
Towards End-to-End Verified TEEs via Verified
Interface Conformance and Certified Compilers

Farzaneh Derakhshan
(fderakhs@andrew.cmu.edu)

Joint work with Zichao Zhang, Amit Vasudevan, and Limin Jia

IEEE 36th Computer Security Foundations Symposium

CSF 2023, Jul 12

mailto:fderakhs@andrew.cmu.edu

Trusted Execution Environments (TEE)

2

Page table
I/O devices

…

Secure worldNon secure world

Untrusted App1

Untrusted App2

Normal OS

Rich execution
environment

Trusted App1

Trusted App2

Trusted OS

Trusted execution
environment

pc IDT

Control registersCore 2 Core 1

Hardware

Shared memory

Trusted Execution Environments (TEE)

3

Page table
I/O devices

…

Secure worldNon secure world

Untrusted App1

Untrusted App2

Normal OS

Rich execution
environment

Trusted App1

Trusted App2

Trusted OS

Trusted execution
environment

pc IDT

Core 2 Core 1

Hardware

Shared memory

Control registers

Goal:

•Run multiple mutually distrusting programs
simultaneously on shared hardware.

Trusted Execution Environments (TEE)

4

Secure worldNon secure world

Untrusted App1

Untrusted App2

Normal OS

Rich execution
environment

Trusted App1

Trusted App2

Trusted OS

Trusted execution
environment

Page table
I/O devices

…pc IDT

Core 2 Core 1

Hardware

Shared memory

Goal:

•Run multiple mutually distrusting programs
simultaneously on shared hardware.

Application

•Cloud computing
•Secure banking

Control registers

Trusted Execution Environments (TEE)

5

Secure worldNon secure world

Untrusted App1

Untrusted App2

Normal OS

Rich execution
environment

Trusted App1

Trusted App2

Trusted OS

Trusted execution
environment

Page table
I/O devices

…pc IDT

Core 2 Core 1

Hardware

Shared memory

Goal:

•Run multiple mutually distrusting programs
simultaneously on shared hardware.

Application

•Cloud computing
•Secure banking

Example Trusted OS
• Hypervisors
• Trusty for Android
• OP-TEE for Arm

Control registers

Trusted Execution Environments (TEE)

6

Secure worldNon secure world

Untrusted App1

Untrusted App2

Normal OS

Rich execution
environment

Trusted App1

Trusted App2

Trusted execution
environment

Trusted OS

Page table
I/O devices

…pc IDT

Core 2 Core 1

Hardware

Shared memory

Goal:

•Run multiple mutually distrusting programs
simultaneously on shared hardware.

Application

•Cloud computing
•Secure banking

Example Trusted OS
• Hypervisors
• Trusty for Android
• OP-TEE for Arm

Control registers

!

Trusted Execution Environments (TEE)

7

Secure worldNon secure world

Untrusted App2

Normal OS

Rich execution
environment

Trusted App1

Trusted App2

Trusted execution
environment

Trusted OS

Page table
I/O devices

…pc IDT

Core 2 Core 1

Hardware

Shared memory

Goal:

•Run multiple mutually distrusting programs
simultaneously on shared hardware.

Application

•Cloud computing
•Secure banking

Example Trusted OS
• Hypervisors
• Trusty for Android
• OP-TEE for Arm

Control registers

!

Untrusted App1

Trusted Execution Environments (TEE)

8

Secure worldNon secure world

Untrusted App2

Normal OS

Rich execution
environment

Trusted App1

Trusted App2

Trusted execution
environment

Trusted OS

Page table
I/O devices

…pc IDT

Core 2 Core 1

Hardware

Shared memory

Goal:

•Run multiple mutually distrusting programs
simultaneously on shared hardware.

Application

•Cloud computing
•Secure banking

Example Trusted OS
• Hypervisors
• Trusty for Android
• OP-TEE for Arm

Control registers

Untrusted App1

!

Trusted Execution Environments (TEE)

9

Secure worldNon secure world

Untrusted App1

Untrusted App2

Normal OS

Rich execution
environment

Trusted App1

Trusted App2

Trusted OS

Trusted execution
environment

Page table
I/O devices

…pc IDT

Core 2 Core 1

Hardware

Shared memory

Goal:

•Run multiple mutually distrusting programs
simultaneously on shared hardware.

Application

•Cloud computing
•Secure banking

Example Trusted OS
• Hypervisors
• Trusty for Android
• OP-TEE for Arm

Control registers

!

