Carnegie
Mellon
University

SClence
Department

Towards End-to-End Verified TEEs via Verified
Interface Conformance and Certified Compilers

Farzaneh Derakhshan

(fderakhs@andrew.cmu.edu)
Joint work with Zichao Zhang, Amit Vasudevan, and Limin Jia

IEEE 36th Computer Security Foundations Symposium
CSF 2023, Jul 12

mailto:fderakhs@andrew.cmu.edu

Trusted Execution Environments (TEE)

Non secure world

K Rich execution \

environment

Untrusted App1

Normal OS

Untrusted App?2 $ Trusted App?2

Secure world

Gusted executioh

environment

Trusted App1

Trusted OS

\&

T

—
—

Shared memory \
il

y Y/ |
Core 2 I/0 devices
Control registers
Page table

pc ||IDT] ... J

Hardware 2

Trusted Execution Environments (TEE)

Non secure world

f Rich execution \

environment

Untrusted App1

Normal OS

Untrusted App?2 $ Trusted App?2

Goal:

Secure world

Gusted executioh

environment

Trusted App1

Trusted OS

\&

T

—
—

Shared memory \
]

y Y / |
Core 2 I/0 devices
Control registers
Page table

pc ||IDT] ... J

Hardware 3

® Rur

Mmu

SIMm

tip

Ultaneo

e mutually distrusting programs

usly on shared hardware.

Trusted Execution Environments (TEE)

Non secure world

f Rich execution \

environment

Untrusted App1

Normal OS

Untrusted App?2 $ Trusted App?2

Goal:
Secure world |
® Run multip
simultaneo
Trusted execution
environment | |
Application

Trusted App1

Trusted OS

S

—
—

T

Shared memory \
]

Core 2 I/0 devices
Control registers
Page table

pc ||IDT] ... J

Hardware 4

e mutually distrusting programs

usly on shared hardware.

e Cloud computing
® Secure banking

Trusted Execution Environments (TEE)

Non secure world

f Rich execution \

environment

Untrusted App1
Untrusted App?2 $

Normal OS

Goal:
Secure world , , ,
® Run multiple mutually distrusting programs
f \ simultaneously on shared hardware.
Trusted execution
environment L
Application
Trusted App1
Trusted App2 e Cloud Compgtlng
® Secure banking
Trusted OS

\&

w

—
\

Shared memory

"

H\

”Control registers

PC

IDT)| ...

I/0 devices
Page table

_

Hardware

5

—xample Trusted OS

® Hypervisors

® [r
o O

[_

usty for Android

[EE for Arm

Trusted Execution Environments (TEE)

Non secure world

f Rich execution \

environment

Untrusted App1

Normal OS

Untrusted App?2 $ Trusted App?2

Goal:

Secure world

ﬂ rusted executiom

environment

® Rur
SIMmu

Application
Trusted App1

multiple mutually distrusting programs
taneously on shared hardware.

e Cloud computing
® Secure banking

=
==

O

O

k Trusted O%
Shared memory \
HEEEEE

Control registersvO devices
C

Page table

IDT)| ... J

o

Hardware 6

—xample Trusted OS

® Hypervisors

® [rusty"

o OD_

‘or Android

— for Arm

Trusted Execution Environments (TEE)

Non secure world

f Rich execution \

environment

Untrusted App1

Normal OS

Untrusted App?2 $ Trusted App?2

Goal:

Secure world

ﬂ rusted executiom

environment

® Rur
SIMmu

Application
Trusted App1

multiple mutually distrusting programs
taneously on shared hardware.

e Cloud computing
® Secure banking

=
==

O

O

k Trusted O%
Shared memory \
HEEEEE

Control registersvO devices
C

Page table

IDT)| ... J

o

Hardware 7

—xample Trusted OS

® Hypervisors

® [rusty"

o OD_

‘or Android

— for Arm

Trusted Execution Environments (TEE)
Goal:

Non secure world Secure world . . .
e Run multiple mutually distrusting programs

f | | \ simultaneously on shared hardware.
Rich execution Trusted execution

environment environment

Application
Untrusted App1 Trusted App1
Untrusted App2 $ Trusted App2 e Cloud computing

