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I. INTRODUCTION

AS computer hardware technology advances, both the
number and the computational capabilities of processors

used in real-time systems are increasing. To take advantages
of the increased physical resource’s capacity, multiple groups
of real-time applications are deployed on the same physical
platform. However, since each group of real-time applications
may have different time granularity [1], when multiple groups
of applications share the same processors, traditional real-
time system models and theoretic results may not be sufficient
or even applicable to guarantee that each group of real-time
applications will not have time interference among each other
and that they will satisfy their timing requirements.

In order to study the issues of scheduling multiple groups
of real-time applications on the same physical resources, the
concept of virtual real-time resources is proposed [1]. Virtual
real-time resources are an abstraction of physical resources
where the physical resources are shared by real-time applica-
tion groups [1]. With the concept of virtual real-time resources,
each group of real-time applications has its own isolated
and independent virtual resource, hence avoiding interference
among different groups of real-time applications. However,
from an application perspective, virtual real-time resources are
not continuously available to the application. Instead, virtual
resources are periodic, i.e., they periodically provide certain
amount of processing capability to the applications [1], [2],
[3], [4], [5], [6], [7].

The study of periodic resources can be traced back to
1999 when the concept of periodic resource was first formally
defined [4]. It has recently drawn more attention in the commu-
nity [1], [7], [8], [9], [10], [11], [12], [13], [14]. However, until
now, most of the studies about periodic resources focus on
task set schedulability analysis on a single periodic resource.
There has not been much work, if any, in the literature
dealing with the task assignment problem on multiple periodic
resources. In this paper, we study the task assignment problem
in the context of assigning multiple periodic tasks to multiple
periodic resources. The main goal is to decide on a task
assignment strategy so that the resource capacity provided by
every periodic resource is maximally utilized.
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To achieve the goal, we first study under what relationship
between the task period and resource period can the resource
capacity be fully utilized. Intuitively, the more harmonically
related the tasks and the periodic resources are, the better
resource utilization rate we can achieve. We formally prove
that, in fact, if a harmonic task set is also harmonic with
the resource, the resource capacity can be fully (100%) uti-
lized under the RM (rate-monotonic) scheduling algorithm.
Second, based on the harmonicity property, we present the
Best-Harmonically-Fit (BHF) task assignment algorithm to
assign a periodic task set to multiple periodic resources. We
then empirically evaluate the BHF algorithm’s performance
by comparing it with commonly used multiprocessor task
assignment approaches in the literature, i.e., the Best-Fit, the
First-Fit, and the Worst-Fit approaches [15], [16], [17]. We
also evaluate the BHF algorithm by comparing it with the
optimal task assignment found through exhaustive search for
a small-sized task set and resource set.

The rest of the paper is organized as follow: Section II
discusses related work. Section III defines system models,
presents preliminary results, and formulates the problem we
are to address. Section IV presents the harmonic utilization
bound for a single periodic resource and task set harmonic
transformation with respect to a periodic resource. In Sec-
tion V, we introduce the Best-Harmonically-Fit task assign-
ment algorithm. Section VI discusses the experimental results.
We conclude the work in Section VII.

II. RELATED WORK

Since the rate-monotonic (RM) and the earliest deadline
first (EDF) scheduling algorithms were first analyzed by Liu
and Layland in 1973 [18], the real-time scheduling problem
has been studied extensively. To this day, the rate-monotonic
scheduling algorithm is still considered the most significant
fixed-priority scheduling algorithm for scheduling periodic
tasks on a single dedicated resource. The RM utilization bound
for a preemptive system is N(21/N − 1) with its limit of
69.3% on a single dedicated resource, where N is the number
of tasks [18]. Mossé et al. [19], [20] proposed the R-Bound
based on the Liu and Layland bound. The R-Bound takes the
difference of task periods into consideration and tightens the
utilization bound to (N−1)(r1/(N−1)−1)+2/r−1 with limit
ln r+2/r−1, where r = Tmax/Tmin and 1 ≤ r < 2. Another
improvement on the RM bound was made by Han et al. [21].
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They proved that the utilization bound can reach 100% with
the RM scheduling algorithm if the task set is harmonic.

Another major research area in the real-time community is
scheduling tasks on multiprocessors. The goal of multipro-
cessor scheduling is to schedule as many tasks as possible
(from the total task utilization perspective) on a given num-
ber of processors while still guaranteeing task set deadline
satisfication [22], [17], [23]. However, as stated by Liu and
Layland in [18], scheduling periodic tasks on multiprocessors
is much harder than on a single processor. The utilization
bound for a multiprocessor system is much lower than for
a single processor. Many algorithms have been proposed to
improve the utilization bound for multiprocessors. However,
it has been proven that the optimal utilization bound for a
multiprocessor scheduling algorithm is only (M + 1)/2 [22],
where M is the number of processors. Recently, researchers
have improved the utilization bound for multiprocessors under
certain conditions. Wang et al. proved that the utilization
bound for multiprocessors can reach Liu and Layland bound
for a single processor if tasks can be split [17]. Fan and Quan
proposed a harmonic-aware scheduling approach to improve
schedulability on multiprocessors [23].

