductively on the size of session types. The priority n + 2 refers to an

induction based on size. We will see the priority assigned to each case ensures that if a program

Session-typed processes 121

[y8 1] =02 Msg(y” .closed(.)) ® 1

[yP : &{l: Agdier)] :2+2 Y. & {0 : (Msg(y®.£(w")) —o [w" : Ag])}rer
[y? : t] =i Vwl.Msg(yP.u(w") — [w”:A] t=LAEX
W7 ol Adeer] =37 @{0: (Msg(y® L") @ [+ Ad)}eer

ly” - t] = Msg(yPu(y’ +1) @ [y71:4)) t=,A€ED

FIGURE 7.3: Definition of predicate [y : A].

is guarded, then there is a valid derivation in the system of Figure 4.1 proving the predicate

that formalizes strong progress.

Next, we briefly explain how to convert the definition of Figure 7.3 to a formula in the language
of FIMALLY,. For t =i, A € 3, the definition [y” : t] is an abbreviation. We can unfold the

abbreviation, using finitely many intermediate predicates Unfold; (for eacht =, A € X):

[y : t] =t Unfoldy (%)
Unfold:(y°) =}, Vw”.Msg(y”.v(w")) —o [w" : 4] t=AecX

It means that we do not have a single closed encoding of session-typed programs and strong
progress, but we have a different encoding for every signature ¥. Having this abbreviation
helps us in the proof of the strong progress theorem: we can assign a matching generational
variable y” to every predicate [y” : t] occurring in the derivation. The structure of the deriva-
tion or its validity won’t be affected by the abbreviation, but it ensures that the generation of

variables steps at the same pace as the generation of channels (see the proof of Lemma 7.3).

Using the predicate defined in Figure 7.3, strong progress for closed configuration - = C ::

(y?:B) is formalized as

The generalization of this judgment to an open configuration 2 : A I- C :: (y” : B) is straight-

forward:
[xa : A]? Cfgz"‘:A,yB:B(C) - [yﬁ : B]

Configuration C satisfies strong progress if assuming strong progress for £* : A we can prove

strong progress of i : B.

7.5 A direct proof for strong progress

In this section, we give a direct proof for the strong progress property of guarded programs

with asynchronous communication. The major steps of the proof are as follows:

1. For a configuration of processes 7% : w I- C :: (y° : B), we show that there is a (possibly

infinite) derivation for [: w], Cfg a.y ,6.5(C) F [4? : B] (Lemma 7.3).

Session-typed processes 122

2. We show that when defined over a guarded program the derivation introduced in Step
1. is a valid proof. The idea is to introduce a validity-preserving bisimulation between

the annotated derivation given in Lemma 7.3 and the typing derivation of processes.

3. Finally, we show that a valid cut-free proof for [Z% : w], Cfg a.y ,6.5(C) F [y2 . B],
ensures strong progress of a configuration of guarded processes z* : w I C :: v : B

when executed with a synchronous scheduler (Theorem 7.8).

The detailed proof for each step is given below.

Lemma 7.3. For a configuration of processes T : w I C :: (y® : B), there is a (possibly infinite)
derivation for 2% : w], Cfg .y 6. 5(C) I [y? : B.

Proof. For an open configuration 2 : A - C :: y?:B, it is enough to build a circular derivation
for
* [xa : A]a Cfga:a:A,yﬁ:B(C) + [yﬂ : B]'

If the configuration is closed, it is enough to build a derivation x Cfg. ,55(C) F [y°:B] for a
closed configuration - - C :: ” : B. For the sake of brevity we write x [Z% : w], Cfgza.,, ,5.5(C) I

[42 : B] as a generalization for both open and closed configurations, where [Z® : w] is either
empty or [Z¢ : w], and it is empty if and only if Z : w is empty. We provide a circular derivation
for each possible pattern of C. Here are the circular derivations when C is an empty configu-

ration and a composition of configurations, respectively:

* *
[i‘a : UJ}, Cfgi"‘:w,z(:c(cl) + [ZC : C] [ZC : C}? Cfgz<:c,yﬂ:B(C2) + [yﬁ : B]

[2%: W], Cfgzay, 2c.c(C1), Cfgc.c yo:5(C2)) - [y B] ., o
[z : A] - [z : 4] P [2%: W], Cfgzay 2e.c(C1) ® Cfgc g yop(C2)) F 17 : B]® .
T Tl ol CigcyralC) 8
* (2% 1 A], Cg o goa () F [27 A]M * [29 1 W], Cfggasy,yop(Cr [0 C2) - [y° < B] '

The derivation built above is based on the definition of the strong progress formula by pattern
matching. We briefly explain how to unfold this derivation to an infinite definition in the sys-
tem of Figure 4.6 without pattern matching. Consider the first two lines in expanded definition
of predicate Cfg:

Cfgi"‘:dl,yﬁ:dg (d3) = (Elcl’ C2, %, C. (d3 = 01‘23602) ® ElZ'EIn‘Cfgi’o‘:dl,z":c(Cl) ® Cfgz":c,yﬁ:dg (02))

To prove the judgment x[z* : A], Cfg .y ,5.5(C) I [4? : B] without pattern matching, we first
need to unfold the definition of Cfg,a.y 6.5 With a L rule. Next, we apply an &L rule on the

resulting formula which is the right side of the above definition. After this step, we are in a

Session-typed processes 123

quite similar situation to the pattern matching argument: we have to prove several branches
each corresponding to a pattern of C. In some cases, we may need to apply extra equality and
@ rules in the derivation without pattern matching. However, for all cases the fixed point rules

applied in a cycle are the same in the derivations built with and without pattern matching.

For the cases in which the configuration consists of a single process we give an annotated
derivation with generational variables and track the relationship between their generations.

The annotations of infinitary derivations in FIMALL;", are introduced in Chapter 4.

Without loss of generality, we annotate predicates of the form [2” : C] with a matching gen-
erational variable z" at the start (the bottom) of each cycle. We leave it to the reader to check

that this assumption holds as an invariant at the end (the top) of each cycle in the derivation.

Case 1. (y < x)

ID
x& : [y5 D A] Fp, yﬁ : [yﬂ ;A

=L
X [z AL e (2 = yP) b, v [P A

uL
*xx% 1 [2% DAl Cigpay o (Y <) Fa y2 [y i A

A =Au{cty<cl yulcl =c|i#n+2}.

n

Case 2. (close Ry)

—1
: I_A5 y5+2 01

1L
i1k, yP2:1
ID uR
w9 : Msg(y®.closed(.)) Fa, z7 : Msg(y®.closed(.)) by, vy]

QR
w? : Msg(y?.closed(_)), "1 : 14, y?*t! : Msg(y®.closed(.)) ® [: -]

®L
c1: Msg(y®.closed(.)) ® 1y, y#*! : Msg(y®.closed(.)) ® [: -]

uR
el Msg(yP.closed(.)) @ 1y, y7 : [v7 1 1]

uL
* c: Cfg. 5.1 (close Ry) Fa yo [y 1]

Ay = AU{clt) < el pufel™ =cl |i#An+2} A =MU{y) <

Voo U{yi T =yl li#An+2 A=A U{c™! = wi}, Ay = Az U {y*! =
2 1 2 1, .

27}, A5 = AsUfynis <yt U{y! P =yt |i#n+2}

)

Case 3. (wait Lz;Q)

Session-typed processes 124

*

et Cfg',yﬂ:B(Q) F/\4 y'B : [yﬁ : B]
1L

x*t2 1, et Cfg e p(Q) Fa, y7 0 [y7 1 B
uL

D
w1 Msg(z“.closed(.)) Fp, z° : Msg(z*.closed(_)) Xt [] emt Cgep(Q) Fa, yP [P 1 B
— L

w” : Msg(z*.closed(_)), x*™! : [:], ¢! : Msg(2®.closed(.)) — Cfg. ,s.5(Q) Fa, ¥7 : 17 : B]
®L

X1 Msg(2®.closed(-)) @ [: -], "™ : Msg(2*.closed(-)) —o Cfg_,55(Q) Fa, ¥° : [¥° : B]
wL

X% : [z 1], ¢ Msg(a®.closed(-)) —o Cfg. ,55(Q) Fa, ¥7 : [y : B]
wL

* X [z 1], e Cfgran yop(wait La; Q) o y? : [y® : B

Ay = AL, < el b Ufel™ =l [i# n+ 2}, Ay = A U {xSTh < x3,) U ! =
X2 | #n+2}, Ay = A Uxe = we'}, Ay = Ag U{xt] < x0TI U {x02 = x0H1 [i #

n+2}

Case 4. ((z:C) « Q1; Qo)

* *
X [29 0 w], W Cfggay, Le.c(Q1) Fa, 26 :[2¢:C] 2z [2¢: ¢ et Cfg.ccyo8(Q2) Fa, y? : [y® i B
[Cur
X [ja : w],ww : Cfgia:w,ZC:C(Q1)7cn+1 : Cfng:C,yﬂ:B(QQ)) F1\2 yﬁ : [yﬁ : B]
— QL
X [fa Iw],CyH_l : Cfgi”:w,zf:C(Ql) ® CfngC,y/*:B(QQ)) l_Al yB : [yﬁ : B]
dL