® Secure banking

Normal OS Trusted OE&
K W k HJ —xample Trusted OS
® Hypervisors
® [rusty for Android

f Shared memory \
HEEEE e OP-TEE for Arm

y r_ /
O L Page table

Control registers
pC

K e (1418 J

Hardware :

Trusted Execution Environments (TEE)

Non secure world

f Rich execution \

environment

Untrusted App1

Normal OS

Secure world

Gusted executioh

environment

Trusted App1

Untrusted App?2 $ Trusted App?2

4

Trusted OS 7%

\&

=
==

O

O

Control registers
pC

oc LIS J

e

Goal:

e Run multiple mutually distrusting programs
simultaneously on shared hardware.

Application

e Cloud computing
® Secure banking

—xample Trusted OS
® Hypervisors

Shared memory \ ® [rusty for Android
I

I/0 devices
Page table

Hardware 9

e OP-TEE for Arm

Trusted Execution Environments (TEE)
Goal:

Non secure world Secure world

® Run multiple mutually distrusting programs

f | | \ simultaneously on shared hardware.
Rich execution Trusted execution

environment environment

Application
Trusted App1

Untrusted App1
Untrusted App2 $ Trusted App?2 e Cloud computing

® Secure banking

Normal OS Trusted OS si
K / k) Example Trusted OS
® Hypervisors
f Shared memory \ e Trusty for Android
HEEEE e OP-TEE for Arm

A4 A4
/0O devices

S L J Page table

t
\ oTl J Subversion of a TEE means the attacker

takes full-control over the entire platform!

Hardware 10

TEE formal verification removes many of the vulnerabilities

= yll functional correctness

11

TEE formal verification removes many of the vulnerabilities

= yll functional correctness

o Examples: /ronclad apps, sel4, mCertiKOS

12

TEE formal verification removes many of the vulnerabilities

= yll functional correctness

e Examples: /ronclad apps, sel4, mCertiKOS
o Advantages: Strong guarantee

13

TEE formal verification removes many of the vulnerabilities

= ull functional correctness

o Examples: /ronclad apps, sel4, mCertiKOS

o Advantages: Strong guarantee

e Disadvantages: Not developer friendly, Not update friendly, High
cost of verification (time and dollar!)

14

TEE formal verification removes many of the vulnerabilities

= ~ull functional correctness
o Examples: /ronclad apps, sel4, mCertiKOS
o Advantages: Strong guarantee
e Disadvantages: Not developer friendly, Not update friendly, High
cost of verification (time and dollar!)

= Specific security properties In lieu of full-functional correctness

15

TEE formal verification removes many of the vulnerabilities

= yl| functional correctness

o Examples: /ronclad apps, sel4, mCertiKOS

e Advantages: Strong guarantee

e Disadvantages: Not developer friendly, Not update friendly, High
cost of verification (time and dollar!)

= Specific security properties In lieu of full-functional correctness

o Examples: XMHF, uberXMHF, Security Microvisor, Contiki

[1] XMHF: S&P 2013. [2] uberXMHF: USENIX Security '2016. [3] Security Microvisor: TDSCM ‘2019. [4] Contiki: DDECS ‘2015
16

TEE formal verification removes many of the vulnerabilities

= yl| functional correctness

o Examples: /ronclad apps, sel4d, mCertiKOS

e Advantages: Strong guarantee

e Disadvantages: Not developer friendly, Not update friendly, High
cost of verification (time and dollar!)

= Specific security properties In lieu of full-functional correctness

o Examples: XMHF, uberXMHF, Security Microvisor, Contiki
e Advantages: Development friendly, use source-level automated
verification tools

[1] XMHF: S&P 2013. [2] uberXMHF: USENIX Security '2016. [3] Security Microvisor: TDSCM ‘2019. [4] Contiki: DDECS ‘2015
17

TEE formal verification removes many of the vulnerabilities

= yl| functional correctness

o Examples: /ronclad apps, sel4d, mCertiKOS

e Advantages: Strong guarantee

e Disadvantages: Not developer friendly, Not update friendly, High
cost of verification (time and dollar!)