However, the literature mentioned above is based on the
assumption that resources are dedicated resources, i.e., they
are constantly available to application tasks. When multiple
groups of real-time applications share the same physical re-
sources, the assumption that resources are constantly available
to the application becomes invalid. Hence, the concept of
virtual real-time resources is proposed to handle such scenario.
A virtual resource is often represented as γ = (Π,Θ), where
Π is the virtual resource period and Θ is the processing time
available to applications [1], [2], [3], [4], [7].

Shirero et al. [4] first defined periodic resources and pro-
posed a real-time round robin scheduling algorithm in 1999.
They also introduced the concept of resource regularity. Based
on resource regularity, they proposed schedulability bounds
for periodic tasks on a single periodic resource. Mok et
al. [7], [24] extended Shirero’s work and proposed a more
comprehensive schedulability analysis for periodic resources
under both EDF and RM scheduling algorithms. However,
both Shirero’s and Mok’s periodic resource models have a
constraint that either the resource available pattern within
each period or the resource regularity is known and does not
change at run-time. Shin et al. later removed the constraint on
the periodic resource model and provided the schedulability
analysis under a relaxed model where resource pattern can be
arbitrary and can change at run-time. They give schedulability
bounds under the relaxed model for both EDF and RM [8],
[9], [10], [11].

Hua et al. [14] recently studied how multiple periodic
resources may be integrated into an equivalent single periodic
resource so that existing real-time scheduling theorems on a
single periodic resource can be applied. They further extended
schedulability tests of periodic tasks on a single periodic
resource from the continuous time domain given in [11] to
a discrete time domain so that the schedulability tests given
in [11] can be applied in practice.

However, as of today, much of the work in the literature

has been on schedulability analysis of a task set on a single
periodic resource. To our best knowledge, there is no prior
work studying the task assignment problem on multiple peri-
odic resources. In this paper, we are to address the problem:
for a given set of periodic tasks and a given set of periodic
resources, if the task set is not schedulable on any single
periodic resource in the resource pool, how to assign tasks to
the available periodic resources so that the utilization rate of
used periodic resources is maximized. Though the problem we
are to address is similar to the work of assigning a periodic task
set to processors so as to minimize the number of processors
used [25], it is in a different context where resources are not
dedicated processors, but rather they are of periodic nature.

III. PROBLEM FORMULATION

A. Models and Definitions

Task Model
The task model considered in this paper is similar to

the one defined by Liu and Layland [18]. A task set Γ =
{τ1, τ2, . . . , τN} has N independent periodic tasks that are all
released at time 0. Each task τi ∈ Γ is a 2-tuple (Ti, Ci), where
Ti is the inter-arrival time between any two consecutive jobs
of τi (also called period), and Ci is the worst-case execution
time. We further assume that a task period is an integer,
i.e., Ti ∈ N+. The utilization of each task τi is defined as
Uτi = Ci/Ti, and the utilization of the task set Γ is denoted
as UΓ, where

UΓ =
∑
τi∈Γ

Uτi . (1)

We use Umax and Tmin to denote the maximum task utilization
and the minimum task period of the task set Γ, respectively,
i.e.,

Umax = max{Uτi |∀τi ∈ Γ}
Tmin = min{Ti|∀τi ∈ Γ}.

Resource Model
For a resource model, we adopt the one defined by Shin [8].

A resource set R = {γ1, γ2, . . . , γM} consists of M periodic
resources that are all available at time 0. Each resource γj ∈
R is characterized by a 2-tuple (Πj ,Θj), where Πj is the
resource period, and Θj is the allocation time. We further
assume that both a resource period and a resource allocation
time are integers, i.e., Πj ,Θj ∈ N+, and satisfy 0 < Θj ≤ Πj .
The capacity of each resource γj is defined as Cγj = Θj/Πj ,
and the capacity of a resource set R is denoted as CR, where

CR =
∑
γj∈R

Cγj . (2)

We use τ 7→ γ to denote that task τ is assigned to periodic
resource γ, and say that γ is the host resource for task τ . For
a resource γ and a task set Γ, we use Γγ ⊆ Γ to denote the
task subset containing all tasks assigned to resource γ, i.e.,

Γγ = {τi|τi ∈ Γ ∧ τi 7→ γ}. (3)
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Similarly, the number of tasks in Γγ is denoted as Nγ , and
the utilization of Γγ is denoted as

UΓγ =
∑
τi∈Γγ

Uτi . (4)

A periodic resource γ is called an unused resource if there
are no tasks assigned to it; otherwise it is called a used
resource. For a resource set R, we use Rused ⊆ R to denote
the resource subset containing all used resources; Mused is the
size of Rused.

Definition 1. [Resource Utilization Rate (URγ)] The utiliza-
tion rate of a periodic resource γ is defined as the capacity
percentage used by tasks assigned to γ, i.e.,

URγ =

{
UΓγ

Cγ =

∑
τi∈Γγ

Uτi
Θ/Π if Γγ 6= ∅

0 if Γγ = ∅
(5)

�

Definition 2. [Resource Set Utilization Rate (URR)] The
utilization rate of a resource set R is defined as the total
capacity percentage used by tasks assigned to R, i.e.,

URR =

∑
γj∈Rused

UΓγj∑
γj∈Rused

Cγj
. (6)

�

B. Preliminary Results

For self-containment, we introduce a few terms and schedu-
lability analysis results from [11], and give our corollaries
derived from the theorems in [11].