X [‘(Ea : UJ],C”+1 : 3’Z’Elc'(cifgﬂ?:‘":u),zC:C(Ql) ® CngC:C,yB:B(QQ)) |_A1 yﬁ : [yﬁ : B}
uL

x [w], e Cfgray, ,o8((2:C) < Q13 Qo) Fa y? : [y? i B

A =Au{clt) <clyu{el =cl |i#n+2}and Ay = Ay U {w® = ¢}

Case 5.(Lz.k; Q)

D *
w* : Msg(z®.k(zTY)) b, 2% : Msg(z®.k(z*t1)) XL [z A] et Cfg ey, 4os(Q) Fa, ¥ 1 [yP ¢ B
— L
Xt MSg(‘ra'k(xa+1)) - [xa—&-l :Ak]aww : MSg(‘ra'k(‘ra+1))’cn+l : Cfgm@+1:Ak7y[‘:B(Q) Fas yﬁ : [yB : B]
®L
X0 Msg(z® b(ao 1)) o [t < A}, & Msg(a® (29)) @ Clayess gy yes(Q) s ¥ [0 2B
VL/&L

X {0 Msg(£, 2% Ag(w7)) —o [1" : Adl}ecr, € Msg(a® k(2°H1)) ® Chgyasrig, yon(Q) Fas ¥ < [0 B
uL

X [z &{0: Agdeer], €t Msg (o k(2°T)) @ Cfgpatiy, ,os(Q) Fa, ¥7 ¢ [y : B
uL

*x% 0 [z &{l: Artrer] € Clgpaigom yoe s yom (LK Q) Fa y? : [y? : B

Session-typed processes 125

A =Au{cIt) <c!

n

x¢ i#En+2}, Az =AU {c"! =wv}.

4ot U {C?Jrl =c]|i#n+2}, Ao =AU {xgié <xX0L U {X?H =

n

Case 6. (Ry.k; Q) Dual to Case 5.

Case 7. (caseLz({ = Qq)eer)

*
w* : Msg(z®.k(z®T1)) Fa, 2° Msg(nc“.k(ac‘”l))IDanrl Dt Ak e Cfgating yos(Qr) Fas Y7 1 [y B
W s Msg(a® k(z®Fh)), x* et), e Msg(a k(2T)) —o Clggaiig, ,eom(Qu) Fas y7 0 [y7 2 B] -
X Msg(a® k(a®t)) @ [z ¢ A, €™ s Msg(a® k(2)) —o Clggasiy, 4o (Qr) Fay y7 2 [y7 : B o
VL/&L
Vke L x**:Msga®k(zh)) @ [z Akl " s &{€: Msg(a®.L(x) —o Clgasry, 45a(Qe) }ecr Fa, ¥7 : [y < B
X @0 Mgz @ 1741 All}eer, ™ Vol &{l : Msg(z®£(w")) —o Chgny, 1o(Qc)beer Fas ¥+ [+ B] o
X [z {0 Adeer], €™ V' &L : Msg(z® £(w")) —o Clg,n.p, o.8(Qe)beer Fay ¥7 i [y 2 B] .
*x 0 [z {0 Aeteer], €t Chgoig(0a,), y0m(cBSELT(E = Qo)rer) Fa y? : [y° : B o
Av=AU{enly <enbU{e]™ =ef [i#n+2} A = M UGT <xfpa}U{xH =
x¢ | i#En+2}, Ay = A U {xT! = w¥}
Case 8. (caseRy({ = Qq)¢cr,) Dual to Case 7.
Case 9. (Lz.v4; Q) where t =F C
D *
w® : Msg(z®.v(29T1)) Fa, 2¢ 0 Msg(z®.v (x2F1)) XL [zt ¢l e Cfg e yep(Q) Fa, 7 1 [P ¢ B
XL Msg(a® v (2F1)) —o [22T1: €], w* : Msg(z®.py (z°1)), €7 2 Cfgaiig yop(Q) Fas ¥7 ¢ [y7 2 B] -t
XL V' Msg(a® vy (w")) —o [w" : €], w* : Msg(a®.vy(x°T1)), €7 1 Cfgaiigyop(Q) Fay 7 1 [y B]VL
X V' Msg(a®.vy (w")) —o [w" : €], ¢ : Msg (2.1 (2*Fh)) @ Clgaiigos(Q) Fa, ¥7 ¢ [y : B] ok
vL

x® ¢ o], et Msg(a®vy (201) @ Cfg et yon(Q) Fay ¥ ¢ [y7 : B

uL
* X 2 s t], ¢ Cfgpan yo.p(Lave; Q) Fa y” « [y : B

n

Az =AU {Cn+1 = Ww}.

Ao =M u{el Ty <l oy u{el™ =cf |i#A n+2} A = AU{xIT! = x i # k),
In the proof of this case, we use the abbreviated definition of [z% : t]|. If we use the

following expanded definition instead

[y : t] =12 Unfolde (y”)
Unfoldy (v?) =, Vw".(Msg(y®.v(w™)) —o [w" : A]),

Session-typed processes 126

we need to apply an extra pL rule with priority n + 2 on the predicate [z : t]. Imme-
diately after this pL rule, we apply the v L rule with priority & < n + 1. This implies
that the extra pL rule does not play a role in validity of the derivation. As a result, the
validity of the derivation given here implies validity of the derivation using the non-
abbreviated definition. Furthermore, if we use the non-abbreviated definition we will
have x®*2 : [z®*! : C] at the end (the top) of the cycle. Thus, we decided to use the
abbreviated definition to make sure that the generation of position variables steps at
the same pace as the generation of channels. This decision will help us to describe the
bisimulation between the derivation built here and the typing derivation of processes in

a more elegant way.

Case 10. (Ry.pt; Q) Dual to Case 9.

Case 11. (caseLz(uy = Q)) where t :ﬁ C

ID *
W s Msg(a® . (291)) b, 26 Msg(a® g (20Fh) xOF s 29401 0] e Cfggaingyon(Q) Fa, ¥7 0 [1° B
— L
W Msg(a® u (201)), x0 1 201 €], e Msg(a® pa(297)) —o Cfgarng yon(Q) Fa, ¥7 : [y” 1 B]
VLL
W Msg(a®. g (21)), x 1 [z 2 ¢, e V. Mg (2%t (w7)) —o Clgyncyo(Q) Fag ¥7 1 [y < B]
®L

Xt Msg(z®. g (2°T)) @ [20F €], et V. Msg(2% gy (w)) —o Cfgyn g yo(Q) Fa, ¥7 : [y7 1 B]

wL

x* [xa : t}’cn+1 :vwn'MSg(xa'Mt(wn)) - Cfguﬂl:C,yB:B(Q) FAl yﬁ : [yﬁ : B]

wL
*x% 1 [z t], e Cfgpay yo.p(caselz(puy = Q)) Fa y? : [yP : B]

A = AU{cZilz < anrQ}U{c?Jr1 =c! |i#n+2}, A = A U{xIT! < xQIU{xT! =

n

x| i # k}, A3 = Ag U {x*T! = w¥}.
Case 12 (caseRy(vt = Q)) Dual to Case 11.

Case 13. (y «+ Y <+)

*
x& - [:1704 : A],C’H‘l : Cfgza:A’yB:B(Q) l_AU{c;’Jrl:C;]‘i;énJrl} ny : [yﬁ : B]

vL
* X1 [z 1 Al e Cfgpany oy < Y < 2) Fa y? : [y7 1 B]

In cases 1-13 a predicate annotated with a position variable c in a branch can be interpreted
as the (potential) computational continuation of the predicate Cfg() in the conclusion (at the
bottom) of the block. Also, the only predicates that occur as a cut formula are of the form
[z : A

@ : A] only if there is a process in the

Furthermore, in all the cases a rule is applied on [z
antecedents willing to receive or send a message along channels x or y via a Msg predi-
cate: there is a predicate in the antecedents of the form Msg(z®.b(z**1)) @ Cfg (P) or

Vw".&{ Msg(z*.by(w")) — Cfg_(Py)}ser (or Vw.Msg(z®.b(w")) —o Cfg_(P)).

Session-typed processes 127

Observe that in each circular branch a position variable v® annotating a predicate [v% : D] is
only related by < with it a future or previous generation of itself v?. These observations are

important in particular in the proof of Theorem 7.8. O]

We need to show that when defined over a guarded program the derivation introduced above
is a valid proof. Since a configuration is always finite, it is enough to prove validity of the

annotated derivation built using Cases 1-13 for a single process P.

We use a validity-preserving bisimulation between the annotated derivation and the typing
derivation of process P. The notation €2 F a < b stands for “the relation a < b can be deduced

from the reflexive transitive closure of set 2”.

Definition 7.4. Define relation R between process typing judgments
y? i BlqP:(z¥: A)
defined over X and annotated sequents in FIMALL. -

¥ :AFq P (yP:B) R xY:[z®:A],c: Cfgganys(P) For y? i [P : B],
Fq P (y?:B) R c":Cfg s5(P) For y? : [y® . B],

where? for i < n,

e QF 22 <wliff Q' Ex® < wt, and

i
c QF Y <uliff Q' Fy? <wb
We define two stepping rules over the typing derivation of a process and the derivation built
in the proof of Lemma 7.3.