= Specific security properties In lieu of full-functional correctness

e Examples: XMHF, uberXMHF, Security Microvisor, Contiki

o Advantages: Development friendly, use source-level automated
verification tools

e Disadvantages: Weaker guarantee

[1] XMHF: S&P 2013. [2] uberXMHF: USENIX Security '2016. [3] Security Microvisor: TDSCM ‘2019. [4] Contiki: DDECS ‘2015
18

Specific security properties in lieu of full-functional correctness

e Examples: XMHF, uberXMHF, Security Microvisor, Contiki

o Advantages: Development friendly, use source-level automated
verification tools

e Disadvantages: \Weaker guarantee

19

Specific security properties in lieu of full-functional correctness

e Examples: XMHF, uberXMHF, Security Microvisor, Contiki

o Advantages: Development friendly, use source-level automated
verification tools

e Disadvantages: Weaker guarantee

Prior approaches lack guarantees on the compiled code

20

Specific security properties in lieu of full-functional correctness

e Examples: XMHF, uberXMHF, Security Microvisor, Contiki

e Advantages: Develooment friendly, use source-level automated
verification tools

e Disadvantages: Weaker guarantee

Prior approaches lack guarantees on the compiled code

Our approach - Compartmentalization and certified compilers to aid
verification:

e Compartments as units for verification and compilation.
e Allows us to bring the security properties down to the compiled code.

21

Compartments schema

Non secure world

f Rich execution\

environment

Untrusted App1
Untrusted App?2 $

Normal OS

Secure world

Gusted executioh

environment

Trusted App1

Trusted App?2

Trusted OS

\&

\&

-~

_

.’.’ HEE

Core 1 Core 2

Control registers
C

Shared memory

DT| |Page taby

P

Hardware

22

Compartments schema

Secure world

Gusted executioh

environment

Trusted App1

Trusted App?2

Trusted OS

w

f Shared memory \

.’.’ HEEEEE
Core 1 Core 2

Control registers

K oc [IDT| |Page taby

Hardware

22

Compartments schema

Secure world

Gusted executioh

environment

Trusted App1

Trusted App?2

Trusted OS

w

f Shared memory \

.’.’ HEEEEE
Core 1 Core 2

Control registers

K oc [IDT| |Page taby

Hardware

23

Compartments schema

Secure world

Gusted execution

environment

Trusted App1

Trusted App?2

k Trusted OS
f Shared memory

.’.’\ NN

Core 1
Control registers

Q
oc |IDT| |Page taby

Hardware

O

24

Compartments schema

Secure world

Gusted execution

environment

Trusted App1

Trusted App?2
Trusted OS

-~

_

Shared memory

.’.’ HEEEEE
Core 1 Core 2
Control registers

~

uberobject

Internal |
functions

| Public

oc [IDT| |Page taby

Hardware

25

. interface

Compartments schema

Secure world

uberobject Exclusive
Gusted execution | A eSOUrees
environment Internal | ‘
Trusted App1 functions|
. Page table
| Public w
_ Interface

Trusted OS

f Shared memory

.’.’ HENEEE
Core 1 Core 2

Control registers

K oc [IDT| |Page taby

Hardware .

Compartments schema

Secure world

uberobject Exclusive
Gusted execution & A resourees
environment Internal | ‘
Trusted App1 | R | functions ||
| Page table
_ Interface

Trusted OS

f Shared memory

.’.’ HENEEE
Core 1 Core 2

Control registers

K oc [IDT| |Page taby

Hardware 27

Compartments schema

Secure world

uberobject Exclusive
Gusted execution T A resourees
environment Internal | |
Trusted App1 | R | functions ||
| Page table
Public W
_Interface

Trusted OS

k Public interface
f Shared memory \
[T

Core 1 ’ Core 2 ’
1 8 (&4 Control registers
k oc [IDT| |Page taby

Hardware 27

Compartments schema

Secure world

uberobject Exclusive
Gusted execution T A resourees
environment Internal | |
Trusted App1 | R | functions ||
| Page table
Public W
_Interface

Trusted OS

k Public interface
f Shared memory \ Pre-condition | P
(1]

