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If each uberobject in a system respects the interface, then: 

• In any concurrent run, the pre-conditions upon the call and the 
post-condition upon return hold for all functions. 

• Any concurrent execution is data race free, i.e., no two threads 
access a location concurrently when at least one of the accesses is a 
write.

Verification result at the source-level:
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Target-level guarantees via certified compilers 
— Preserving the interface —
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Requirement from a compiler—Preserving the interface
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• Memory transformation function: 
•Well-defined:  Total and injective on heap locations, and map source-level 

heap locations to target-level heap locations. 

• Code transformation function: 
•Interface-preserving: If an uobj respects the interface at the source level, 

then its compiled version respects the interface at the target level.
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If each source-level uberobject in a system respects the interface and all 
compilers are interface-preserving, then 

In any concurrent run at the target-level, the security properties hold: 

 All functions satisfy their post-conditions upon return.

Target-level guarantees via interface preserving compilers
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CAS-Compcert is an interface-preserving compiler.
(PLDI’2019)
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Case studies
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➡ UberXMHF TEE: Open source micrphypervisor TEE (x86 32-bit hardware ) 

• An execution environment for an untrusted OS


• Verify the security property of guest memory separation: page table permissions bit is 
set correctly.


➡ Trustzone TEE: A light-weight open-source Trustzone TEE (ARM 32-bit) 

• An execution environment for a simple guest OS running at the highest privilege level


• Verify correct setup to get guest memory separation: the secure monitor mode is set 
correctly.



Related work

➡Verified TEEs 
• Sel4 - S&P’2013

• CertiKOS - USENIX OSDI’2016

• XMHF - S&P ‘2013

• uberXMHF - USENIX Security ’2016

• Security MIcrovisor - TDSCM ‘2019

• Contiki - DDECS ‘2015


➡Certified compilers:  
• CASCompCert - PLDI’2019 , …


➡Compartmentalization: 
• Secure Compartmentalizing compilation (SCC) - CSF’2016 

•  Robustly Safe Compartmentalizing Compilation (RSCC) - CCS’2018

•  CHERI compartmentalization - SP ‘2015
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Conclusion

➡ Summary:  

• Compartmentalization for implementing TEEs enables us to:


• achieve compositional verification results at the source level, and


• leverage certified compilers to preserve the guarantees at the target level.


• Two case studies


➡ What else is in the paper? 

• DSL semantics for assembly


• Interrupts


• Noninterference
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F2

Both properties hold in 
any concurrent execution

Our proposed tool-chain and its assumptions
The last bit of page table flag is set to 1 

(after function return)
The secure monitor bit is 1 

(after function return)