Definition 7.5. We define two stepping rules < and = over processes and annotated se-

quents, respectively:

« % :whkq P (yP:B)— 201w Fp Q:: (w? : D) iff there is a rule in the infinitary
system of Figure 7.1 of the form

20w Fp Q (wY: D)

I :whkq P (y?:B)

(i)xe: [z w], €™ : Clggoyos(P) Fay” 1 [y B =
(1) 20 :[20: W'],d™ : Cfgss.pr yrp(Q) Fa WY 2 [w? 1 D]

iff (7) is the conclusion of one of the blocks 1-13 in the proof of Lemma 7.3 and (%) is a

* assumption of it.

*n is the maximum priority of fixed points in 3.

Session-typed processes

128

Next we prove that relation R is a validity preserving bisimulation with regard to <— and =

transitions.

Lemma 7.6. R forms a bisimulation between the derivation given for

*XY 1 [T w],c:

and the typing derivation of process

Cfgf"‘:w,yB:B(P) Y yﬁ : [yﬁ : B]

I%:whq P (y7 :B).

Proof. The proof of this bisimulation is straightforward. It follows from the way we built proof

blocks for each case in Lemma 7.3, and the typing rules for annotated processes in Figure 7.1:

a_co‘:wi—QP::(yﬁ:B)

l

2V :w bk Qi (w? i D) o

— X% ['fa : W],Cn : Cfgi"‘:w,yB:B(P) For y/B : [yﬁ : B]

\'

27 : (27 1w, d? : Cfgoy i .p(Q) Far WOt [0 2 D]

The proof is by considering different cases for —:

Case 1. (waitLz; Q)

1.Premise

2.Case 3 of Lemma 7.3

3.Definition of A’
4.By assumption and line 3
5.By line 4

Case 2. (Lz.vy; Q)

1.Premise
2.Case 9 of Lemma 7.3

3.Definition of A’
4.Definition of A
5.By assumption
6.Definition of A’
7.Definition of A

8.By assumption

z%: 1o waitle;Q:y? :B— - Fo Quy?:B

x® o [z 1], " Cfggany 6. p(WaitLa; Q) oy y? [y’ :B] =
I Chg.pa(Q) by [y 1B

fori < n, A’ |=yf <z iff IZyiB <z

forign,A’#yiﬁ §Z;Yifo|:yiﬁ <z
FaQuy? :BRcM!: Cfg o5(Q) Far y? i [y7 1 Bl

% :tFQLx.I/t;Q::yﬁ:B<—>as"‘Jrl :CFAQ::yB:B

x% [z i t], e Cfgpay yop(Lrn; Q) Far y?: [y® B =
xot [zt gl e Cfgpaticys.s(Q) Far y? : [y? B
fori <n, N Ey? <z] iff Q' Fy’ <z].

fori <n,AEy’ <2Vt QEy’ <27

fori <n, N Ey’ <z)iff AEy’ <27

fori <mand 27 # x*TH A ExT! < 2] if Q' FxP <z
fori <n, and 27 # 2* T A F 20T < 2) if QF a2 < 27
fori <n, A Ex0T <gz) iff A 22T < 2

9.By lines 5 and 8 i cka Q iy i BRxT [z il e Cfgpat1cys.8(Q) Far y? : [y? B

Cases. The proof of other cases is similar to the previous ones.

Session-typed processes 129

% whkq P (yP:B) —B— X0 [7%: w], " : Cfgza.y88(P) For y? : [y? . B]

|

.
27w A Qi (w’ i D) e AR A w,d? : Cfgy . .p(Q) b wo : [w® : D]

The proof is by considering different cases for =-.

Case 1. (waitLz; Q)

1.Premise X : [z :1],¢" : Cfggan 0. 5(WaitLa; Q) For y” : [y : B] =

T Chi, op(Q) by s [y 1 B]
2.By 1L typing rule 2@ :1kg waitLe;Q:y® :B— -FqQ:y?:B
3.Definition of A’ fori <n,A E yiﬁ <z ifQFE yf <z
4.By assumption and line 3 fori <n,AE y? < zz iffQFE yiﬁ < zz
5.By line 4 FaQuyf :BR ! Cfg s5(Q) Far y? 1 [y B

Case 2. (Lz.v4; Q)

1.Premise x% 1 [z t], e Cfgpay yo (Lo Q) Fo v? % B =

X [], e Cfgpatigyes(Q) Far 7 1 [y7 1 B]
2.By v L typing rule % 1t bq Lz Q i yﬁ B Tl Cha Q yﬂ :B
3.Definition of A’ fori <n, N Ey’ <z)iff Q' kFy? <z).
4.Definition of A fori <m,AEy? <27 iff QEyP <27
5.By assumption fori <m, N Ey?’ <z)iff AEy’ <27
6.Definition of A’ fori <mand 2¥ # x> A E x?+1 <z]iff Y Ex{ <z
7.Definition of A fori <m, and 27 # x*TH A F 22T < 27 if QF 2P < 2]
8.By assumption fori <n,A'Ex0T! <z] iff AF 22T < 2]

9.By lines 5 and 8 2t ChA Quy’ i BRxT: [2°T 1 ¢ e Cfg i ye5(Q) Far y7 : [P 1 B

Cases. Similar to the previous cases.

Lemma 7.7. If
T whkg P (yﬁzB)

is a guarded process, then a derivation built in Lemma 7.3 for
X (2% w],c: Cfgg—ﬁa:w’yﬂ:B(P) Fo yo [yﬂ : B]

is valid.

Proof. By assumption there is an (infinitary) guarded typing derivation D; for process ¢ :
w g P :: (¥? : B). By Lemma 7.6, we build a bisimilar (infinite) derivation for x x : [Z% : w], ¢" :

Cfgza8:8(P) Fo y? : [y? : B] using Cases (1-13) in Lemma 7.3. Consider an infinite path ps

Session-typed processes 130

in Dy and its bisimilar path p; in D;:

% whkq P (yf :B) —F— xo: [z : w], e : Cfggay, ,o.8(P) For y? : [y : B

: s

27 : (27 1w, d? : Cfgoy . p(Q) Far WO i [0 2 D]

- | k

By definition of R,

« if A E snap(z?7) < snap(x®), then A’ F snap(z?) < snap(x®), and

« if A F snap(w®) < snap(y?), then A’ F snap(w’) < snap(y”).

By the above property if path p; is guarded, then ps is valid. O

Theorem 7.8. For the judgment T : w IF C :: (y” : B) where C is a configuration of guarded
processes, there is a valid cut-free proof for 2% : w], Cfgga.y 45.5(C) F [y° : B] in FIMALLY,,.
Validity of this proof ensures the strong progress property of the configuration C when executed

with a synchronous scheduler.

Proof. We introduced a derivation for
* [ja : UJ], Cfgia:w,yﬁ:B(C) + [yﬂ : B]

in Lemma 7.3, and proved that for a configuration of guarded processes the derivation is valid.
It is enough to show that this valid proof ensures the strong progress property of configuration

C. Here 7* and ” are external channels of the configuration C.

Consider a run of a configuration of guarded processes C scheduled by a synchronous sched-
uler. We run the cut elimination algorithm on the valid proof introduced in Lemma 7.3 such
that the steps of the cut elimination algorithm simulates the transition steps of the configu-
ration. Moreover, we show that in the simulated run of the cut elimination algorithm if an
external reduction is applied on a predicate of the form [z® : A] then there is a process in the

configuration willing to communicate along the channel ¢ : A.

Our cut elimination algorithm in Section 4.4 is non-deterministic in the sense that there might
be two applicable internal reductions (Prd) available in the Treat function. We proved that no
matter what reduction rule we choose, the algorithm will terminate on valid proofs. We can ex-
pand this non-determinism to other steps in the Treat function and choose non-deterministically

between IdElim, Merge, and Prd. The proof of Lemma 4.7 (termination of the treat function)

Session-typed processes 131

remains valid since we do not assume an order between these steps in the proof. We can go
one step further and execute the termination condition (provided in the while clause) on the
Treat function non-deterministically: when an external reduction rule is available, the Treat
function can either terminate or continue with IdElim, Merge, or Prd. Of course, when IdElim,
Merge, or Prd are not applicable, the function has to terminate. The proof of Lemma 4.7 (termi-
nation of the treat function) remains valid after this change: the trace of the algorithm remains

the same, and we can form a contradiction from the assumption that the trace is infinite.

By the structure of the proof, we know that the first step in the cut elimination algorithm is
to apply an external reduction (Flip rule) on Cfg,a., ,5.5(C) to unfold its definition. The tape
transforms to

[Zo: w], T+ [y° : B

where T is the definition given based on the pattern of C.

In fact, we can prove that throughout the cut elimination procedure, we repeatedly get a

branching tape of the form
[Ze s W], Ty F [z : Dy, [20" 1 D1), To b [252 : Dy, - [27™ : Da), Trns1 F [4° : B]

where ;1 is the definition of a predicate Cfg n; ; _ni+1 (Cit1), and it explains the behavior

i+1 Pitl
of the computational continuation of C with regards to channels z" and E?fll. Put z)° = 2
and ZZ;'_L:Il = yﬁ . The channels zzh for 1 < ¢ < mare the internal channels of the configuration,

and channels 2 and y? are the external channels.

Moreover, we prove that if an external reduction rule is applied on [z : w] or [y : B], there is

a process willing to send or receive a message along z® or y°.