Theorem 1. [11] Given a task set Γ and a single periodic
resource γ = (Π,Θ), if ∀i, 1 ≤ i ≤ N,Ti ≥ 2Π−Θ, the task
utilization bound under RM scheduling is

UBγ = Cγ ·Nγ

[(
2k + 2(1− Cγ)

k + 2(1− Cγ)

)1/Nγ

− 1

]
(7)

where k = max{k ∈ N0|(k + 1)Π−Θ < Tmin}. �

From Theorem 1, we can derive the following corollary.

Corollary 1. Given a task τ = (T,C) and a single periodic
resource γ = (Π,Θ) with condition T ≥ 2Π−Θ, the task τ
is guaranteed to be schedulable on resource γ with the RM
scheduling policy if

Cγ ·
k

k + 2(1− Cγ)
≥ Uτ (8)

where k = max{k ∈ N0|(k + 1)Π−Θ < T}. �

Proof. Task τ is guaranteed to be schedulable on resource γ
under RM scheduling if

UBγ ≥ Uτ
Since there is only one task to be scheduled on resource γ,

the utilization bound of γ can be obtained by substituting Nγ
in formula (7) with 1. Hence, we have

UBγ = Cγ ·
k

k + 2(1− Cγ)

where k = max{k ∈ N0|(k + 1)Π−Θ < T}.
�

Definition 3. [Abstraction Overhead (O)][11] For a single
periodic resource γ and a task set Γ, the abstraction overhead
is defined as

O =
Cγ − UΓ

UΓ
(9)

Theorem 2. [11] Given a single periodic resource γ and a
task set Γ which is schedulable on γ under RM, the lower
abstraction overhead bound is 0.443 when k → +∞, i.e.,

OB =
Cγ − UΓ

UΓ
≥ 44.3% (10)

where k = max{k ∈ N0|(k + 1)Π−Θ < Tmin}.
�

From Theorem 2, we can derive the following corollary:

Corollary 2. Given a single periodic resource γ and a task set
Γ which is schedulable on γ with RM, the resource utilization
rate up bound of γ is 0.693 when k → +∞, i.e.,

URγ ≤ 69.3% (11)

where k = max{k ∈ N0|(k + 1)Π−Θ < Tmin}. �

Proof. According to Theorem 2, we have

Cγ ≥ 1.443UΓ (12)

Since Γ is schedulable on γ with RM, by Definition 1, we
have

URγ =
UΓγ

Cγ
=
UΓ

Cγ
≤ 69.3% (13)

�

To achieve the above utilization rate of 69.3%, a pre-
condition is that k → +∞, which implies that the period
of the resource is infinitely small. When the resource period
becomes infinitely small, the periodic resource approaches the
continuous resource. In this case, the utilization bound for
a single periodic resource is actually the Liu and Layland
RM utilization bound for continuous resources [18]. However,
since a resource with an infinitely small period is difficult to
implement in reality, Shin’s periodic resource utilization bound
is hardly achievable in practice.

C. Problem Formulation

The problem to be addressed in this paper is that under
the condition that a given periodic task set is scheduable
on a given set of periodic resources, how to assign the task
set to the periodic resource set so that the used resource set
utilization rate is maximized and all tasks are schedulable on
their assigned resources. It is formally defined as follows:
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Given a task set Γ = {τ1, τ2, . . . , τN} where τi = (Ti, Ci),
and a resource set R = {γ1, γ2, . . . , γM} where γj =
(Πj ,Θj), assign Γ to R such that:

Object: max URR

Subject to
Constraint 1: ∀j 1 ≤ j ≤M, Cγj · k

k+2(1−Cγj ) ≥ Umax

Constraint 2: M ≥ N
Constraint 3: ∀j 1 ≤ j ≤M, 2Πj −Θj ≤ Tmin

where k = max{k ∈ N0|(k + 1)Πj −Θj < Tmin}.
Constraint 1 guarantees that each resource is large enough

to schedule any single task in the given task set (Corollary 1).
Constraint 2 together with Constraint 1 ensure that the task
set is schedulable on the resource set without task splitting.
Constraint 3 is the pre-condition of Constraint 1 (needed by
Theorem 1).

We take two steps to address the problem. First, we ana-
lyze the periodic resource harmonic utilization bound under
the RM scheduling policy, and present task set harmonic
transformation with respect to a periodic resource (Section
IV). Second, we present the Best-Harmonically-Fit (BHF)
algorithm (Section V) which assigns tasks to resources with
the goal of maximizing the resource set utilization rate while
guaranteeing task set schedulability.

IV. HARMONIC PROPERTY

A. Utilization Bound for Harmonically Related Task Set and
Periodic Resource

If a harmonic task set is also harmonic with a given periodic
resource, then the schedulable utilization bound of the task set
can be as high as the resource capacity. To prove this property,
we first give a lemma to show that if one task is harmonic with
a given periodic resource, then the task can fully utilize the
resource. We then prove a theorem stating that if a harmonic
task set and a periodic resource are harmonic, the resource can
be fully utilized by the task set under RM scheduling.