Trusted Execution Environments (TEE)

10

Secure worldNon secure world

Untrusted App1

Untrusted App2

Normal OS

Rich execution
environment

Trusted App1

Trusted App2

Trusted OS

Trusted execution
environment

Page table
I/O devices

…pc IDT

Core 2 Core 1

Hardware

Shared memory

Subversion of a TEE means the attacker
takes full-control over the entire platform!

Goal:

•Run multiple mutually distrusting programs
simultaneously on shared hardware.

Application

•Cloud computing
•Secure banking

Example Trusted OS
• Hypervisors
• Trusty for Android
• OP-TEE for Arm

Control registers

!

TEE formal verification removes many of the vulnerabilities

11

➡ Full functional correctness

•Examples: Ironclad apps, sel4, mCertiKOS
•Advantages: Strong guarantee
•Disadvantages: Not developer friendly, Not update friendly, High
cost of verification (time and dollar!)

➡ Specific security properties in lieu of full-functional correctness

•Examples: XMHF, uberXMHF,
•Advantages: Development friendly, use source-level automated
verification tools,

•Disadvantages: lack of guarantees on the compiled code.

TEE formal verification removes many of the vulnerabilities

12

➡ Full functional correctness

• Examples: Ironclad apps, sel4, mCertiKOS
•Advantages: Strong guarantee
•Disadvantages: Not developer friendly, Not update friendly, High
cost of verification (time and dollar!)

➡ Specific security properties in lieu of full-functional correctness

•Examples: XMHF, uberXMHF,
•Advantages: Development friendly, use source-level automated
verification tools,

•Disadvantages: lack of guarantees on the compiled code.

TEE formal verification removes many of the vulnerabilities

13

➡ Full functional correctness

• Examples: Ironclad apps, sel4, mCertiKOS
• Advantages: Strong guarantee
•Disadvantages: Not developer friendly, Not update friendly, High
cost of verification (time and dollar!)

 Specific security properties in lieu of full-functional correctness

•Examples: XMHF, uberXMHF,
•Advantages: Development friendly, use source-level automated
verification tools,

•Disadvantages: lack of guarantees on the compiled code.

TEE formal verification removes many of the vulnerabilities

14

➡ Full functional correctness

• Examples: Ironclad apps, sel4, mCertiKOS
• Advantages: Strong guarantee
• Disadvantages: Not developer friendly, Not update friendly, High
cost of verification (time and dollar!)

➡ Specific security properties in lieu of full-functional correctness

•Examples: XMHF, uberXMHF,
•Advantages: Development friendly, use source-level automated
verification tools,

•Disadvantages: lack of guarantees on the compiled code.

TEE formal verification removes many of the vulnerabilities

15

➡ Full functional correctness

• Examples: Ironclad apps, sel4, mCertiKOS
• Advantages: Strong guarantee
• Disadvantages: Not developer friendly, Not update friendly, High
cost of verification (time and dollar!)

➡ Specific security properties in lieu of full-functional correctness

•Examples: XMHF, uberXMHF,
•Advantages: Development friendly, use source-level automated
verification tools,

•Disadvantages: lack of guarantees on the compiled code.

TEE formal verification removes many of the vulnerabilities

16

➡ Full functional correctness

• Examples: Ironclad apps, sel4, mCertiKOS
• Advantages: Strong guarantee
• Disadvantages: Not developer friendly, Not update friendly, High
cost of verification (time and dollar!)

➡ Specific security properties in lieu of full-functional correctness

• Examples: XMHF, uberXMHF, Security Microvisor, Contiki
•Advantages: Development friendly, use source-level automated
verification tools,

•Disadvantages: lack of guarantees on the compiled code.

[1] XMHF: S&P ‘2013. [2] uberXMHF: USENIX Security ’2016. [3] Security MIcrovisor: TDSCM ‘2019. [4] Contiki: DDECS ‘2015

TEE formal verification removes many of the vulnerabilities

17

➡ Full functional correctness

• Examples: Ironclad apps, sel4, mCertiKOS
• Advantages: Strong guarantee
• Disadvantages: Not developer friendly, Not update friendly, High
cost of verification (time and dollar!)

➡ Specific security properties in lieu of full-functional correctness

• Examples: XMHF, uberXMHF, Security Microvisor, Contiki
• Advantages: Development friendly, use source-level automated
verification tools
•Disadvantages: lack of guarantees on the compiled code.