This property holds after the very first rule of cut elimination (an external reduction on Cfg(C)
which leads to the tape [z : w], T [y® : B]. We want to prove that the property explained
in the previous paragraph holds as an invariant on the tapes being produced by the cut elimi-
nation algorithm if we apply the algorithm in the order enforced by the transition steps of the

configuration. The proof describes a weak simulation with the simulation relation relates
7o w], Ty F [z :Dq), [0 : D], To b [20% : Do), - [: Dy, Ty - [y - B]

where T} 1 is the definition of a predicate Cfg_n; i1, (Ci+1) and the configuration of
PR TET NS

Dit+1
processes C1 |z, -+ |z, Cm+1. We show that for each transition step of a configuration, we

can take one or more steps of the cut elimination algorithm such that the resulting branching

tape is related to the configuration after taking the step:

Case 1. Forwarding;:

There is a judgment on the tape which is of the form:

[:Fl,u” = w’ F [w’ : F].

Session-typed processes 132

We apply an external reduction (= L) on the antecedent u” = w?. This rule renames
channels u” and w® with their most general unifier 27. Since u” and w’ are abstract
variables, we can assume that the most general unifier is equal to the offering channel

w®.

We apply identity elimination on the identity judgment [2" : F] & [27 : F|. The rest
of the tape preserves the property of interest, since we only renamed computationally

identical channels in it.

Case 2. Spawn: There is a judgment on the tape that is of the form
[a’y : w/}v EIUE'C'(Cfgfﬂ:a./,vC:E(Cl) ® Cfng:E,w‘S:F(C?)) t [w(S : F]'
We apply two external reduction rules (3 and ®) on it to get the judgment

[a’}’ : w’], (Cfgfﬂ:w’,vC:E(Cl)a Cfng:E,w5:F(CQ))) + [w(S : F]'

By the structure of the proof we built in Lemma 7.3 this judgment is proved using a cut
rule. We apply Merge on the cut rule. It replaces them with two judgments connected

with a fresh internal channel v¢:
[ﬂ’y : wl]’ (Cfgfﬂzw’,’u‘::E(Cl) - [UC : E] [UC : E]’ Cfng:E,w‘S:F(CQ)) - [w5 : F]

C; is the configuration (or a process) spawned and Cs is the continuation. With two
other external reductions on the Cfg predicates, we unfold the definition of the predicates

based on their pattern and get back to a tape satisfying the invariant.

Case 3. Communication along an internal channel: There is a process in the configura-
tion that is willing to send along w” : A and one that is willing to receive along w? : A.
By the way that we built the derivation in Lemma 7.3, in the related branching tape there
is a judgment in which a left rule is applied on [w” : A], and another judgment in which
a right rule is applied on [w” : A].

We provide the steps of the cut elimination algorithm for a case in which the protocol of
communication is an internal choice () in Figure 7.4. The other cases are similar. It is
straightforward to observe that both processes P and Q, are the computational contin-
uations of the original processes in the configuration: (Rw.k; P) sends the label k along
the internal channel w” and steps to P. Process caseLw({ = Qq)scr, when receiving
label k along channel w” steps to Q. Similar to Step 1. with two external reductions

on the Cfg predicates, we get back to a tape satisfying the invariant.

We get an extra (green) tape with the single judgment

Msg(w” .k(w? 1)) F Msg(w? . k(w+1))

Session-typed processes 133

[277 : C]? Cfgz":C,uﬁ/:éB{E:A(}geL(Rw'k; P) F [w’Y : @{g : Af}EGL]
[w : ®{€: Ae}eer], Cfguma(e:a,}pe w00 (caSELW(E = Qp)ecr) [v0 : D
|} External reduction()

[277 : w]v Msg(w’y'k(w’ﬁ_l)) ® Cfgén:w,w“/“'l:Ak(P) - [w’y : @{E : AE}ZGL]
[w? = ®{C: Aryrer], Yu &{L : Msg(w? L(u)) —o Clgynig, 000(Qe) }eer = [v° 2 D]
|} principal reduction()

[27 : w], Msg(w? . k(w™*1)) ® Chgznyy i1, (P) F @{L 0 (Msg(w?.0(w ™)) @ [w?™ : Ad]) ber
U (Msg(u?-L(w ™)) & [w ™1 - A])beer, Vol &AL - Msg(u? £(u")) —o Cligny, 5(Qe)beer - [0)
|} principal reduction ()

27+], Msg(T k(w1)) 8 Cligry i (P) - (Msg(uT k(w1)) & [w ™ Ay])
(Msg(w?.k(w™th)) @ [wr : Ax]), Vul&{ 0 : Msg(w? L(u")) — Clg,n.p, 00.0(Qe) beer [v° : D]
|} External reduction(V/&)

[277 : W], Msg(,w",/.k(,w”ﬂrl)) ® Cfgin:w,’m"/*l:Ak(P) + (Msg<w’7.k(w’y+1)) ® [w’y+1 : Ak])
(Msg(w™.k(w'™)) @ [w ™!+ Ag]), (Msg(w?-k(w')) —o Clgysin, wop(Qr) - [v° : D]
|} External reduction(®)

27+], Msg(w k(w7 1)), Cliany gy (P) F (Msg(u? k(1)) @ [+ : Ag)
(Msg(w? (w71) & [+ &]), (Msg(a?k(w+)) —o Cligrra,gposn(Qi) F [17 - D]
|} Principal reduction(®)

Msg(w? k(w7 t1)) - Msg(w?.k(wt)) 27 : w]Clgzny, o1, (P) F w7 A
Msg(wV.k(w‘/+1))7 [w'YJrl : Ak]? Msg(uﬂ’.k(w""“)) - Cfg'w“r+1:Ak,v5:D(Qk) - [Ué : D]
|} External reduction(—o)

Msg(w? k(w?)) = Msg(w?. k(1)) [27: w], Clgzny yortrn, (P) - [w? 2 Ay
(w2 Ag], Cfg e taap 000 (Qr) F [0 : D] Msg(w? k(w ™)) = Msg(w?.k(w? + 1))(identity elimination)
|} External reduction x 2

Msg(w? .k(wYt1)) = Msg(w? . k(w t1)) [27: w], Tp F [wt!: AL]
[wY*L 2), T, F [v° : D]

FIGURE 7.4: A run of the cut elimination algorithm on communicating processes.

We also add a similar extra judgment
Msg(w?.k(w ™)) F Msg(w? .k(w?™1))

to the current tape by a ® principal reduction. Both of these judgments are closed by an
ID-elim.

Case 4. Communication along an external channel: there is a process in the configu-
ration that wants to communicate along an external channel. By the way that we built

the derivation in Lemma 7.3, in the related branching tape an external reduction can be

Session-typed processes 134

[z : ®{€ : Ar}eer], Cfgpoucqi:a,),ep won(caSLT(E = Qu)rer) [v9 : D]

|} External reduction(u)

[+ {0 Artoer], V' &{l - Msg(z® L(w")) —o Cfgyn.p, vo.0(Qe) }eer - [v° 2 D)

|} External reduction(j)

{0 s (Msg(a® £(2°H1)) @ [294) <)}, Yt &e{€ : Msg(a®£(w)) —o Clgynn, oip(Qe)beer - [19 : D)

|} External reduction (&)

(4) Vk e L (Msg(z*.k(z*)) @ [z : Ag)), V. & {0 : Msg(a® L(w")) —o Clg,n.p, o:0(Qe) peer - [0° 1 D]
|} External reduction(V/&)
(5) VheL (Msgle® k(™) o [- L), (Msg(a™ k(1)) —o Cliyarnpgosp(Qe) F [0 D
|} External reduction(®)
(6) VkelL Msg(z® k(z*1)), [z2F! : A], Msg(2® k(2 T1)) —o Cfgatipp w.5(Qr) F [v° 2 D]
|} External reduction(—o)
(7) Vk e L [2 Ag], Cfgpatii o0 (Qr) F [0° 1 D] Msg (2. k(z)) - Msg(a® k(2 T1))(1d elim)
|} External Reduction(p)
(8) Vk e L [0 2 Ag], Ty - [00 : D]

FIGURE 7.5: A run of the cut elimination algorithm when there is a process communicating
along an external channel.

applied on predicates [z : w] or [y” : B].

In Figure 7.5 we provide the steps of our cut elimination algorithm when there is a pro-
cess waiting to receive a message along % : ®{(:Ay}scr. In this case a rule can be
applied on the predicate [z : ©{¢ : Ay}ocr]. The cases for other types are similar. First
observe that by the structure of the proof, this is only the case if in the configuration
a process communicates along a left external channel z® of type ®{¢ : Ay}scr. More-
over, in Line 4 of Figure 7.5 the algorithm creates multiple branches: the continuation
of processes caseLx (¢ = Q)¢ depends on the potential label k& € L that it receives
along the external channel x®. The tape we have at the end of each branch corresponds
to a potential configuration in the computation. On line (8) we unfold the definition of

Cfgpat1.a, 5:0(Qk) predicate to get the invariant we are looking for.

On line (7) we create an extra branch containing a single (green) judgment
Msg(z® k(z**)) - Msg(a®.k(z*T)).

This tape can be closed by a single ID-elim rule.

