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Specific security properties in lieu of full-functional correctness

e Examples: XMHF, uberXMHF, Security Microvisor, Contiki

e Advantages: Develooment friendly, use source-level automated
verification tools

e Disadvantages: Weaker guarantee

Prior approaches lack guarantees on the compiled code

Our approach - Compartmentalization and certified compilers to aid
verification:

e Compartments as units for verification and compilation.
e Allows us to bring the security properties down to the compiled code.
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Outline

* Concurrent execution - an example
* Verify source-level guarantees

* Preserve target-level guarantees

* Using off-the-shelf tools

 Case studies

e Related work

35



Concurrent execution

uberobject 1 uberobj ect 2
/’”m \ //'
Internal | - Internal ||
functions|| functions|

|

Public
. interface

=3

Public
. Interface

Exclusive memory ‘ ‘ ‘ ‘ Exclusive memory
uobj, .M uobj, .M

36



Concurrent execution

uberobj ect 1 uberobj ect 2
a -

Public
. Interface

Internal

| Internal
1 functions

functions

II

Public
. interface

Exclusive memory ‘ ‘ ‘ ‘ Exclusive memory
uobj, .M uobj, .M

37



Concurrent execution
uberobj ect 1 uberobject 2

T |

Internal
' functions
| - +

I ‘

G1

il | Internal ||
functions

Public
. interface

Public
. Interface

Exclusive memory ‘ ‘ ‘ ‘ Exclusive memory
uobj, .M uobj, .M

38



Concurrent execution
uberobj ect 1 uberobject 2

Bl ....| (IEB
Internal G1 “
' functions

a - w

I ‘

Internal ||
functions

Public
. interface

Public
. Interface

Exclusive memory ‘ ‘ ‘ ‘ Exclusive memory
uobj, .M uobj, .M

Call

38



Concurrent execution
uberobj ect 1 uberobj ect 2

& [ 4 s
' functions “
| - | -

I ‘

Internal ||
functions

Public Public
. interface . interface

Exclusive memory ‘ ‘ ‘ ‘ Exclusive memory

uobj, .M uobj, .M

y _____/
O

Call

38



Concurrent execution
uberobj ect 1 uberobj ect 2

& [ 4 s
' functions “
| - | -

I ‘

Internal ||
functions

Public Public
. interface . interface

Exclusive memory ‘ ‘ ‘ ‘ Exclusive memory

uobj, .M uobj, .M

y _____/
O

38



Concurrent execution
uberobj ect 1 uberobj ect 2

_uberobied
o
=2

Public
. Interface

Internal

Internal
1 functions

functions

II

Public
. interface

Exclusive memory ‘ ‘ ‘ ‘ Exclusive memory
uobj, .M uobj, .M

38



Concurrent execution
uberobj ect 1 uberobj ect 2

_uberobied
o
=2

Public
. Interface

Internal

Internal
1 functions

functions

II

Public
. interface

Exclusive memory ‘ ‘ ‘ ‘ Exclusive memory

uobj, .M uobj, .M

y _____/
O

38



Concurrent execution
uberobj ect 1 uberobj ect 2

& [ 4 s
' functions “
| - | -

I ‘

Internal ||
functions

Public Public
. interface . interface

Exclusive memory ‘ ‘ ‘ ‘ Exclusive memory

uobj, .M uobj, .M

y _____/
O

38



Concurrent execution
uberobj ect 1 uberobj ect 2

& [ 4 s
' functions “
| - | -

I ‘

Internal ||
functions

Public Public
. interface . interface

Exclusive memory ‘ ‘ ‘ ‘ Exclusive memory

uobj, .M uobj, .M

y _____/
O

38



Concurrent execution
uberobj ect 1 uberobj ect 2

& [ 4 s
' functions “
| - | -

I ‘

Internal ||
functions

Public Public
. interface . interface

Exclusive memory ‘ ‘ ‘ ‘ Exclusive memory

uobj, .M uobj, .M

y _____/
O

38



Source-level guarantees via verification of each compartment
— Respecting the interface —
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Requirement from a source-level compartment—Respecting the interface
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Requirement from a source-level compartment—Respecting the interface

Guarantee: Any internal step of this uberobject can only read from/write to
Its own exclusive memory.
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Requirement from a source-level compartment—Respecting the interface

Guarantee: Any internal step of this uberobject can only read from/write to
Its own exclusive memory.

Rely: Any internal step of other uberobjects will never read from/write
to this uberobject’s exclusive memory.
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Requirement from a source-level compartment—Respecting the interface
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Requirement from a source-level compartment—Respecting the interface
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Veritying Pre and Post conditions—Respecting the interface

Guarantee:
1. If this object calls other uberobject’s public interfaces,
it will satisfy their pre-condition.

2. When a function in this uberobject terminates,
Its post-condition holds.
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Verification result at the source-level:

f each uberobject in a system respects the interface, then:

® [n any concurrent run, the pre-conditions upon the call and the
post-condition upon return hold for all functions.

® Any concurrent execution I1s data race free, i.e., no two threads
access a location concurrently when at least one of the accesses Is a
Write.
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Target-level guarantees via certified compilers
— Preserving the interface —
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Requirement from a compiler—Preserving the interface
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Requirement from a compiler—Preserving the interface

® Memory transformation function:

® Code transformation function:
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Requirement from a compiler—Preserving the interface

® Memory transformation function:

e Well-defined: Total and injective on heap locations, and map source-level
heap locations to target-level heap locations.

® Code transformation function:
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Target-level guarantees via interface preserving compilers

If each source-level uberobject in a system respects the interface and all
compllers are interface-preserving, then

In any concurrent run at the target-level, the security properties hold:

All functions satisfy their post-conditions upon return.
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CAS-Compcert is an interface-preserving compiler.

(PLDI’2019)
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Our proposed tool-chain and its assumptions

The last bit of page table flag is set to 1.
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Case studies

= UberXMHF TEE: Open source micrphypervisor TEE (x86 32-bit hardware )

e An execution environment for an untrusted OS

* Verify the security property of guest memory separation: page table permissions bit is
set correctly.

= [rustzone TEE: A light-weight open-source Trustzone TEE (ARM 32-bit)

* An execution environment for a simple guest OS running at the highest privilege level

* Verify correct setup to get guest memory separation: the secure monitor mode is set
correctly.
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‘Verlfled TEES
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* Robustly Safe Compartmentalizing Compilation (RSCC) - CCS’2018
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Conclusion
= Summary:

 Compartmentalization for implementing TEEs enables us to:
* achieve compositional verification results at the source level, and

* leverage certified compilers to preserve the guarantees at the target level.

e Two case studies

= \\Vhat else is in the paper?

 DSL semantics for assembly
* |nterrupts

* Noninterference

62



Our proposed tool-chain and its assumptions

The last bit of page table flag is set to 1
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