Core 1 ’ Core 2 ’
1 8 (&4 Control registers
k oc [IDT| |Page taby

Hardware 27

Compartments schema

Secure world

Gusted execution

environment

Trusted App1

Trusted App?2

Trusted OS

\&

f Shared memory
AN ANYL @| | |

H\\

Core 1 ’ Core 2 ’
1 8 (&4 Control registers

oc |[IDT

Page taby

Hardware

27

uberobject

Exclusive
resources

Internal

/’- ﬂ 1 =

functions

Page table

Public ,
. interface

Public interface

Pre-condition

Post-condition - -

Compartments schema

Secure world

Gusted execution

environment

Trusted App1

Trusted App?2

Trusted OS

\&

f Shared memory
AN ANYL @| | |

H\\

Core 1 ’ Core 2 ’
1 8 (&4 Control registers

oc |[IDT

Page taby

Hardware

27

uberobject

Exclusive
resources

/’- ﬂ 1 =

Internal

functions

Page table

Public ,
. interface

Public interface

Pre-condition

Post-condition - -

Compartments schema

Secure world

Gusted execution

environment

Trusted App1

Trusted App?2

Trusted OS

\&

f Shared memory
AN ARNY4 | | |

H\\

Core 1 ’ Core 2 ’
1 8 (&4 Control registers

oc |[IDT

Page taby

Hardware

27

| uberobject Exclusive
T resources
| | Internal | |
| functions
| : Page table
| Public |
_interface

Public interface

Pre-condition

Post-condition - -

5
F2

Q -.

Compartments schema

Secure world

uberobject Exclusive
Gusted execution g resources
environment Internal ‘
Trusted App1 | functions|
Trusted App2 | - | |Page table
ruste |
P | Public ‘
Trusted OS 4

k Public interface
/ Shared memory \ Pre-condition | P
AN A [[[[]]|
Core 1 Core 2 Post-condition =
O &4 Control registers The last bit of page
C P’
e

table flag is set to 1.
K pc |IDT| |Page taby ableTlag s setfo

Hardware

27

Compartments as units of verification and compilation

The last bit of page table flag is set to 1
(after function return)

//
Source-level | "
| F2
compartments |
Public
\ inter

Internal
function | |

uberobject 1

28

Compartments as units of verification and compilation

The last bit of page table flag is set to 1 The secure monitor bit is 1
(after function return) (after functlon return)
Internal | Internal ’
Source-level function | | d function | |

compartments

Public

Public

\ 1nterface \ lnterface

uberobject 1 uberobject 2

29

Compartments as units of verification and compilation

The last bit of page table flag is set to 1 The secure monitor bit is 1
(after function return) (after functlon return)

Internal | |

‘ Internal %
function | |

Source-level function |

compartments

Public

Public
\ 1nterface

\ 1nterface

uberobject 1 uberobject 2

Sequential verification tool Sequential verification tool

30

Compartments as units of verification and compilation

The last bit of page table flag is set to 1 The secure monitor bit is 1
(after function return) (after functlon return)
Internal Internal y
Source-level function | | d function | |

compartments

Public
\ 1nterface

Public |
\ interface J

uberobject 1 uberobject 2
Y Y
Sequential verification tool Sequential verification tool
| |

Compiler Compiler

31

Compartments as units of verification and compilation

The last bit of page table flag is set to 1 The secure monitor bit is 1
(after function return) (after functlon return)
Internal || Internal ||
Source-level function || d function | |
compartments ‘ '
Public Public

\ 1nterface

\ 1nterface

uberobject 1 uberobject 2

Y Y
Sequential verification tool Sequential verification tool
| |
Compiler Compiler

Target-level | assembly |
compartments | code | code |

Public
\ interface

o |assembly ||

Public
35 . interface

Compartments as units of verification and compilation

The last bit of page table flag is set to 1
(after function return)

/
|

Public
. interface

The secure monitor bit is 1
(after function return)

T T ——

| Internal |

1
| [eP function | |

1\

Internal

Source-level function | |

compartments

Public |
. interface ’

uberobject 1 uberobject 2

Y Y
Sequential verification tool Sequential verification tool
| |
Compiler Compiler
|

I

Target-level

compartments

Public
_interface

= | assembly |

code

Public
\ interface

~ |lassembly |

code

Compartments as units of verification and compilation

The last bit of page table flag is set to 1
(after function return)