[1] XMHF: S&P ‘2013. [2] uberXMHF: USENIX Security ’2016. [3] Security MIcrovisor: TDSCM ‘2019. [4] Contiki: DDECS ‘2015

TEE formal verification removes many of the vulnerabilities

18

➡ Full functional correctness

• Examples: Ironclad apps, sel4, mCertiKOS
• Advantages: Strong guarantee
• Disadvantages: Not developer friendly, Not update friendly, High
cost of verification (time and dollar!)

➡ Specific security properties in lieu of full-functional correctness

• Examples: XMHF, uberXMHF, Security Microvisor, Contiki
• Advantages: Development friendly, use source-level automated
verification tools

• Disadvantages: Weaker guarantee

[1] XMHF: S&P ‘2013. [2] uberXMHF: USENIX Security ’2016. [3] Security MIcrovisor: TDSCM ‘2019. [4] Contiki: DDECS ‘2015

• Examples: XMHF, uberXMHF, Security Microvisor, Contiki
• Advantages: Development friendly, use source-level automated
verification tools

• Disadvantages: Weaker guarantee
➡

19

Specific security properties in lieu of full-functional correctness

20

Specific security properties in lieu of full-functional correctness

Prior approaches lack guarantees on the compiled code

• Examples: XMHF, uberXMHF, Security Microvisor, Contiki
• Advantages: Development friendly, use source-level automated
verification tools

• Disadvantages: Weaker guarantee
➡

21

Specific security properties in lieu of full-functional correctness

Prior approaches lack guarantees on the compiled code

Our approach - Compartmentalization and certified compilers to aid
verification:

• Compartments as units for verification and compilation.
• Allows us to bring the security properties down to the compiled code.

• Examples: XMHF, uberXMHF, Security Microvisor, Contiki
• Advantages: Development friendly, use source-level automated
verification tools