Consider the cut-free proof returned by our algorithm. By the property proved above, it is

enough to show that an external reduction will be applied on [z® : w] or [y® : B]. We use

Session-typed processes 135

linearity and validity of the cut-free output derivation. If there are no infinite branches in
the proof then by linearity of the calculus we know that a rule is applied on m and
[42 : B]. In the infinite case, recall that the predicate Cfg for a recursive process is defined
coinductively; no subformula of it in the antecedents can be a part of an infinite y-trace. Thus
an external reduction (flip rule) has to be applied on [z : w] or [y” : B] to produce a judgment
of the derivation. This completes the proof as it shows that the configuration will eventually

communicate with one of its external channels.

We can take one step further, and show that the configuration either terminates or it will
eventually communicate with one of its external channels by receiving a message. Consider a
branch in the cut-free valid proof as described above. If the branch is finite it is straightforward
to see that the computation terminates. By a similar reasoning to the previous paragraph, in
an infinite branch either [z : w] has to be a part of an (infinite) y-trace or [y? : B] has to be
a part of an (infinite) v-trace. Without loss of generality assume that [z : w] is a part of a
p-trace. Since the traces are infinite, there has to be an occurrence of a least fixed point type
t in a predicate (27 : t] on the branch. As a result, there will be a process in the computation
such that it communicates along 27, and by the type of 27, we know that it will be receiving a

fixed point unfolding message. O

Chapter 8

Implementation

We have implemented the guard condition introduced in Chapter 6 on top of an existing in-
terpreter for subsingleton processes in SML; it is available publicly [22]. In this section, we

discuss the details of our implementation.

8.1 Syntax

Tables 8.1 and 8.2 summarize the syntax we used for the programs. Each row of Table 8.1
presents an abstract session type and its corresponding presentation in the implementation.

Table 8.2 shows the corresponding expression in the implementation for each process term.

The underlying implementation of subsingleton processes supports recursive definitions of
session-types but does not differentiate them into positive and negative fixed points as required
by our guard condition. To add positive and negative fixed points, we designed their syntax as
particular cases of internal and external choices. A positive fixed point ¢ =, A is implemented
as a unary internal choice with a specific (reserved) label mu_t and continuation A. Similarly,
a negative fixed point ¢ =, A is implemented as a unary external choice with a label nu_t and
continuation A. This design allows us to introduce positive and negative fixed points to the
underlying implementation with minimal change to the syntax, and it perfectly captures the
computational semantics of sending and receiving fixed point unfolding messages as defined
in Chapter 5. We discuss our design choice for implementing the priorities of positive and

negative fixed points in Section 8.3.

A program includes a list of fixed point definitions, process declarations, and process defini-

tions.

type t = +{mu_t:A}

type s = &{nu_s:B}
s proc f: t|-s

proc f = P

4

L1sTING 8.1: Program syntax.

136

Session-typed processes

137

Abstract Syntax Concrete Syntax
1 1

e{t:A, -} +{1:A,...}
&{lL:A, -} &{1:4,...}

t :L A t = G{mu_t:A}
t=,A t = &{nu_t:A}

TaBLE 8.1: Abstract and Corresponding Concrete Syntax for Types

Abstract Syntax Concrete Syntax
closeRx closeR

wait Lz waitL

Rzx.k R.k

caseL x({ = P)ycr,
caseRx({ = P)yer
Lz .k

Rx.py

caseL z(uy = Q)
caseRx(vy = Q)
Lx.vg

Ty

(r:A <+ Q); P

caseL(l=>P|...)
caseR(1=>P|...)
Lk

Rmu_t

caseL(mu t => Q)
caseR(nu_t => Q)
Lnu_t

<->

Q[A]P

TaBLE 8.2: Abstract and Corresponding Concrete Syntax for Expressions

For example, the code given in Listing 8.1 defines type variable t as the positive fixed point of
type A, and type variable s as the negative fixed point of B. Process variable f is declared in
Line 3 such that it uses a resource of type t and offers a resource of type s. The last line defines

process variable f as a process expression P.

8.2 Reconstruction of fixed points

Our implementation also supports an implicit syntax where the programmer codes using gen-
eral (equirecursive) session types. In the implicit syntax, we synthesize the fixed points based
on the provided general recursive types: if a general recursive type is defined as a positive type
(6 or 1), we consider it to be a positive fixed point, and if it is a negative type (&), we consider
it a negative fixed point. We then incorporate fixed point unfolding messages in the program
from the given communication patterns. Supporting the implicit syntax liberates the program-
mer from handling fixed point unfolding messages and allows us to check the termination of

many programs implemented for other purposes.

We designed two modes in the implementation: iso and equi, for the programs corresponding
to the explicit and implicit use of fixed points, respectively. The programmer indicates the
mode for executing their program using a flag in the program file. If the flag is set to iso, the
programmer must define recursive types as positive and negative fixed points, and we do not

need to perform any transformations on the program. If the flag is set to equi, the programmer

1
2
3
4
5

6

8

9
10
11
12
13
14
15

16

Session-typed processes 138

writes the program considering only general recursive types. We then transform this given
program with a similar method in prior work [23, 24]: insert sending a fixed point unfolding
message as soon as possible (eagerly) and receiving a fixed point unfolding message just before

the communication on that channel (lazily).

8.3 Termination checking

Once the program is parsed and the underlying implementation of subsingleton logic extracts
its abstract syntax tree, we perform a termination check using our guard condition. Recall
that our guard condition works based on priorities defined over type variables and the order
between process variables. The current implementation collects constraints and uses them
to construct a suitable priority ordering over type variables and a C ordering over process

variables if they exist and rejects the program otherwise.

Our implementation provides a detailed error message when a program does not satisfy the
guard condition. Our experience suggests error messages could be improved further by re-
quiring the programmer to supply priorities of type definitions, but we have left this for future
work. Performing inference allowed us to check a variety of preexisting examples without

change.

8.4 Examples

We have coded all programming examples (terminating or not) in this thesis in the implementa-
tion. For example, the following listing presents the code of PingPong process from Chapter 6.
Line 2 (#test error) refers to the fact that our algorithm should not (and does not) accept this

program since PingPong does not satisfy strong progress.

#options --terminate=iso

#test error

type ack=+{mu_ack: +{ack:astreaml}}
type astream=&{nu_astream: &{head:ack, tail:astream}}

type nat=+{mu_nat:+{z:1, s:nat}}

proc Ping_Pong: nat |- nat

proc Ping_ Pong= Ping [astream] Pong

proc Ping: nat |- astream

proc Ping= caseR(nu_astream => caseR (head=> R.mu_ack;R.ack;Ping
| tail=> Ping))

proc Pong: astream |- nat

proc Pong= L.nu_astream; L.head; caselL(mu_ack =>

casel (ack=> R.mu_nat;R.s;Pong))

Session-typed processes 139

We used several test cases to examine our implementation. The following is an example of a

program with an equi flag: it implements a constant function that returns the binary repre-

sentation of number six, a copy process over binary numbers, and a process that computes the

successor of a binary number.

1 #options --terminate=equi

2 #test success

1

5

6

type

proc

7 proc

proc

proc

proc

proc

bits = +{b0 : bits, bl : bits, $: 1}

six : bits
six = R.bO ; R.bl ; R.bl ; R.$; closeR

copy : bits |- bits
copy = caselL (bO => R.bO ; copy
| b1 => R.bl ; copy
| $ => R.$; waitL ; closeR)

plusl : bits |- bits
plusl = casel (b0 => R.bl ; <->
| b1 => R.b0 ; plusil
| $ => R.$; waitlL ; closeR)

Our experience with a range of programming examples shows that our local validity condition

is surprisingly effective. In particular, we encoded Turing machines and observed that our im-

plementation guarantees termination of a subclass of Turing machines corresponding to linear

primitive recursive functions. The code of all examples and test cases is available publicly [22].

Chapter 9

Conclusion

This thesis establishes a logical foundation for recursive concurrent session types using in-
finitary linear logics with fixed points. To develop this logical foundation, we appeal to two

well-known paradigms that relate programs to logical systems:

+ We form a Curry-Howard correspondence between recursive processes and circular proofs
as introduced by Fortier and Santocanale [36]. We provide an effectively decidable local
guard criterion to recognize mutually recursive processes with a strong progress prop-
erty. We show that our guard criterion imposes a stricter requirement than Fortier and
Santocanale’s validity condition, but is local and compositional and therefore more suit-

able as the basis for a programming language.

+ We embed session-typed processes and their asynchronous semantics in an infinitary
first order linear logic with fixed points using a processes-as-formulas interpretation. We
then define the strong progress property as a predicate with nested least and greatest
fixed points. We prove strong progress of guarded programs by providing a syntac-
tic proof for this predicate in our calculus and verifying that this proof ensures strong

progress of the underlying program when executed with a synchronous scheduler.

Next, we discuss potential lines of future work for exploring the intersection between non-

wellfounded proof theory and recursive session types.

9.1 Strong progress as a logical relation

Logical relations is a proof method based on forming relations indexed by types. The rela-
tions are called logical since they are defined by induction on the structure of their underlying
type. The first principal application of this method was presented by Tait [93], Girard [42],
Plotkin [76], and Statman [91] for proving strong normalization of simply-typed A-calculus.