Source-level
compartments

uberobject 1

/
|

Public
. interface

Internal

function | |

Sequential verification tool

The secure monitor bit is
(after function return)

T T ——

| Internal |

1
| [eP function | |

1\

Public |
. interface ’

L

1

uberobject 2

y

Sequential verification tool

Compiler

Target-level
compartments

I

Public
_interface

> assembly ||

code

y
Compiler

~ |lassembly |
code

Public
\ interface

| Both properties hold in
| any concurrent execution |

Compartments as units of verification and compilation

The last bit of page table flag is set to 1

Source-level
compartments

uberobject 1

Target-level
compartments

(after function return)

/
|

Public
. interface

Internal ||
function | |

The secure monitor bit is
(after function return)

T T ——

| Internal |

1
| [eP function | |

1\

Public
\ Interface

L

1

Sequential verification tool

Sequential verification tool

Y
Compiler

> assembly ||

code

Public
_interface

34

y
Compiler

~ |lassembly |
code

Public
\ interface

Both properties hold in |
| any concurrent execution |

Outline

* Concurrent execution - an example
* Verify source-level guarantees

* Preserve target-level guarantees

* Using off-the-shelf tools

 Case studies

e Related work

35

Concurrent execution

uberobject 1 uberobj ect 2
/’”m \ //'
Internal | - Internal ||
functions|| functions|

|

Public
. interface

=3

Public
. Interface

Exclusive memory ‘ ‘ ‘ ‘ Exclusive memory
uobj, .M uobj, .M

36

Concurrent execution

uberobj ect 1 uberobj ect 2
a -

Public
. Interface

Internal

| Internal
1 functions

functions

II

Public
. interface

Exclusive memory ‘ ‘ ‘ ‘ Exclusive memory
uobj, .M uobj, .M

37

Concurrent execution
uberobj ect 1 uberobject 2

T |

Internal
' functions
| - +

I ‘

G1

il | Internal ||
functions

Public
. interface

Public
. Interface

Exclusive memory ‘ ‘ ‘ ‘ Exclusive memory
uobj, .M uobj, .M

38

Concurrent execution
uberobj ect 1 uberobject 2

Bl| (IEB
Internal G1 “
' functions

a - w

I ‘

Internal ||
functions

Public
. interface

Public
. Interface

Exclusive memory ‘ ‘ ‘ ‘ Exclusive memory
uobj, .M uobj, .M

Call

38

Concurrent execution
uberobj ect 1 uberobj ect 2

& [4 s
' functions “
| - | -

I ‘

Internal ||
functions

Public Public
. interface . interface

Exclusive memory ‘ ‘ ‘ ‘ Exclusive memory

uobj, .M uobj, .M

y _____/
O

Call

38

Concurrent execution
uberobj ect 1 uberobj ect 2

& [4 s
' functions “
| - | -

I ‘

Internal ||
functions

Public Public
. interface . interface

Exclusive memory ‘ ‘ ‘ ‘ Exclusive memory

uobj, .M uobj, .M

y _____/
O

38

Concurrent execution
uberobj ect 1 uberobj ect 2

_uberobied
o
=2

Public
. Interface

Internal

Internal
1 functions

functions

II

Public
. interface

Exclusive memory ‘ ‘ ‘ ‘ Exclusive memory
uobj, .M uobj, .M

38

Concurrent execution
uberobj ect 1 uberobj ect 2

_uberobied
o
=2

Public
. Interface

Internal

Internal
1 functions

functions

II

Public
. interface

Exclusive memory ‘ ‘ ‘ ‘ Exclusive memory

uobj, .M uobj, .M

y _____/
O

38

Concurrent execution
uberobj ect 1 uberobj ect 2

& [4 s
' functions “
| - | -

I ‘

Internal ||
functions

Public Public
. interface . interface

Exclusive memory ‘ ‘ ‘ ‘ Exclusive memory

uobj, .M uobj, .M

y _____/
O

38

Concurrent execution
uberobj ect 1 uberobj ect 2

& [4 s
' functions “
| - | -

I ‘

Internal ||
functions

Public Public
. interface . interface

Exclusive memory ‘ ‘ ‘ ‘ Exclusive memory

uobj, .M uobj, .M

y _____/
O

38

Concurrent execution
uberobj ect 1 uberobj ect 2

& [4 s
' functions “
| - | -

I ‘

Internal ||
functions

Public Public
. interface . interface

Exclusive memory ‘ ‘ ‘ ‘ Exclusive memory

uobj, .M uobj, .M

y _____/
O

38

Source-level guarantees via verification of each compartment
— Respecting the interface —

39

Requirement from a source-level compartment—Respecting the interface

40

Requirement from a source-level compartment—Respecting the interface

41

Requirement from a source-level compartment—Respecting the interface

Guarantee: Any internal step of this uberobject can only read from/write to
Its own exclusive memory.