Lemma 1. Given a task τ = (T,C) and a periodic resource
γ = (Π,Θ), if the task and the resource are harmonic, i.e.,
T = K ·Π (K ∈ N+), then task τ is schedulable on γ if and
only if C

T ≤
Θ
Π . �

Proof. Since T = K · Π (K ∈ N+) and γ and τ all start
at time 0, each task period T contains K complete resource
periods. In other words, in each period, task τ obtains K ·Θ
allocation time from resource γ. Hence, to guarantee that in
each period of τ there is at least C allocation time, if and only
if the following condition holds: K · Θ ≥ C, which means
C
T ≤

K·Θ
T , i.e. CT ≤

Θ
Π . �

Lemma 2. Given a task set Γ with two harmonic tasks τ1 =
(T,C1) and τ2 = (K · T,C2), and a periodic resource γ =
(Π,Θ) which is also harmonic with the task set Γ. Let task
τ = (T,C1 + C2

K ), if task τ is schedulable on resource γ, then
the task set Γ is also schedulable on γ with RM scheduling.
�

Proof. Since τ is harmonic with γ and is schedulable, accord-
ing to Lemma 1, we have C1+C2/K

T ≤ Θ
Π .

In task set Γ, based on RM, τ1 has the highest priority. In
addition, since τ1 and τ have the same period, both release at
time 0, and C1 < C1 + C2

K , if τ is schedulable, it guarantees
that τ1 is schedulable.

Since τ2 also releases at time 0, within each period of τ2,
there are K instances of τ1. The total resource demand is
C2 + KC1. Furthermore, within each period of τ2, there are
also K instances of τ , with total execution time of K× (C1 +
C2

K ) = KC1 + C2. As τ is schedulable on resource γ, τ2 is
also schedulable on resource γ. �

Based on Lemma 1 and Lemma 2, we have the following
theorem.

Theorem 3. Given a harmonic task set Γ = {τ1, τ2, . . . , τN}
with period Ti = T1 · pi−1(p ∈ N+) and a periodic resource
γ = (Π,Θ) which is harmonic with the task set Γ, i.e., T1 =
K · Π(K ∈ N+), the harmonic utilization bound under RM
scheduling is

HUBγ =
Θ

Π
(14)

�

Proof. To prove Theorem 3 is equivalent to proving that
the task set Γ is schedulable on the resource γ under RM
scheduling if

N∑
i=1

Ci
Ti
≤ Θ

Π
(15)

holds.
We use induction on the number of tasks (n) in the task set

to prove the theorem.

• Base case n = 1, based on Lemma 1, the theorem holds.
• Assume when n = N , if

∑n
i=1

Ci
Ti
≤ Θ

Π , the task set is
schedulable on γ with RM scheduling.

• We prove that if n = N + 1 and
∑N+1
i=1

Ci
Ti
≤ Θ

Π , then
the task set is schedulable on the resource by RM.
Without loss of generality, we assume the task set is
Γ = {τ1, τ2, . . . , τN−1, τN , τN+1} and Ti ≤ Ti+1,∀i ∈
{1, 2, ..., N}. Since Γ is harmonic, TN+1

TN
= p where

p ∈ N+, we replace τN and τN+1 by a single task
τ = (TN , CN + CN+1

p ) and denote the new task set
as Γ∗ = {τ1, τ2, ..., τN−1, τ}. The utilization of UΓ∗ is
calculated as:

UΓ∗ =

N−1∑
i=1

Ci
Ti

+
CN + CN+1

p

TN
=

N+1∑
i=1

Ci
Ti

= UΓ ≤
Θ

Π

Hence, for Γ∗, its task number n = N and its total
utilization UΓ∗ ≤ Θ

Π . Then, according to the induc-
tion assumption, Γ∗ is schedulable, which indicates τ
along with the task set {τ1, ..., τN−1} is schedulable by
RM. According to Lemma 2, τN and τN+1 are also
schedulable if τ is schedulable. Hence, the task set Γ
is schedulable by RM.

�
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B. Task Set Harmonic Transformation with Respect to Peri-
odic Resource

As discussed in the previous sub-section, the harmonic
relation among a set of tasks and a resource brings the
advantage that the resource capacity can be fully utilized by
the task set. However, in the real world this criteria, i.e., tasks
and resource are pairwise harmonic, is difficult to achieve. In
order to have the advantage brought by a harmonic relation,
we need to transform an arbitrary task set into a task set that
meets the criteria.

Han et al. [21] developed the DCT (Distance-Constrained
Tasks) algorithm that can transform an arbitrary task set
into a harmonic task set. In particular, given a task set
Γ = {τ1, τ2, . . . , τN}, if we use task τ1’s period T1 as the base
for transformation, the harmonic periods of the other tasks
transformed by the DCT Algorithm are

T ′i =

{
T1 · bTi/T1c if Ti ≥ T1

T1

dT1/Tie if Ti < T1
(16)

where 2 ≤ i ≤ N .
Han et al. [21] also proved that such transformation does

not change the schedulability of the given task set as shown
in the following theorem.