• Disadvantages: Weaker guarantee
➡

Compartments schema

Secure worldNon secure world

Untrusted App1

Untrusted App2

Normal OS

Rich execution
environment

Trusted App1

Trusted App2

Trusted OS

Trusted execution
environment

pc IDT

Core 2 Core 1

Hardware

Shared memory

22

Control registers
Page table

Compartments schema

Secure world

Trusted App1

Trusted App2

Trusted OS

Trusted execution
environment

pc IDT

Core 2 Core 1

Hardware

Shared memory

22

Control registers
Page table

Compartments schema

Secure world

Trusted App1

Trusted App2

Trusted OS

Trusted execution
environment

Core 2 Core 1

Hardware

Shared memory

23

pc IDT
Control registers

Page table

Secure world

Trusted App1

Trusted App2

Trusted OS

Trusted execution
environment

Core 2 Core 1

Hardware

Shared memory

Compartments schema

24

pc IDT
Control registers

Page table

Secure world

Trusted App1

Trusted App2

Trusted OS

Trusted execution
environment

Core 2 Core 1

Hardware

Shared memory

F1

F2

Internal
functions

Public
interface

uberobject

Compartments schema

25

pc IDT
Control registers

Page table

F1

F2

Internal
functions

Public
interface

uberobject Exclusive
resources

Secure world

Trusted App1

Trusted App2

Trusted OS

Trusted execution
environment

Core 2 Core 1

Hardware

Shared memory

Compartments schema

26

Page table

pc IDT
Control registers

Page table

F1F1

F2

Internal
functions

Public
interface

uberobject Exclusive
resources

Secure world

Trusted App1

Trusted App2

Trusted OS

Trusted execution
environment

Core 2 Core 1

Hardware

Shared memory

Compartments schema

F2

27

Page table

pc IDT
Control registers

Page table

F1

F1

F2

Internal
functions

Public
interface

uberobject Exclusive
resources

Secure world

Trusted App1

Trusted App2

Trusted OS

Trusted execution
environment

Core 2 Core 1

Hardware

Shared memory

Public interface

Compartments schema

F2

27

Page table

pc IDT
Control registers

Page table

F1

F1

F2

Internal
functions

Public
interface

uberobject Exclusive
resources

Secure world

Trusted App1

Trusted App2

Trusted OS

Trusted execution
environment

Core 2 Core 1

Hardware

Shared memory PPre-condition

Public interface

Compartments schema

F2

27

Page table

pc IDT
Control registers

Page table

F1

F1

F2

Internal
functions

Public
interface

uberobject Exclusive
resources

Secure world

Trusted App1

Trusted App2

Trusted OS

Trusted execution
environment

Core 2 Core 1

Hardware

Shared memory P

Q

Pre-condition

Post-condition

Public interface

Compartments schema

F2

27

Page table

pc IDT
Control registers

Page table

F1

F1

F2

Internal
functions

Public
interface

uberobject Exclusive
resources

Secure world

Trusted App1

Trusted App2

Trusted OS

Trusted execution
environment

Core 2 Core 1

Hardware

Shared memory P

Q

Pre-condition

Post-condition

Public interface

Compartments schema

F2
27

Page table

pc IDT
Control registers

Page table

F1

F1

F2

Internal
functions

Public
interface

uberobject Exclusive
resources

Secure world

Trusted App1

Trusted App2

Trusted OS

Trusted execution
environment

Core 2 Core 1

Hardware

Shared memory P

Q

Pre-condition

Post-condition

P’

Q’

Public interface

Compartments schema

F2
27

Page table

pc IDT
Control registers

Page table

F1

F1

F2

Internal
functions

Public
interface

uberobject Exclusive
resources

Secure world

Trusted App1

Trusted App2

Trusted OS

Trusted execution
environment

Core 2 Core 1

Hardware

Shared memory P

Q

Pre-condition

Post-condition

P’

Q’

Public interface

Compartments schema

F2
27

Page table

pc IDT
Control registers

Page table

The last bit of page
table flag is set to 1.

Source-level
compartments

uberobject 1

F1
Internal
function

Public
interface

Compartments as units of verification and compilation

28

F2

The last bit of page table flag is set to 1
(after function return)

Source-level
compartments

uberobject 1

F1
Internal
function

Public
interface

G1

G2
Internal
function

Public
interface

uberobject 2

Compartments as units of verification and compilation

29

F2

The last bit of page table flag is set to 1
(after function return)

The secure monitor bit is 1
(after function return)

Sequential verification tool

Source-level
compartments

uberobject 1 uberobject 2

F1
Internal
function

Public
interface

G1

G2
Internal
function

Public
interface

Compartments as units of verification and compilation

30

Sequential verification tool

F2

The last bit of page table flag is set to 1
(after function return)

The secure monitor bit is 1
(after function return)

Compiler

Sequential verification tool

Source-level
compartments

uberobject 1 uberobject 2

F1
Internal
function

Public
interface

G1

G2
Internal
function

Public
interface

Compartments as units of verification and compilation

31

Sequential verification tool

Compiler

F2

The last bit of page table flag is set to 1
(after function return)

The secure monitor bit is 1
(after function return)

Compiler Compiler

F1

Public
interface

G1

G2
assembly

code
Public

interface

assembly
code

Sequential verification tool

Source-level
compartments

uberobject 1 uberobject 2

F1
Internal
function

Public
interface

G1

G2
Internal
function

Public
interface

Target-level
compartments

Compartments as units of verification and compilation

32

Sequential verification tool

F2

F2

The last bit of page table flag is set to 1
(after function return)

The secure monitor bit is 1
(after function return)

Core 2 Core 1

Compiler

G1

G2
assembly

code
Public

interface

Sequential verification tool

Source-level
compartments

uberobject 1 uberobject 2

F1
Internal
function

Public
interface

G1

G2
Internal
function

Public
interface

Target-level
compartments

Compartments as units of verification and compilation

33

Sequential verification tool

Compiler

F1

Public
interface

Target-level
compartments F2

assembly
code

F2

The last bit of page table flag is set to 1
(after function return)

The secure monitor bit is 1
(after function return)

Core 2 Core 1

Compiler

G1

G2
assembly

code
Public

interface

Both properties hold in
any concurrent execution

Sequential verification tool

Source-level
compartments

uberobject 1 uberobject 2

F1
Internal
function

Public
interface

F2

G1

G2
Internal
function

Public
interface

Target-level
compartments

Compartments as units of verification and compilation

34

Sequential verification tool

Compiler

F1

Public
interface

Target-level
compartments F2

assembly
code

The last bit of page table flag is set to 1
(after function return)

The secure monitor bit is 1
(after function return)