42

Requirement from a source-level compartment—Respecting the interface

Guarantee: Any internal step of this uberobject can only read from/write to
Its own exclusive memory.

Rely: Any internal step of other uberobjects will never read from/write
to this uberobject’s exclusive memory.

43

Requirement from a source-level compartment—Respecting the interface

O o’
Guarantee: . .
Internal uobj, .M 5 uobj, .M
steps \ \ ; \

44

Requirement from a source-level compartment—Respecting the interface

o -
Guarantee: . |
Internal uobj, .M 5 uobj, .M
steps | | T
o
Rely: .
Concurrent uobj, . M 5
Steps ‘ ‘ ;

45

Veritying Pre and Post conditions—Respecting the interface

Guarantee:
1. If this object calls other uberobject’s public interfaces,
it will satisfy their pre-condition.

2. When a function in this uberobject terminates,
Its post-condition holds.

46

Veritying Pre and Post conditions—Respecting the interface

Guarantee:
1. If this object calls other uberobject’s public interfaces,
it will satisfy their pre-condition.

2. When a function in this uberobject terminates,
Its post-condition holds.

Pre-condition | P

46

Veritying Pre and Post conditions—Respecting the interface

Guarantee:
1. If this object calls other uberobject’s public interfaces,
it will satisfy their pre-condition.

2. When a function in this uberobject terminates,
Its post-condition holds.

Pre-condition | P

Post-condition N Q

46

Veritying Pre and Post conditions—Respecting the interface

Guarantee:
1. If this object calls other uberobject’s public interfaces,
it will satisfy their pre-condition.

2. When a function in this uberobject terminates,
Its post-condition holds.

Pre-condition | P Pre-condition @ P’

Post-condition N Q

46

Veritying Pre and Post conditions—Respecting the interface

Guarantee:
1. If this object calls other uberobject’s public interfaces,
it will satisfy their pre-condition.

2. When a function in this uberobject terminates,
Its post-condition holds.

Pre-condition | P Pre-condition @ P’

Post-condition N Q Post-condition Q)

46

Veritying Pre and Post conditions—Respecting the interface

Rely:
1. If other objects call this uberobject’s public interface,
they will satisfy this uberobject’s pre-condition.

2. When functions in other uberobjects terminate,
their post-conditions hold.

47

Veritying Pre and Post conditions—Respecting the interface

Rely:
1. If other objects call this uberobject’s public interface,
they will satisfy this uberobject’s pre-condition.

2. When functions in other uberobjects terminate,
their post-conditions hold.

Pre-condition | P

47

Veritying Pre and Post conditions—Respecting the interface

Rely:
1. If other objects call this uberobject’s public interface,
they will satisfy this uberobject’s pre-condition.

2. When functions in other uberobjects terminate,
their post-conditions hold.

Pre-condition | P

Post-condition N Q

47

Veritying Pre and Post conditions—Respecting the interface

Rely:
1. If other objects call this uberobject’s public interface,
they will satisfy this uberobject’s pre-condition.

2. When functions in other uberobjects terminate,
their post-conditions hold.

Pre-condition | P Pre-condition @ P’

Post-condition N Q

47

Veritying Pre and Post conditions—Respecting the interface

Rely:
1. If other objects call this uberobject’s public interface,
they will satisfy this uberobject’s pre-condition.

2. When functions in other uberobjects terminate,
their post-conditions hold.

Pre-condition | P Pre-condition @ P’

Post-condition N Q Post-condition Q)

47

Verification result at the source-level:

f each uberobject in a system respects the interface, then:

® [n any concurrent run, the pre-conditions upon the call and the
post-condition upon return hold for all functions.