Theorem 4. [21] Given a task set Γ, if there exists another
task set Γ′ such that T ′i ≤ Ti and C ′i = Ci, for 1 ≤ i ≤ N ,
and Γ′ is schedulable by RM, then Γ is also schedulable by
RM. �

For the problem we are to address (defined in Section III-C),
the smallest task period in the task set and the resource must
satisfy Constraint 3, i.e., 2Π−Θ ≤ Tmin, which implies that
Π < Tmin holds. Based on (16) and Constraint 3, we give the
definition of a task’s harmonic transformation with respect to
a resource.

Definition 4. [Task Harmonic Transformation (τ ′)] Given
a task τ = (T,C) and a periodic resource γ = (Π,Θ), let
τ ′ = (T ′, C) where the period is

T ′ = Π · bT/Πc (17)

Then τ ′ is called task τ ’s harmonic transformation with
respect to resource γ. �

According to Theorem 3, tasks and the resource must be
pairwise harmonic. When assigning more than one task to
the same resource, the harmonic transformation must be not
only harmonic with respect to the resource period, but also
harmonic with respect to the periods of the tasks that are
already assigned to the resource. We use a recursive definition
to define a task set’s harmonic transformation with respect to
a given resource.

Definition 5. [Task Set Harmonic Transformation (Γ′)]
Given a task set Γ = {τ1, τ2, . . . , τN} and a periodic resource
γ = (Π,Θ),

Γ′ = {τ ′i = (T ′i , Ci)|∀i 1 ≤ i ≤ N}

is task set Γ’s harmonic transformation with respect to re-
source γ, where

T ′1 = Π · bT1/Πc (18)

T ′i =

{
T ′i−1 · bTi/T ′i−1c if Ti ≥ T ′i−1

T ′i−1

dT ′i−1/Tie
if Ti < T ′i−1

, 2 ≤ i ≤ N

(19)

�

In Definition 5, (18) guarantees the first task is harmonic
with the periodic resource, and (19) guarantees that tasks,
except the first one, are all harmonic with prior tasks assigned
to the resource. We use an example to illustrate the task set
harmonic transformation.

Example 1. Given a task set Γ = {τ1 = (13, 2), τ2 =
(25, 4), τ3 = (20, 3)}, and a periodic resource γ = (6, 4),
we are to compute Γ’s harmonic transformation with respect
to γ according to Definition 5.

The period of τ1’s harmonic transformation τ ′1 is calculated
by (18), so τ ′1 = (12, 2). Then use (19) to calculate T ′2 (=
12 · b25/12c = 24) and T ′3 (= 24

d24/20e = 12), and obtain
τ ′2 = (24, 4) and τ ′3 = (12, 3).

The harmonic transformation of Γ with respect to γ is Γ′ =
{(12, 2), (24, 4), (12, 3)}. After the transformation, tasks in Γ′

and the resource γ are pairwise harmonic. �

Theorem 5. Given a periodic resource γ = (Π,Θ), a task set
Γ, and its harmonic transformation Γ′ with respect to γ, the
task set Γ is schedulable on resource γ under RM scheduling
if UΓ′ ≤ Θ/Π. �

Proof. Definition 5 indicates T ′i ≤ Ti and C ′i = Ci, for 1 ≤
i ≤ N . Based on Definition 5 and Theorem 4, under RM
scheduling, if Γ′ is schedulable, then Γ is also schedulable.

According to Theorem 3, UΓ′ ≤ Θ/Π indicates that Γ′ is
schedulable on γ under RM scheduling. Hence, the task set Γ
is schedulable on resource γ by RM. �

Definition 6. [Task and Resource Harmonicity (H(τ, γ))]
Given a task τ = (T,C) and a periodic resource γ = (Π,Θ),
assume the task’s harmonic transformation with respect to the
resource is τ ′ = (T ′, C). The harmonicity between task τ and
resource γ is defined as

H(τ, γ) =
T ′

T
. (20)

�

Definition 7. [Task Set and Resource Set Harmonicity
(H(Γ,R))] Given a task set Γ = {τ1, τ2, . . . , τN} and a
periodic resource set R = {γ1, γ2, . . . , γM}, the harmonicity
between task set Γ and resource setR is defined as the average
value of each task’s harmonicity with every resource, i.e.,

H(Γ,R) =

∑
τi∈Γ,γj∈R

H(τi, γj)

N ·M
. (21)

�
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Lemma 3. The harmonicity H(τ, γ) of a task τ = (T,C) and
a periodic resource γ = (Π,Θ) is in the range (0.5, 1], i.e.,
0.5 < H(τ, γ) ≤ 1. �

Proof. By the harmonic transformation definition and har-
monicity definition, we have T ′ ≤ T , hence H(τ, γ) ≤ 1.

We prove H(τ, γ) > 0.5 by contradiction. Since the period
of a task is a positive number, the harmonicity must be larger
than 0. Assume to the contrary, we have 0 < H(τ, γ) ≤ 0.5.
According to the harmonic transformation definition, assume
T ′ = K · Π, where K ∈ N+. By the harmonicity definition,
we have the following inequality

H(τ, γ) =
T ′

T
=
K ·Π
T
≤ 0.5 (22)

hence

T ≥ 2K ·Π (23)

By Definition 4 and (23), the period of τ ′ should be at least
2K · Π, which contradicts the assumption that T ′ = K · Π.
Hence, the assumption 0 < H(τ, γ) ≤ 0.5 does not hold, i.e.,
H(τ, γ) > 0.5.