140

Session-typed processes 141

The strong progress property for session typed processes is of the same nature as strong nor-
malization in typed A-calculus. In the setting of non-recursive session types, this property is
reduced to termination of the computation and is proved using logical relations [32, 72]. Sim-
ilar to using logical relations to prove strong normalization for simply typed A-calculus, the
proof of termination for processes relies on an induction over the type structure and no longer
applies after adding recursive types. In response, step-indexed logical relations [3-5] have
been developed to prove properties of typed calculi with recursive types. Step-indexed logical
relations are indexed by both types and the number of available future steps. Later Dreyer et
al. [34] provided a more elegant syntactic definition of logical relations without referring to
steps to prove properties of system F with isorecursive least fixed points. Their definition is in
the language of a second-order calculus called LSLR with a future modality. They encoded a

logical relation as a well-founded recursive second-order relation.

However, neither strong normalization nor strong progress can be formalized as a logical re-
lation indexed by the steps of computation as they are both associated with termination. The
strong progress predicate presented in Chapter 7 is closely related to the concept of logical
relation since it is also defined based on the structure of its underlying type. Moreover, we
observed that in the presence of the greatest fixed points, the definition has a mutual inductive
and coinductive nature. One main avenue for future work is to convert our mixed logical rela-
tion for strong progress as a logical relation indexed by (i) the number of unfoldings required
for termination for inductive types and (ii) the number of observations allowed before termina-
tion for coinductive types. We have verified this method for a preliminary setting in which the
signature consists of a least fixed point nested inside a greatest one. We will compare the results

with prior work that combines inductive with coinductive reasoning for termination [47].

9.2 A more general guard condition for the subsingleton frag-

ment

In Chapter 6 we showed that the main shortcoming of our guard condition arises when, in-
tuitively, we need to know that a program’s output is “smaller” than its input. Our goal is to
capture more programs with this property as long as the algorithm is still effective, compo-
sitional, and predictable by the programmer. We need to generalize the guard condition by
introducing a way to capture the relation between input and output size. We believe this gen-

eralization would be more feasible when our mixed logical relation have been fully developed.

Studying this generalization also allows us to compare our results with the sized-type approach
introduced by Abel and Pientka [2]. In this approach, Abel and Pientka integrate induction and
coinduction by pattern and copattern matching and explicit well-founded induction on ordinals
[2], following a number of earlier representations of induction and coinduction in type theory
[1]. The connection to this type-theoretic approach is an interesting item for future research.

The first step in this general direction was taken by Sprenger and Dam [90] who justify cyclic

Session-typed processes 142

inductive proofs using inflationary iteration and the work by Somayyajula and Pfenning [89]

for shared memory concurrency.

9.3 Recursive binary session types in linear logic

One obvious line of future work is to generalize the results in the subsingleton fragment to
recursive processes defined based on intuitionistic multiplicative additive linear logic [74]. In
contrast to the subsingleton fragment, a process in the more general linear setting may use
more than one service on its left. To develop a local guard condition on linear processes, we
need to track the relation between all services that the process uses on the left and the service
that it provides on the right. Moreover, we need to deal with channel delegation that appears

in the linear setting as the semantic of multiplicative conjunction and linear implication.

9.4 Linear logic with adjoint modalities

Binary session types have also been studied in the setting of an adjoint logic [74, 78]. In this
setting, formulas are not restricted to the linear contexts anymore. They can shift their modes
using upgrade and downgrade adjoint modalities (1, |) to move back and forth between struc-
tural, affine, and linear contexts. It would be an interesting project to extend the results pre-
sented in this thesis to the logic with adjoint modalities. This generalization can be two-fold:
1) introducing | and 1 mode shift modalities into our infinitary first-order calculus. So far, we
have a promising preliminary result for a restricted form of shift modality in FIMALLY,, in
which we can only move formulas from the linear context to the structural one. 2) Consider-
ing strong progress property for a guarded subset of recursive session-typed processes defined

based on the adjoint logic.

Bibliography

(1]

(5]

(6]

(8]

[10]

Andreas Abel and Brigitte Pientka. 2013. Wellfounded recursion with copatterns: a unified
approach to termination and productivity. In ACM SIGPLAN International Conference on
Functional Programming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013. ACM, 185-
196.

Andreas Abel and Brigitte Pientka. 2016. Well-founded recursion with copatterns and
sized types. J. Funct. Program. 26 (2016), e2.

Amal Jamil Ahmed. 2004. Semantics of types for mutable state. Ph.D. Dissertation. Prince-

ton University.

Amal J. Ahmed. 2006. Step-Indexed Syntactic Logical Relations for Recursive and Quan-
tified Types. In Programming Languages and Systems, 15th European Symposium on Pro-
gramming, ESOP 2006, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2006, Vienna, Austria, March 27-28, 2006, Proceedings (Lecture Notes in
Computer Science), Vol. 3924. Springer, 69-83.

Andrew W Appel and David McAllester. 2001. An indexed model of recursive types
for foundational proof-carrying code. ACM Transactions on Programming Languages and
Systems (TOPLAS) 23, 5 (2001), 657—-683.

André Arnold and Damian Niwinski. 2001. Rudiments of calculus. Elsevier.

David Baelde, Amina Doumane, and Alexis Saurin. 2016. Infinitary Proof Theory: the
Multiplicative Additive Case. In 25th Annual Conference on Computer Science Logic (CSL
2016). LIPIcs 62, Marseille, France, 42:1-42:17.

David Baelde and Dale Miller. 2007. Least and Greatest Fixed Points in Linear Logic. In
Logic for Programming, Artificial Intelligence, and Reasoning, 14th International Conference,
LPAR 2007, Yerevan, Armenia, October 15-19, 2007, Proceedings (Lecture Notes in Computer
Science), Vol. 4790. Springer, 92-106.

Stephanie Balzer and Frank Pfenning. 2017. Manifest Sharing with Session Types. Pro-
ceedings of the ACM on Programming Languages 1, ICFP (2017), 37:1-37:29.

Lars Birkedal and Rasmus Ejlers Meggelberg. 2013. Intensional Type Theory with Guarded
Recursive Types qua Fixed Points on Universes. In 28th Annual Symposium on Logic in
Computer Science (LICS 2013). IEEE Computer Society, New Orleans, LA, USA, 213-222.

143

Bibliography 144

[11]

[12]

[13]

[14]

[16]

[18]

[22]

Michael Brandt and Fritz Henglein. 1998. Coinductive axiomatization of recursive type

equality and subtyping. Fundamenta Informaticae 33, 4 (1998), 309-338.

James Brotherston. 2005. Cyclic Proofs for First-Order Logic with Inductive Definitions.
In Automated Reasoning with Analytic Tableaux and Related Methods, International Con-
ference, TABLEAUX 2005, Koblenz, Germany, September 14-17, 2005, Proceedings (Lecture
Notes in Computer Science), Vol. 3702. Springer, 78-92.

James Brotherston and Alex Simpson. 2011. Sequent calculi for induction and infinite
descent. j. Log. Comput. 21, 6 (2011), 1177-1216.

Paola Bruscoli. 2002. A Purely Logical Account of Sequentiality in Proof Search. In Logic
Programming, 18th International Conference, ICLP 2002, Copenhagen, Denmark, July 29 -
August 1, 2002, Proceedings (Lecture Notes in Computer Science), Vol. 2401. Springer, 302—
316.

Luis Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear Proposi-
tions. In CONCUR 2010 - Concurrency Theory, 21th International Conference, CONCUR 2010,
Paris, France, August 31-September 3, 2010. Proceedings (Lecture Notes in Computer Science),
Vol. 6269. Springer, 222-236.

Luis Caires, Frank Pfenning, and Bernardo Toninho. 2016. Linear Logic Propositions as
Session Types. Mathematical Structures in Computer Science 26, 3 (2016), 367-423. Special

Issue on Behavioural Types.

Iliano Cervesato and Andre Scedrov. 2009. Relating State-Based and Process-Based Con-
currency through Linear Logic. Information and Computation 207, 10 (Oct. 2009), 1044—
1077.

Bor-Yuh Evan Chang, Kaustuv Chaudhuri, and Frank Pfenning. 2003. A Judgmental Anal-
ysis of Linear Logic. Technical Report CMU-CS-03-131R. Carnegie Mellon University, De-

partment of Computer Science.

Alonzo Church. 1940. A Formulation of the Simple Theory of Types. . Symb. Log. 5, 2
(1940), 56—68.

Haskell B Curry. 1934. Functionality in combinatory logic. Proceedings of the National
Academy of Sciences of the United States of America 20, 11 (1934), 584.

Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani Santurkar. 2021.
Resource-Aware Session Types for Digital Contracts. In 34th IEEE Computer Security Foun-
dations Symposium (CSF). To appear.

Ankush Das, Farzaneh Derakhshan, and Frank Pfenning. 2019. SubSingleton. https://
bitbucket.org/fpfenning/subsingleton An implementation of subsingleton logic

with ergometric and temporal types.

https://bitbucket.org/fpfenning/subsingleton
https://bitbucket.org/fpfenning/subsingleton

Bibliography 145

[23]

[25]

[27]

(28]

[29]

[30]

[31]

[33]

[34]

Ankush Das and Frank Pfenning. 2020. Rast: Resource-Aware Session Types with Arith-
metic Refinements (System Description). In 5th International Conference on Formal Struc-
tures for Computation and Deduction, FSCD 2020, June 29-Fuly 6, 2020, Paris, France (Virtual
Conference) (LIPIcs), Vol. 167. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 33:1-
33:17.

Ankush Das and Frank Pfenning. 2020. Verified Linear Session-Typed Concurrent Pro-
gramming. In PPDP ’20: 22nd International Symposium on Principles and Practice of Declar-
ative Programming, Bologna, Italy, 9-10 September, 2020. ACM, 7:1-7:15.