® Any concurrent execution I1s data race free, i.e., no two threads
access a location concurrently when at least one of the accesses Is a
Write.

48

Target-level guarantees via certified compilers
— Preserving the interface —

49

Requirement from a compiler—Preserving the interface

B
| - lassem bly|
v‘i code ||

Target-level
uberobject

Source-level
uberobject

Internal | |
functions | |

1’\

Public

Public

\ 1nterface * 1nterfap§

Exclusive memory Exclusive memory
(Source-level) (Target-level)

uobj, . M uobj, .M

50

Requirement from a compiler—Preserving the interface

® Memory transformation function:

® Code transformation function:

L~
| assembly ||

Target-level
uberobject

Source-level
uberobject

Internal | |
functions | |

"\

Public

Public

\ 1nterface * 1nterfap§

Exclusive memory Exclusive memory
(Source-level) (Target-level)

uobj, . M uobj, .M

51

Requirement from a compiler—Preserving the interface

® Memory transformation function:

e Well-defined: Total and injective on heap locations, and map source-level
heap locations to target-level heap locations.

® Code transformation function:

EB ~
’ 2 |assembly

Target-level
uberobject

Source-level
uberobject

Internal | |
functions | |

1’\

Public

Public

\ 1nterface * 1nterfag§

Exclusive memory Exclusive memory
(Source-level) (Target-level)

uobj, . M uobj, .M

52

Requirement from a compiler—Preserving the interface

® Memory transformation function:

e Well-defined: Total and injective on heap locations, and map source-level
heap locations to target-level heap locations.

® Code transformation function:

L
’ 2 |assembly

Target-level
uberobject

Source-level
uberobject

Internal | |
functions | |

1’\

Public

Public

\ 1nterface * 1nterfag§

Exclusive memory
(Source-level)

uobj, .M

Exclusive memory
(Target-level)

uobj, .M

52

Requirement from a compiler—Preserving the interface

® Memory transformation function:
e Well-defined: Total and injective on heap locations, and map source-level
heap locations to target-level heap locations.

e Code transformation function:
¢ Interface-preserving: If an uobj respects the interface at the source level,
then its compiled version respects the interface at the target level.

BB ~
| assembly
| code |

Target-level
uberobject

Source-level
uberobject

Internal | |
functions | |

Public

Public
\ 1nterface

. interface

Exclusive memory
(Source-level)

uobj, . M

Exclusive memory
(Target-level)

uobj, .M,

53

Requirement from a compiler—Preserving the interface

® Memory transformation function:
e Well-defined: Total and injective on heap locations, and map source-level
heap locations to target-level heap locations.

e Code transformation function:
¢ Interface-preserving: If an uobj respects the interface at the source level,
then its compiled version respects the interface at the target level.

’ assembly |,

Target-level
uberobject

Source-level
uberobject

Internal

functions Compiler

I'}

Public

Public |

\ 1nterface ‘ 1nterfag§

Exclusive memory
(Target-level)

uobj, .M

Excluswe memory
(Source-level)

uobj, .M

53

Target-level guarantees via interface preserving compilers

If each source-level uberobject in a system respects the interface and all
compllers are interface-preserving, then

In any concurrent run at the target-level, the security properties hold:

All functions satisfy their post-conditions upon return.

54

CAS-Compcert is an interface-preserving compiler.

(PLDI’2019)

55

Our proposed tool-chain and its assumptions

The last bit of page table flag is set to 1.

F1
Source-level

compartments i functions:|

uberobject 1

Internal ||

3| C+CASM ||
Public |

. interface J

L

Sequential verification tool
(Frama-C)

Target-level

compartments | :

L

CASCompCert

assembly
code

| Public
\ interface

o

Internal

;{ functions: (

C+CASM

Public

uberobject 2

y

Sequential verification tool
(Frama-C)

y

CASCompCert

assembly
public | code

. Interface

56

i Both properties hold in |
| any concurrent execution |

The secure monitor bit is 1.

Our proposed tool-chain and its assumptions

The last bit of page table flag is set to 1.

Source-level
compartments |

uberobject 1

Internal
functions: |
Public !