Therefore, we prove that 0.5 < H(τ, γ) ≤ 1. �

For a task τ , the utilization of its harmonic transformation
is

Uτ ′ = C/T ′ = Uτ/H(τ, γ) (24)

and the utilization increment is

∆Uτ = Uτ ′ − Uτ = (
1

H(τ, γ)
− 1) · Uτ (25)

which defines the utilization difference between a task and its
harmonic transformation.

Lemma 4. Given a task τ and a periodic resource γ, the
utilization increment caused by task harmonic transformation
is less than 100%, i.e.,

0 ≤ ∆Uτ
Uτ

< 1. (26)

�

Proof. It can be directly derived from Lemma 3 and formula
(25). �

It is not difficult to see that there is a trade-off: when a task
set is transformed to a harmonic task set with respect to the
given periodic resource, the transformed task set can utilize
the resource to its capacity with guaranteed schedulibility
under RM. But on the other hand, the transformation itself
increases the task set’s utilization. Therefore, to reduce the
cost of utilizing the harmonicity property, we need to select
tasks and periodic resources that are best harmonically fit.

V. BEST-HARMONICALLY-FIT (BHF) TASK ASSIGNMENT
ALGORITHM

As discussed in Section IV, the harmonicity measures how
harmonically related a task (set) is to a resource (set). The
higher the harmonicity, the smaller the task utilization incre-
ment ∆Uτ caused by harmonic transformation. In this section,

we present the Best-Harmonically-Fit (BHF) task assignment
algorithm that utilizes the harmonicity characteristics between
tasks and periodic resources to maximize the periodic resource
utilization rate.

When assigning tasks to a resource, we have to also
ensure that all tasks assigned to the resource are schedulable,
i.e., the total task utilization must not exceed the utilization
bound. As we have discussed in the previous section, Shin’s
utilization bound applies to a general task set, and is therefore
relatively low. The harmonic utilization bound only applies to
a harmonic task set that is also harmonic to the resources.
Only when the harmonicity condition holds, can the task
set fully, i.e., 100%, utilize the resource’s capacity. For an
arbitrary task set, in order to take advantage of the higher
harmonic utilization bound, the task set has to be transformed
to a harmonic task set. However, such transformation may
result in an increased task utilization. Hence, to guarantee
schedulability and also maximize the resource utilization rate,
when deciding if a task set’s utilization exceeds the resource’s
capacity, both Shin’s utilization bound (7) and the harmonic
utilization bound (14) are checked. The task set is schedulable
on the resource if either bound is satisfied. Theorem 6 gives
the combined schedulability condition.

Theorem 6. Given a periodic resource γ, and a set of tasks
Γγ assigned to the resource γ. For a new task τ , let τ ′ and
Γ′γ be the harmonic transformations of task τ and task set Γγ
with respect to γ, respectively, the task τ is schedulable on γ
if the following schedulability condition SC(τ, γ) is satisfied:

SC(τ, γ) : UΓ′γ
+ Uτ ′ ≤ HUBγ ∨ UΓγ + Uτ ≤ UBγ (27)

�

Proof. The conclusion can be directly derived from Theorem 1
and Theorem 3. �

We use an example to illustrate that both bounds are needed
in deciding task schedulability on a given resource.

Example 2. Given a periodic resource γ = (7, 5), assume
there is no other task assigned to the resource. We need to
decide if a task τ can be assigned to the resource.
Case 1: τ = (12, 5.2)

The task’s utilization Uτ = 5.2/12 is smaller than Shin’s
utilization bound UBγ = 5/9. Hence, it is schedulable on
the resource. However, task τ ’s harmonic transformation with
respect to γ is τ ′ = (7, 5.2), with utilization Uτ ′ = 5.2/7
which is larger than the resource’s harmonic utilization bound,
i.e., resource capacity HUBγ = 5/7. In other words, task
τ ’s harmonic transformation is not schedulable on the given
resource. In this case, we need to use Shin’s utilization bound
(Theorem 1) to decide schedulability.
Case 2: τ = (15, 9)

The task’s utilization Uτ = 9/15 is larger than Shin’s
utilization bound UBγ = 5/9. Hence, it is not schedulable
on the resource according to Shin’s bound. However, task τ ’s
harmonic transformation with respect to γ is τ ′ = (14, 9), with
utilization Uτ ′ = 9/14 which is smaller than the resource’s
harmonic utilization bound HUBγ = 5/7. In other words, task
τ ’s harmonic transformation is schedulable on the resource.
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Hence, τ is also schedulable on γ. In this case, we need
to use the harmonic utilization bound (Theorem 3) to decide
schedulability.
Case 3: τ = (15, 5.2)

The task’s utilization Uτ = 5.2/15 is smaller than Shin’s
utilization bound UBγ = 5/9. Hence, it is schedulable on the
resource. Furthermore, task τ ’s harmonic transformation with
respect to γ is τ ′ = (14, 5.2), with utilization Uτ ′ = 5.2/14
which is also smaller than the resource’s harmonic utilization
bound HUBγ = 5/7. In other words, task τ ’s harmonic
transformation is also schedulable on the resource. In this
case, we can use either Shin’s utilization bound (Theorem
1) or the harmonic utilization bound (Theorem 3) to check
schedulability. �

When a heuristic approach is used to assign tasks to periodic
resources, the order in which tasks are assigned may impact
the resource utilization rate. We use an example to illustrate
this.