Anupam Das and Damien Pous. 2018. Non-Wellfounded Proof Theory for (Kleene+ Ac-
tion) (Algebras+ Lattices). In 27th EACSL Annual Conference on Computer Science Logic
(CSL 2018). LIPIcs 119.

Willem P. de Roever. 1977. On Backtracking and Greatest Fixpoints. In Automata, Lan-
guages and Programming, Fourth Colloquium, University of Turku, Finland, July 18-22, 1977,
Proceedings (Lecture Notes in Computer Science), Arto Salomaa and Magnus Steinby (Eds.),
Vol. 52. Springer, 412-429.

Farzaneh Derakhshan and Frank Pfenning. 2019. Circular Proofs as Session-Typed Pro-
cesses: A Local Validity Condition. arXiv preprint arXiv:1908.01909 (2019).

Farzaneh Derakhshan and Frank Pfenning. 2021. Strong Progress for Session-Typed Pro-
cesses in a Linear Metalogic with Circular Proofs. arXiv:cs.L0O/2001.05132

Henry DeYoung. 2020. Session-Types Ordered Logical Specifications. Ph.D. Dissertation.
Carnegie Mellon University. Available as Technical Report CMU-CS-20-133.

Henry DeYoung, Luis Caires, Frank Pfenning, and Bernardo Toninho. 2012. Cut Reduction
in Linear Logic as Asynchronous Session-Typed Communication. In Proceedings of the 21st
Annual Conference on Computer Science Logic (CSL 2012). LIPIcs 16, Fontainebleau, France,
228-242.

Henry DeYoung and Frank Pfenning. 2016. Substructural Proofs as Automata. In Pro-
gramming Languages and Systems - 14th Asian Symposium, APLAS 2016, Hanoi, Vietnam,
November 21-23, 2016, Proceedings (Lecture Notes in Computer Science), Vol. 10017. 3-22.

Henry DeYoung, Frank Pfenning, and Klaas Pruiksma. 2020. Semi-Axiomatic Sequent Cal-
culus. In 5th International Conference on Formal Structures for Computation and Deduction,
FSCD 2020, June 29-July 6, 2020, Paris, France (Virtual Conference) (LIPIcs), Vol. 167. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 29:1-29:22.

Amina Doumane. 2017. On the Infinitary Proof Theory of Logics with Fixed Points. Ph.D.

Dissertation. Paris Diderot University, France.

Derek Dreyer, Amal Ahmed, and Lars Birkedal. 2009. Logical Step-Indexed Logical Re-
lations. In Proceedings of the 24th Annual IEEE Symposium on Logic in Computer Science,
LICS 2009, 11-14 August 2009, Los Angeles, CA, USA. IEEE Computer Society, 71-80.

Bibliography 146

[35]

Lars-Henrik Eriksson. 1991. A finitary version of the calculus of partial inductive defini-

tions. In International Workshop on Extensions of Logic Programming. Springer, 89-134.

[36] Jérome Fortier and Luigi Santocanale. 2013. Cuts for Circular Proofs: Semantics and Cut-

[38]

[39]

[40]

Elimination. In 22nd Annual Conference on Computer Science Logic (CSL 2013). LIPIcs 23,
Torino, Italy, 248-262.

Curtis Franks. 2010. Cut as consequence. History and Philosophy of Logic 31, 4 (2010),
349-379.

Simon J. Gay and Vasco T. Vasconcelos. 2010. Linear Type Theory for Asynchronous
Session Types. Journal of Functional Programming 20, 1 (Jan. 2010), 19-50.

Gerhard Gentzen. 1934-5. Untersuchungen tber das logische SchlieSen I, II. Mathematis-
che Zeitschrift 39, 1 (1934-5), 176-210, 405-431.

Gerhard Gentzen. 1938. Neue Fassung des Widerspruchsfreiheitsbeweises fiir die reine
Zahlentheorie. Forschung zur Logik und zur Grundlegung der exakten Wissenschaften.
Neue Folge 4, S. Hirzel:19—44 (1938).

[41] Jean-Yves Girard and Yves Lafont. 1987. Linear Logic and Lazy Computation. In TAP-

SOFT’87: Proceedings of the International Joint Conference on Theory and Practice of Soft-
ware Development, Pisa, Italy, March 23-27, 1987, Volume 2: Advanced Seminar on Founda-
tions of Innovative Software Development I and Colloquium on Functional and Logic Pro-
gramming and Specifications (CFLP) (Lecture Notes in Computer Science), Vol. 250. Springer,
52-66.

[42] Jean-Yves Girard. 1972. Interprétation fonctionnelle et élimination des coupures de

Iarithmétique d’ordre supérieur. Ph.D. Dissertation. Editeur inconnu.

[43] Jean-Yves Girard. 1987. Linear logic. Theoretical Computer Science 50, 1 (1987), 1-101.

[44] Jean-Yves Girard. 1992. A fixpoint theorem in linear logic. Linear Logic Mailing List,

[49]

linear@ cs. stanford. edu 5 (1992).

Hans Brugge Grathwohl. 2016. Guarded Recursive Type Theory. Ph.D. Dissertation. De-

partment of Computer Science, Aarhus University, Denmark.

Dennis Griffith. 2016. Polarized Substructural Session Types. Ph.D. Dissertation. University
of Illinois at Urbana-Champaign.

Robert Harper. 2021. Termination for Natural and Unnatural Numbers. (2021). http:
//www.cs.cmu.edu/~rwh/courses/chtt/pdfs/natco.pd

Claudio Hermida and Bart Jacobs. 1998. Structural induction and coinduction in a fibra-
tional setting. Information and Computation 145, 2 (1998), 107-152.

David Hilbert and Paul Bernays. 1934. Grundlagen der Mathematik, volume 1. Springer.

http://www.cs.cmu.edu/~rwh/courses/chtt/pdfs/natco.pd
http://www.cs.cmu.edu/~rwh/courses/chtt/pdfs/natco.pd

Bibliography 147

[50]

[51]

[52]

[53]

[54]

[55]

(58]

[59]

[60]

David Hilbert and Paul Bernays. 1939. Grundlagen der Mathematik, volume II. Springer.

Kohei Honda. 1993. Types for Dyadic Interaction. In 4th International Conference on Con-
currency Theory (CONCUR’93). Springer LNCS 715, 509-523.

Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. 1998. Language Primitives and
Type Discipline for Structured Communication-Based Programming. In 7th European
Symposium on Programming Languages and Systems (ESOP 1998). Springer LNCS 1381,
122-138.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty asynchronous ses-
sion types. In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2008, San Francisco, California, USA, January 7-12, 2008.
ACM, 273-284.

Ross Horne. 2020. Session Subtyping and Multiparty Compatibility Using Circular Se-
quents. In 31st International Conference on Concurrency Theory, CONCUR 2020, Septem-
ber 1-4, 2020, Vienna, Austria (Virtual Conference) (LIPIcs), Vol. 171. Schloss Dagstuhl -
Leibniz-Zentrum fur Informatik, 12:1-12:22.

Ross Horne and Alwen Tiu. 2019. Constructing weak simulations from linear implica-
tions for processes with private names. Mathematical Structures in Computer Science 29,
8 (2019), 1275-1308.

WA Howard. 1969. To HB Curry: The formulae-as-types notion of construction. Essays
on Combinatory Logic, Lambda Calculus, and Formalism (1969).

Andreé Joyal. 1996. Free Lattices, Communication and Money Games. In Logic and Scien-
tific Methods: Volume One of the Tenth International Congress of Logic, Methodology and
Philosophy of Science, Florence, August 1995, Vol. 259. Springer Science & Business Media,
29.

Reinhard Kahle and Michael Rathjen. 2020. The Legacy of Kurt Schiitte. Springer.

Dexter Kozen and Alexandra Silva. 2017. Practical coinduction. Mathematical Structures
in Computer Science 27, 7 (2017), 1132-1152.

Sam Lindley and J. Garrett Morris. 2016. Talking bananas: structural recursion for session
types. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming, ICFP 2016, Nara, Japan, September 18-22, 2016. ACM, 434-447.

Paul Lorenzen. 1951. Algebraische und logistische Untersuchungen tiber freie Verbande.
Journal of Symbolic Logic (1951), 81-106.

Per Martin-Lof. 1971. Hauptsatz for the intuitionistic theory of iterated inductive defini-
tions. In Studies in Logic and the Foundations of Mathematics. Vol. 63. Elsevier, 179-216.

Bibliography 148

[63]

[67]

[68]

[70]

[71]

[72]

[74]

Raymond McDowell and Dale Miller. 1997. A Logic for Reasoning with Higher-Order
Abstract Syntax. In Proceedings of the Twelfth Annual Symposium on Logic in Computer
Science, Glynn Winskel (Ed.). IEEE Computer Society Press, Warsaw, Poland, 434-445.

Raymond McDowell and Dale Miller. 2000. Cut-elimination for a logic with definitions
and induction. Theoretical Computer Science 232, 1-2 (2000), 91-119.

Nax P. Mendler. 1987. Recursive types and type constraints in second-order lambda cal-
culus. In LICS, Vol. 87. 30-36.