. interface),

L

Sequential verification tool
(Frama-C)

Target-level

compartments | :

L

CASCompCert

assembly
code

| Public
\ interface

The secure monitor bit is 1.

o

Internal

MM :

DSL semantics accurately

; functions: | [T€flect the assembly semantics

Public

= C+CASM

uberobject 2

y

Sequential verification tool
(Frama-C)

y

CASCompCert

assembly
public | code

. Interface

57

Both properties hold in |
| any concurrent execution |

Our proposed tool-chain and its assumptions

The last bit of page table flag is set to 1.

Source-level

compartments |

uberobject 1

{ -

Public

L

Internal
functions:
C+CASM ||

\ interface),

Sequential verification tool

(Frama-C)

Target-level
compartments

L

CASCompCert

assembly
Public code

| interface

|

o

The secure monitor bit is 1.

Internal

MM :

| functions: | [T€flect the assembly semantics

DSL semantics accurately

Public

= C+CASM

uberobject 2

y

Sequential verification tooK
(Frama-C)

\

y

CASCompCert

58

. Interface

assembly
public | code

| any concurrent execution |

A2 C verifier’s logic is sound, it
only verifies correct predicates

Our proposed tool-chain and its assumptions

The last bit of page table flag is set to 1.

{ -

Internal
functions:
C+CASM ||

\ interface),

Source-level

compartments |

Public

uberobject 1

L

The secure monitor bit is 1.

o

Internal

MM :

| functions: | [T€flect the assembly semantics

DSL semantics accurately

N G

Public
\ inter

= C+CASM

uberobject 2 v

A3: C semantics
used by the C
analysis tool and

Sequential verification tool

(Frama-C)

\

Sequential verification took A2: C verifier's logic is sound, it

(Frama-C)

only verifies correct predicates

the CASCompCert

compiler agree. J>

Target-level
compartments

|
Y

CASCompCert

| Public
\ interface

assembly
code

|
y

CASCompCert

assembly
public | code

. Interface

59

Both properties hold in |
| any concurrent execution |

Case studies

= UberXMHF TEE: Open source micrphypervisor TEE (x86 32-bit hardware)

e An execution environment for an untrusted OS

* Verify the security property of guest memory separation: page table permissions bit is
set correctly.

= [rustzone TEE: A light-weight open-source Trustzone TEE (ARM 32-bit)

* An execution environment for a simple guest OS running at the highest privilege level

* Verify correct setup to get guest memory separation: the secure monitor mode is set
correctly.

60

Related work

‘Verlfled TEES

Seld - S&P’2013
* CertiKOS - USENIX OSDI'2016
o XMHF - S&P ‘2013
o uberXMHF - USENIX Security 2016
» Security Mlcrovisor - TDSCM 2019
* Contiki - DDECS 2015

= Certified compilers:
e CASCompCert - PLDI’2019,

= (Compartmentalization:

* Secure Compartmentalizing compilation (SCC) - CSF’2016
* Robustly Safe Compartmentalizing Compilation (RSCC) - CCS’2018
 CHERI compartmentalization - SP ‘2015

61

Conclusion
= Summary:

 Compartmentalization for implementing TEEs enables us to:
* achieve compositional verification results at the source level, and

* leverage certified compilers to preserve the guarantees at the target level.

e Two case studies

= \\Vhat else is in the paper?

 DSL semantics for assembly
* |nterrupts

* Noninterference

62

Our proposed tool-chain and its assumptions

The last bit of page table flag is set to 1
(after function return)

Source-level

compartments |

Public

uberobject 1

Internal
functions:
C+CASM ||

\ interface),

L

The secure monitor bit is 1

(after function return)

o

Internal

MM :

| functions: | [T€flect the assembly semantics

DSL semantics accurately

N G

Public
\ inter

= C+CASM

uberobject 2 v

A3: C semantics
used by the C
analysis tool and

Sequential verification tool

(Frama-C)

\

Sequential verification took A2: C verifier's logic is sound, it

(Frama-C)

only verifies correct predicates

the CASCompCert

compiler agree. J>

Target-level
compartments

|
Y

CASCompCert

| Public
\ interface

assembly
code

|
y

CASCompCert

assembly
public | code

. Interface

63

Both properties hold in |
| any concurrent execution |