Example 3. Given a task set Γ = {τ1 = (13, 3), τ2 =
(23, 8), τ3 = (27, 6), τ4 = (17, 0.5)} and a resource set
R = {γ1 = (6, 3), γ2 = (5, 2), γ3 = (7, 3.5)}, we assign
the task set Γ to the resource set R.

If we first assign task τ2 to resource γ1, then the optimal
way to assign the rest of the tasks is to assign τ3 and τ4 to γ2,
and τ1 to γ3. The resource utilization rate of such assignment
is 59.3%. However, if we first assign task τ1 to resource γ1,
the optimal way to assign the rest of the tasks is to assign τ3
to γ1, and τ2 and τ4 to γ3. Such assignment only uses two
resources and increases the resource utilization rate to 83%.
�

In this example, it is not difficult to see that τ1 and γ1

have the highest harmonicity among all task and resource
pairs. The example also indicates that assigning the most
harmonically related task and resource pair first leads to a
higher resource utilization rate. Based on the observations
and the discussion in Section IV that assigning tasks to their
most harmonically related resources can improve the resource
utilization rate, we present the Best-Harmonically-Fit task
set assignment algorithm. We first introduce the concept of
Best-Harmonically-Fit-Task (BHFT) and Best-Harmonically-
Fit-Pair (BHFP). Then, we show how to find the BHFT and
the BHFP, respectively.

Definition 8. Given a task set Γ = {τ1, τ2, . . . , τN} and a pe-
riodic resource γ, the Best-Harmonically-Fit-Task BHFT(Γ, γ)
with respect to resource γ is τi, i.e., BHFT(Γ, γ) = τi, if task
τi satisfies the following condition:

τi ∈ Γ ∧ SC(τi, γ)

∧ ∀j 1 ≤ j 6= i ≤ N H(τi, γ) ≥ H(τj , γ)

∧H(τi, γ) = H(τj , γ)→ Uτi ≥ Uτj (28)

�

In other words, the BHFT(Γ, γ) is the task in the task set
Γ that satisfies: (1) it is schedulable on the resource, i.e.,
SC(τi, γ) = true; (2) it has the highest harmonicity with
resource γ, i.e., ∀j 1 ≤ j 6= i ≤ N H(τi, γ) ≥ H(τj , γ); (3)

if more than one task in the task set has the same harmonicity
with the given resource, it has the highest utilization, i.e.,
∀j 1 ≤ j 6= i ≤ N H(τi, γ) = H(τj , γ)→ Uτi ≥ Uτj .

We extend the best harmonically fit task with respect to
a given resource to a given resource set and have the best
harmonically fit task and resource pair.

Definition 9. Given a task set Γ = {τ1, τ2, . . . , τN} and a
resource set R = {γ1, γ2, . . . , γM}, the Best-Harmonically-
Fit-Pair BHFP(Γ,R) is (τi, γj), i.e., BHFP(Γ,R) = (τi, γj), if
the pair (τi, γj) satisfies the following condition:

τi ∈ Γ, γj ∈ R
∧ SC(τi, γj)

∧ ∀m∀k 1 ≤ m 6= i ≤ N1 ≤ k 6= j ≤M
H(τi, γj) ≥ H(τm, γk)

∧H(τi, γj) = H(τm, γk)→ Uτi ≥ Uτm (29)

�

Algorithm 1 and Algorithm 2 give the pseudo code that find
BHFT(Γ, γ) and BHFP(Γ,R), respectively. In Algorithm 1, the
for loop (Line 4 to Line 10) compares all tasks in the task set
against the given resource γ and finds the maximum H(τi, γ)
and Uτi . The complexity of the algorithm is O(N).

Algorithm 2 calls Algorithm 1 to find the BHFT for each
resource in the resource set, and selects the pair of task
and resource that has the maximum harmonicity and task
utilization. The complexity of Algorithm 2 is O(NM).

Algorithm 1 SEARCH-BHFT(Γ, γ)
Input: A task set Γ = {τ1, τ2, . . . , τN} and a periodic

resource γ.
Output: The BHFT τBHF.

1: τBHF ← NULL

2: Hmax ← 0
3: Umax ← 0
4: for i← 1 to N do
5: if SC(τi, γ)∧ (H(τi, γ) > Hmax ∨ (H(τi, γ) = Hmax ∧

Uτi > Umax)) then
6: τBHF ← τi
7: Hmax ← H(τi, γ)
8: Umax ← Uτi
9: end if

10: end for
11: return τBHF

Once the Best-Harmonically-Fit-Task and Best-
Harmonically-Fit-Pair are found, we are ready to introduce
the Best-Harmonically-Fit (BHF) task assignment algorithm
shown in Algorithm 3. In Algorithm 3, the for loop (Line 1
to Line 4) calculates the initial harmonicity value of each pair
of tasks and resources. If there are tasks in the task set Γ,
find the Best-Harmonically-Fit-Pair (Line 7). Once we have
the best harmonically fit pair (τ, γ), assign task τ to resource
γ (Line 9), remove the task from the given task set (Line 10),
and update the harmonicity value between each unassigned
task and resource γ (Line 11 to Line 13). Once resource γ is
used, assign remaining tasks that are best harmonically fit to
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Algorithm 2 SEARCH-BHFP(Γ,R)
Input: A task set Γ = {τ1, τ2, . . . , τN} and a periodic

resource set R = {γ1, γ2, . . . , γM}.
Output: The BHFP (τBHF, γBHF).