Nax P. Mendler. 1991. Inductive Types and Type Constraints in the Second-Order lambda
Calculus. Ann. Pure Appl. Log. 51, 1-2 (1991), 159-172. https://doi.org/10.1016/
0168-0072(91)90069-X

Dale Miller. 1991. A Logic Programming Language with Lambda-Abstraction, Function
Variables, and Simple Unification. Journal of Logic and Computation 1, 4 (1991), 497-536.

Dale Miller. 1992. The 7-calculus as a theory in linear logic: Preliminary results. In Inter-

national Workshop on Extensions of Logic Programming. Springer, 242-264.

Robin Milner. 1990. Functions as processes. In International Colloquium on Automata,

Languages, and Programming. Springer, 167-180.

Robin Milner and Mads Tofte. 1991. Co-Induction in Relational Semantics. Theor. Comput.
Sci. 87, 1 (1991), 209—220.

Alberto Momigliano and Alwen Tiu. 2003. Induction and co-induction in sequent calculus.

In International Workshop on Types for Proofs and Programs. Springer, 293-308.

Jorge A. Pérez, Luis Caires, Frank Pfenning, and Bernardo Toninho. 2012. Linear Logical
Relations for Session-Based Concurrency. In Programming Languages and Systems - 21st
European Symposium on Programming, ESOP 2012, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April
1, 2012. Proceedings (Lecture Notes in Computer Science), Vol. 7211. Springer, 539-558.

Frank Pfenning. 2016. Substructural Logics. (Dec. 2016). http://www.cs.cmu.edu/
~fp/courses/15816-f16/lectures/substructural-logics.pdf Lecture notes for

course given at Carnegie Mellon University, Fall 2016.

Frank Pfenning and Dennis Griffith. 2015. Polarized substructural session types. In In-
ternational Conference on Foundations of Software Science and Computation Structures.

Springer, 3-22.

Benjamin C Pierce and David N Turner. 2000. Local type inference. ACM Transactions on
Programming Languages and Systems (TOPLAS) 22, 1 (2000), 1-44.

Gordon D Plotkin. 1973. Lambda-definability and logical relations, 1973. Memorandum
SAI-RM 4 (1973).

https://doi.org/10.1016/0168-0072(91)90069-X
https://doi.org/10.1016/0168-0072(91)90069-X
http://www.cs.cmu.edu/~fp/courses/15816-f16/lectures/substructural-logics.pdf
http://www.cs.cmu.edu/~fp/courses/15816-f16/lectures/substructural-logics.pdf

Bibliography 149

[77]

(78]

[79]

[80]

[81]

[88]

[89]

[90]

Dag Prawitz and Natural Deduction. 1965. A Proof-Theoretical Study”. Almqvist™ Wiksell,
Stockholm (1965).

Klaas Pruiksma and Frank Pfenning. 2019. A Message-Passing Interpretation of Ad-
joint Logic. In Proceedings Programming Language Approaches to Concurrency- and
Communication-cEntric Software, PLACES@ETAPS 2019, Prague, Czech Republic, 7th April
2019 (EPTCS), Vol. 291. 60-79.

Grigore Rosu. 2017. Matching Logic. Logical Methods in Computer Science 13, 4 (2017).

Davide Sangiorgi. 2009. On the origins of bisimulation and coinduction. ACM Transactions
on Programming Languages and Systems (TOPLAS) 31, 4 (2009), 1-41.

Luigi Santocanale. 2002. A Calculus of Circular Proofs and Its Categorical Semantics. In
5th International Conference on Foundations of Software Science and Computation Structures
(FoSSaCS 2002). Springer LNCS 2303, Grenoble, France, 357-371.

Luigi Santocanale. 2002. From parity games to circular proofs. Electronic Notes in Theo-
retical Computer Science 65, 1 (2002), 305-316.

Luigi Santocanale. 2002. p-Bicomplete Categories and Parity Games. Informatique
Théorique et Applications 36, 2 (2002), 195-227.

Peter Schroeder-Heister. 1993. Rules of Definitional Reflection. In Proceedings of the Eighth
Annual Symposium on Logic in Computer Science (LICS *93), Montreal, Canada, June 19-23,
1993. IEEE Computer Society, 222-232.

Peter Schroeder-Heister. 2006. Validity concepts in proof-theoretic semantics. Synthese
148, 3 (2006), 525-571.

Helmut Seidl. 1996. Fast and simple nested fixpoints. Inform. Process. Lett. 59, 6 (1996),
303-308.

Wilfried Sieg. 2012. In the shadow of incompleteness: Hilbert and Gentzen. In Epistemol-
ogy versus Ontology. Springer, 87-127.

Wilfried Sieg. 2013. Hilbert’s programs and beyond. Oxford University Press.

Siva Somayyajula and Frank Pfenning. 2021. Circular Proofs as Processes: Type-Based

Termination via Arithmetic Refinements. arXiv preprint arXiv:2105.06024 (2021).

Christoph Sprenger and Mads Dam. 2003. On the Structure of Inductive Reasoning: Cir-
cular and Tree-Shaped Proofs in the p-Calculus. In Foundations of Software Science and
Computational Structures, 6th International Conference, FOSSACS 2003 Held as Part of the
Joint European Conference on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland,
April 7-11, 2003, Proceedings (Lecture Notes in Computer Science), Vol. 2620. Springer, 425—
440.

Bibliography 150

[91]

[92]

[93]

[94]

[95]

[96]

[98]

Richard Statman. 1985. Logical relations and the typed A-calculus. Information and control
65, 2-3 (1985), 85-97.

Colin Stirling. 2014. A Tableau Proof System with Names for Modal Mu-calculus. In
HOWARD-60: A Festschrift on the Occasion of Howard Barringer’s 60th Birthday. EPiC Se-
ries in Computing, Vol. 42. EasyChair, 306-318.

William W. Tait. 1967. Intensional Interpretations of Functionals of Finite Type 1. Journal
of Symbolic Logic 32, 2 (1967), 198-212.

William W Tait. 1968. Normal derivability in classical logic. In The Syntax and Semantics
of Infinitary Languages. Springer, 204-236.

Alfred Tarski et al. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific
7. Math. 5, 2 (1955), 285-309.

Alwen Tiu and Dale Miller. 2010. Proof search specifications of bisimulation and modal
logics for the w-calculus. ACM Transactions on Computational Logic (TOCL) 11, 2 (2010),
1-35.

Bernardo Toninho, Luis Caires, and Frank Pfenning. 2013. Higher-Order Processes, Func-
tions, and Sessions: A Monadic Integration. In Programming Languages and Systems - 22nd
European Symposium on Programming, ESOP 2013, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.
Proceedings (Lecture Notes in Computer Science), Vol. 7792. Springer, 350-369.

Philip Wadler. 2012. Propositions as Sessions. In Proceedings of the 17th International
Conference on Functional Programming (ICFP 2012). ACM Press, Copenhagen, Denmark,
273-286.

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Logic and programming languages
	1.2 Recursion and termination
	1.3 Our work
	1.3.1 Design choice: rules for fixed points
	1.3.2 Design choice: subsingleton fragment
	1.3.3 Our approach

	1.4 Synopsis
	Part 1. Proof theory
	Part 2. Session typed processes

	2 Preliminaries - Proof theory
	2.1 A bit of history
	2.2 Sequent calculi for linear logics
	2.2.1 Propositional subsingleton logic.
	2.2.2 Propositional intutitionistic multiplicative additive linear logic.
	2.2.3 First-order intutitionistic multiplicative additive linear logic.

	3 Preliminaries - Fixed points in logic
	3.1 A bit of history
	3.2 Mutual fixed points and priorities
	3.3 Subsingleton logic with fixed points
	3.4 Classical multiplicative additive linear logic with fixed points (MALL)
	3.5 Other related work
	3.5.1 Parity games and circular proofs.
	3.5.2 Other approaches.

	4 First order linear logic with least and greatest fixed points
	4.1 Language and calculus
	4.2 Pattern Matching
	4.3 A validity condition on first order derivations
	4.4 A productive cut elimination algorithm

	5 Session-typed processes
	5.1 Background
	5.2 Session typed processes
	5.3 Typing rules
	5.4 Recursive types
	5.5 Operational semantics
	5.5.1 Configuration typing
	5.5.2 Synchronous semantics
	5.5.3 Asynchronous semantics

	5.6 Type safety
	5.7 Strong progress

	6 Strong progress as termination of cut elimination
	6.1 Ensuring communication and a local guard condition
	6.2 A local guard algorithm: naive version
	6.3 Priorities in the local guard algorithm
	6.4 Mutual Recursion in the Local guard algorithm
	6.5 A modified rule for cut
	6.6 Typing rules for session-typed processes with channel ordering
	6.7 A local guard condition
	6.8 Local guard condition and FS validity
	6.9 Computational meta-theory
	6.10 Incompleteness of guard conditions

	7 Strong progress as a predicate
	7.1 Background on processes as formula
	7.2 Typing rules for session-typed processes
	7.3 Asynchronous Semantics
	7.4 A predicate for strong progress
	7.5 A direct proof for strong progress

	8 Implementation
	8.1 Syntax
	8.2 Reconstruction of fixed points
	8.3 Termination checking
	8.4 Examples

	9 Conclusion
	9.1 Strong progress as a logical relation
	9.2 A more general guard condition for the subsingleton fragment
	9.3 Recursive binary session types in linear logic
	9.4 Linear logic with adjoint modalities

	Bibliography