Core 2 Core 1

Compiler

G1

G2
assembly

code
Public

interface

Both properties hold in
any concurrent execution

Sequential verification tool

Source-level
compartments

uberobject 1 uberobject 2

F1
Internal
function

Public
interface

F2

G1

G2
Internal
function

Public
interface

Target-level
compartments

Compartments as units of verification and compilation

34

Sequential verification tool

Compiler

F1

Public
interface

Target-level
compartments F2

assembly
code

The last bit of page table flag is set to 1
(after function return)

The secure monitor bit is 1
(after function return)

Outline

• Concurrent execution - an example

• Verify source-level guarantees

• Preserve target-level guarantees

• Using off-the-shelf tools

• Case studies

• Related work

35

Concurrent execution
uberobject 1 uberobject 2

36

F1

Public
interface

G1

G2

Public
interface

Exclusive memory Exclusive memory
uobj1 . M uobj2 . M

Internal
functions

Internal
functions

F2

37

Concurrent execution

Core 1 Core 2

uberobject 1 uberobject 2

F1

Public
interface

G1

G2

Public
interface

Exclusive memory Exclusive memory
uobj1 . M uobj2 . M

Internal
functions

Internal
functions

F2

38

Core 2 Core 1

!"#$1 . F1

F1

Public
interface

G1

G2

Public
interface

!"#$2 . G2

Exclusive memory Exclusive memory
uobj1 . M uobj2 . M

Concurrent execution
uberobject 2uberobject 1

Internal
functions

Internal
functions

F2

38

Core 2 Core 1

!"#$1 . F1

F1

Public
interface

G1

G2

Public
interface

!"#$2 . G2

!"#$2 . G1

Call

Exclusive memory Exclusive memory
uobj1 . M uobj2 . M

Concurrent execution
uberobject 2uberobject 1

Internal
functions

Internal
functions

F2

38

Core 2 Core 1

!"#$1 . F1

F1

Public
interface

G1

G2

Public
interface

!"#$2 . G1

Call

Exclusive memory Exclusive memory
uobj1 . M uobj2 . M

Concurrent execution
uberobject 2uberobject 1

Internal
functions

Internal
functions

F2

38

Core 2 Core 1

!"#$1 . F1

F1

Public
interface

G1

G2

Public
interface

!"#$2 . G1

Exclusive memory Exclusive memory
uobj1 . M uobj2 . M

Concurrent execution
uberobject 2uberobject 1

Internal
functions

Internal
functions

F2

38

Core 2 Core 1

!"#$1 . F1

F1

Public
interface

G1

G2

Public
interface

!"#$2 . G1

Exclusive memory Exclusive memory
uobj1 . M uobj2 . M

Concurrent execution
uberobject 2uberobject 1

Internal
functions

Internal
functions

F2

38

Core 2 Core 1

!"#$1 . F1

F1

Public
interface

G1

G2

Public
interface

!"#$2 . G1

Exclusive memory Exclusive memory
uobj1 . M uobj2 . M

Concurrent execution
uberobject 2uberobject 1

Internal
functions

Internal
functions

F2

38

Core 2 Core 1

!"#$1 . F1

F1

Public
interface

G1

G2

Public
interface

Exclusive memory Exclusive memory
uobj1 . M uobj2 . M

Concurrent execution
uberobject 2uberobject 1

Internal
functions

Internal
functions

F2

38

Core 2 Core 1

!"#$1 . F1

F1

Public
interface

G1

G2

Public
interface

Exclusive memory Exclusive memory
uobj1 . M uobj2 . M

Concurrent execution
uberobject 2uberobject 1

Internal
functions

Internal
functions

F2

38

Core 2 Core 1

F1

Public
interface

G1

G2

Public
interface

Exclusive memory Exclusive memory
uobj1 . M uobj2 . M

Concurrent execution
uberobject 2uberobject 1

Internal
functions

Internal
functions

F2

39

Source-level guarantees via verification of each compartment
— Respecting the interface —

40

Requirement from a source-level compartment—Respecting the interface

!"#$1 . F1

Core 1

!"#$2 . G2

Core 1

41

Requirement from a source-level compartment—Respecting the interface

!"#$1 . F1

Core 1

!"#$2 . G2

Core 1

42

Guarantee: Any internal step of this uberobject can only read from/write to
its own exclusive memory.

Requirement from a source-level compartment—Respecting the interface

!"#$1 . F1

Core 1

!"#$2 . G2

Core 1

43

Requirement from a source-level compartment—Respecting the interface

!"#$1 . F1

Core 1

!"#$2 . G2

Core 1

Guarantee: Any internal step of this uberobject can only read from/write to
its own exclusive memory.

Rely: Any internal step of other uberobjects will never read from/write
to this uberobject’s exclusive memory.

44

σrest

σ

Internal
steps

δ
τ

uobj1 . M
σrest

δ

uobj1 . M
σ′

Requirement from a source-level compartment—Respecting the interface

!"#$1 . F1

Core 1

!"#$2 . G2

Core 1

Guarantee:

45

σrest

σ

Internal
steps

δ
τ

uobj1 . M
σrest

δ

uobj1 . M
σ′

Requirement from a source-level compartment—Respecting the interface

!"#$1 . F1 !"#$2 . G2

Guarantee:

σrest

σ
δ
τ

uobj1 . M
σ′ rest

σ′

δ

uobj1 . MConcurrent
steps

Rely:

46

Guarantee:

1. If this object calls other uberobject’s public interfaces,

it will satisfy their pre-condition.

2. When a function in this uberobject terminates,

its post-condition holds.

Verifying Pre and Post conditions—Respecting the interface

!"#$1 . F1 !"#$2 . G2

46

Guarantee:

1. If this object calls other uberobject’s public interfaces,

it will satisfy their pre-condition.

2. When a function in this uberobject terminates,

its post-condition holds.

Verifying Pre and Post conditions—Respecting the interface

!"#$1 . F1 !"#$2 . G2PPre-condition

46

Guarantee:

1. If this object calls other uberobject’s public interfaces,

it will satisfy their pre-condition.

2. When a function in this uberobject terminates,

its post-condition holds.

Verifying Pre and Post conditions—Respecting the interface

!"#$1 . F1 !"#$2 . G2P

Q

Pre-condition

Post-condition

46

Guarantee:

1. If this object calls other uberobject’s public interfaces,

it will satisfy their pre-condition.

2. When a function in this uberobject terminates,

its post-condition holds.

Verifying Pre and Post conditions—Respecting the interface

!"#$1 . F1 !"#$2 . G2P

Q

Pre-condition

Post-condition

P’Pre-condition

46

Guarantee:

1. If this object calls other uberobject’s public interfaces,

it will satisfy their pre-condition.

2. When a function in this uberobject terminates,

its post-condition holds.

Verifying Pre and Post conditions—Respecting the interface

!"#$1 . F1 !"#$2 . G2P

Q

Pre-condition

Post-condition

P’

Q’

Pre-condition

Post-condition

47

Rely:

1. If other objects call this uberobject’s public interface,

they will satisfy this uberobject’s pre-condition.

2. When functions in other uberobjects terminate,

their post-conditions hold.

Verifying Pre and Post conditions—Respecting the interface

!"#$1 . F1 !"#$2 . G2

47

Rely:

1. If other objects call this uberobject’s public interface,

they will satisfy this uberobject’s pre-condition.

2. When functions in other uberobjects terminate,

their post-conditions hold.

Verifying Pre and Post conditions—Respecting the interface

!"#$1 . F1 !"#$2 . G2PPre-condition

47

Rely:

1. If other objects call this uberobject’s public interface,

they will satisfy this uberobject’s pre-condition.

2. When functions in other uberobjects terminate,

their post-conditions hold.

Verifying Pre and Post conditions—Respecting the interface

!"#$1 . F1 !"#$2 . G2P

Q

Pre-condition

Post-condition

47

Rely:

1. If other objects call this uberobject’s public interface,

they will satisfy this uberobject’s pre-condition.

2. When functions in other uberobjects terminate,

their post-conditions hold.

Verifying Pre and Post conditions—Respecting the interface

!"#$1 . F1 !"#$2 . G2P

Q

Pre-condition

Post-condition

P’Pre-condition

47

Rely:

1. If other objects call this uberobject’s public interface,

they will satisfy this uberobject’s pre-condition.

2. When functions in other uberobjects terminate,

their post-conditions hold.

Verifying Pre and Post conditions—Respecting the interface

!"#$1 . F1 !"#$2 . G2P

Q

Pre-condition

Post-condition

P’

Q’

Pre-condition

Post-condition

48

If each uberobject in a system respects the interface, then:

• In any concurrent run, the pre-conditions upon the call and the
post-condition upon return hold for all functions.

• Any concurrent execution is data race free, i.e., no two threads
access a location concurrently when at least one of the accesses is a
write.

Verification result at the source-level:

49

Target-level guarantees via certified compilers
— Preserving the interface —

50

Requirement from a compiler—Preserving the interface

F1
Internal

functions
Public

interface

Exclusive memory
(Source-level)

uobj1 . Ms uobj1 . Mt

Source-level
uberobject

Target-level
uberobject

Exclusive memory
(Target-level)

50

F2

F1
assembly

code
Public

interface

F2Compiler

51

• Memory transformation function:
•Well-defined: Total and injective on heap locations, and map source-level

heap locations to target-level heap locations.

• Code transformation function:
•Interface-preserving: If an uobj respects the interface at the source level,

then its compiled version respects the interface at the target level.

F1
Internal

functions
Public

interface

Exclusive memory
(Source-level)

uobj1 . Ms uobj1 . Mt

Source-level
uberobject

Target-level
uberobject

Exclusive memory
(Target-level)

51

F1
assembly

code
Public

interface

F2F2

Requirement from a compiler—Preserving the interface

Compiler

52

• Memory transformation function:
•Well-defined: Total and injective on heap locations, and map source-level

heap locations to target-level heap locations.

• Code transformation function:
•Interface-preserving: If an uobj respects the interface at the source level,

then its compiled version respects the interface at the target level.

F1
Internal

functions
Public

interface

Exclusive memory
(Source-level)

uobj1 . Ms uobj1 . Mt

Source-level
uberobject

Target-level
uberobject

Exclusive memory
(Target-level)

F1
assembly

code
Public

interface

F2F2

Requirement from a compiler—Preserving the interface

Compiler

52

• Memory transformation function:
•Well-defined: Total and injective on heap locations, and map source-level

heap locations to target-level heap locations.

• Code transformation function:
•Interface-preserving: If an uobj respects the interface at the source level,

then its compiled version respects the interface at the target level.

F1
Internal

functions
Public

interface

Exclusive memory
(Source-level)

uobj1 . Ms uobj1 . Mt

Source-level
uberobject

Target-level
uberobject

Exclusive memory
(Target-level)

F1
assembly

code
Public

interface

F2F2

Requirement from a compiler—Preserving the interface

Compiler

53

• Memory transformation function:
•Well-defined: Total and injective on heap locations, and map source-level

heap locations to target-level heap locations.

• Code transformation function:
•Interface-preserving: If an uobj respects the interface at the source level,

then its compiled version respects the interface at the target level.

F1
Internal

functions
Public

interface

Exclusive memory
(Source-level)

uobj1 . Ms uobj1 . Mt

Source-level
uberobject

Target-level
uberobject

Exclusive memory
(Target-level)

F1
assembly

code
Public

interface

F2F2

Requirement from a compiler—Preserving the interface

Compiler

53

• Memory transformation function:
•Well-defined: Total and injective on heap locations, and map source-level

heap locations to target-level heap locations.

• Code transformation function:
•Interface-preserving: If an uobj respects the interface at the source level,

then its compiled version respects the interface at the target level.

F1
Internal

functions
Public

interface

Exclusive memory
(Source-level)

uobj1 . Ms uobj1 . Mt

Source-level
uberobject

Target-level
uberobject

Exclusive memory
(Target-level)

F1
assembly

code
Public

interface

F2F2

Requirement from a compiler—Preserving the interface

Compiler

54

If each source-level uberobject in a system respects the interface and all
compilers are interface-preserving, then

In any concurrent run at the target-level, the security properties hold:

 All functions satisfy their post-conditions upon return.

Target-level guarantees via interface preserving compilers

55

CAS-Compcert is an interface-preserving compiler.
(PLDI’2019)

Core 2 Core 1

Source-level
compartments

F1
Internal

functions:
C+CASM

Public
interface

G1

G2
Public

interface

Internal
functions:
C+CASM

Sequential verification tool
(Frama-C)

Sequential verification tool
(Frama-C)

CASCompCert CASCompCert

G1

G2
Public

interface

assembly
code

Target-level
compartments

uberobject 1 uberobject 2

56

F2

F1

assembly
codePublic

interface

F2

Both properties hold in
any concurrent execution

Our proposed tool-chain and its assumptions

The last bit of page table flag is set to 1. The secure monitor bit is 1.

Core 2 Core 1

Source-level
compartments

Internal
functions:
C+CASM

Public
interface

F1 G1

G2
Public

interface

Internal
functions:
C+CASM

Sequential verification tool
(Frama-C)

Sequential verification tool
(Frama-C)

CASCompCert CASCompCert

G1

G2
Public

interface

assembly
code

Target-level
compartments

uberobject 1 uberobject 2

A1: DSL semantics accurately
reflect the assembly semantics

57

F2

F1

assembly
codePublic

interface

F2

Both properties hold in
any concurrent execution

Our proposed tool-chain and its assumptions

The last bit of page table flag is set to 1. The secure monitor bit is 1.

Core 2 Core 1

Source-level
compartments

Internal
functions:
C+CASM

Public
interface

F1 G1

G2
Public

interface

Internal
functions:
C+CASM

Sequential verification tool
(Frama-C)

Sequential verification tool
(Frama-C)

CASCompCert CASCompCert

G1

G2
Public

interface

assembly
code

Target-level
compartments

uberobject 1 uberobject 2

A1: DSL semantics accurately
reflect the assembly semantics

A2: C verifier’s logic is sound, it
only verifies correct predicates

58

F2

F1

assembly
codePublic

interface

F2

Both properties hold in
any concurrent execution

Our proposed tool-chain and its assumptions

The last bit of page table flag is set to 1. The secure monitor bit is 1.

Core 2 Core 1

Source-level
compartments

Internal
functions:
C+CASM

Public
interface

F1 G1

G2
Public

interface

Internal
functions:
C+CASM

Sequential verification tool
(Frama-C)

Sequential verification tool
(Frama-C)

CASCompCert CASCompCert

F1

assembly
codePublic

interface

F2

G1

G2
Public

interface

assembly
code

Target-level
compartments

uberobject 1 uberobject 2

A1: DSL semantics accurately
reflect the assembly semantics

A2: C verifier’s logic is sound, it
only verifies correct predicates

A3: C semantics
used by the C
analysis tool and
the CASCompCert
compiler agree.

59

F2

Both properties hold in
any concurrent execution

Our proposed tool-chain and its assumptions

The last bit of page table flag is set to 1. The secure monitor bit is 1.

Case studies

60

➡ UberXMHF TEE: Open source micrphypervisor TEE (x86 32-bit hardware)

• An execution environment for an untrusted OS

• Verify the security property of guest memory separation: page table permissions bit is
set correctly.

➡ Trustzone TEE: A light-weight open-source Trustzone TEE (ARM 32-bit)

• An execution environment for a simple guest OS running at the highest privilege level

• Verify correct setup to get guest memory separation: the secure monitor mode is set
correctly.

Related work

➡Verified TEEs
• Sel4 - S&P’2013

• CertiKOS - USENIX OSDI’2016

• XMHF - S&P ‘2013

• uberXMHF - USENIX Security ’2016

• Security MIcrovisor - TDSCM ‘2019

• Contiki - DDECS ‘2015

➡Certified compilers:
• CASCompCert - PLDI’2019 , …

➡Compartmentalization:
• Secure Compartmentalizing compilation (SCC) - CSF’2016

• Robustly Safe Compartmentalizing Compilation (RSCC) - CCS’2018

• CHERI compartmentalization - SP ‘2015

61

Conclusion

➡ Summary:

• Compartmentalization for implementing TEEs enables us to:

• achieve compositional verification results at the source level, and

• leverage certified compilers to preserve the guarantees at the target level.

• Two case studies

➡ What else is in the paper?

• DSL semantics for assembly

• Interrupts

• Noninterference

62

Core 2 Core 1

Source-level
compartments

Internal
functions:
C+CASM

Public
interface

F1 G1

G2
Public

interface

Internal
functions:
C+CASM

Sequential verification tool
(Frama-C)

Sequential verification tool
(Frama-C)

CASCompCert CASCompCert

F1

assembly
codePublic

interface

F2

G1

G2
Public

interface

assembly
code

Target-level
compartments

uberobject 1 uberobject 2

A1: DSL semantics accurately
reflect the assembly semantics

A2: C verifier’s logic is sound, it
only verifies correct predicates

A3: C semantics
used by the C
analysis tool and
the CASCompCert
compiler agree.

63

F2

Both properties hold in
any concurrent execution

Our proposed tool-chain and its assumptions
The last bit of page table flag is set to 1

(after function return)
The secure monitor bit is 1

(after function return)