1: τBHF ← NULL

2: γBHF ← NULL

3: Hmax ← 0
4: Umax ← 0
5: for i = 1 to M do
6: τtmp ← SEARCH-BHFT(Γ, γi)
7: if H(τtmp, γi) > Hmax ∨ (H(τtmp, γi) = Hmax ∧

Uτtmp > Umax) then
8: τBHF ← τtmp
9: γBHF ← γi

10: Hmax ← H(τtmp, γi)
11: Umax ← Uτtmp
12: end if
13: end for
14: return (τBHF, γBHF)

resource γ until γ is full and then remove resource γ from
the resource set R (Line 14 to Line 23). The complexity of
Algorithm 3 is O(NM).

Algorithm 3 BHF(Γ,R)
Input: A task set Γ = {τ1, τ2, . . . , τN} and a resource set
R = {γ1, γ2, . . . , γM}.

1: for τi ∈ Γ ∧ γj ∈ R do
2: T ′i ← Πj · bTi/Πjc
3: H(τi, γj)← T ′i/Ti
4: end for
5: τ ← NULL, γ ← NULL

6: while Γ 6= ∅ do
7: (τ, γ)←SEARCH-BHFP(Γ,R)
8: Γ′γ ← ∅
9: τ 7→ γ

10: Remove τ from Γ
11: τ ′ ← (T ·H(τ, γ), C)
12: Γ′γ ← Γ′γ ∪ τ ′
13: UPDATE-H(Γ, γ,Γ′γ )
14: τ ←SEARCH-BHFT(Γ, γ)
15: while τ ! = NULL do
16: τ 7→ γ
17: Remove τ from Γ
18: τ ′ ← (T ·H(τ, γ), C)
19: Γ′γ ← Γ′γ ∪ τ ′
20: UPDATE-H(Γ, γ,Γ′γ )
21: τ ←SEARCH-BHFT(Γ, γ)
22: end while
23: Remove γ from R
24: end while

It is worth pointing out that in Algorithm 3, Line 13 and
Line 20 update the harmonicity value between each unassigned
task and the resource. According to Definition 5 and Definition
6, if a task is harmonically related to a resource, the task is also
harmonically related to all the tasks assigned to the resource.

Hence, we need to update tasks’ harmonicity after each task
assignment. The harmonicity update algorithm is shown in
Algorithm 4.

In Algorithm 4, the pseudo code from Line 3 to Line 7 uses
formula (19) to find the task’s harmonic transformation that
is not only harmonic with each task assigned to γ, but also
harmonic with the resource. The complexity of the algorithm
is O(N).

Algorithm 4 UPDATE-H(Γ, γ,Γ′γ )

Input: A task set Γ = {τ1, τ2, . . . , τN}, a periodic resource
γ = (Π,Θ) and the harmonic transformation Γ′γ of all
tasks assigned to the resource with respect to γ.

1: for i = 1 to N do
2: τ ′k ← the last task in Γ′γ
3: if Ti ≥ T ′k then
4: T ′i = T ′k · bTi/T ′kc
5: else
6: T ′i =

T ′k
dT ′k/Tie

7: end if
8: H(τi, γ)← T ′i/Ti
9: end for

We use an example to illustrate the BHF procedure.

Example 4. Consider the resource set and task set given in
Example 3. We are to use the proposed BHF algorithm to
assign the task set to the resource set.

We first calculate the harmonicity for each task and resource
pair. The results are shown in Table I(a).

The Best-Harmonically-Fit-Pair in Table I(a) is (τ1, γ1).
Hence, τ1 is assigned to γ1. After assigning τ1, the harmonicity
between each unassigned task and γ1 is updated and shown
in Table I(b). From Table I(a) and Table I(b), it can be seen
that the harmonicity of τ2 decreases from 18/23 to 12/23.

Then, we find the Best-Harmonically-Fit-Task for resource
γ1, which is τ3. Task τ3 is assigned to resource γ1.

Once τ3 is assigned to γ1, γ1 does not have enough capacity
to host τ2 or τ4. Hence, we find the next Best-Harmonically-
Fit-Pair which is (τ2, γ3), and assign τ2 to γ3. The harmonicity
of the only unassigned task τ4 with respect to γ3 is updated
to 7/17 after assigning τ2.

Finally, we assign τ4 to resource γ3. The harmonicity
between each task and each resource is shown in Table I(c).

The task assignment resulting from our algorithm for this
example matches the optimal assignment given in Example 3,
with a resource utilization rate of 83%. �

The BHF algorithm is a heuristic and uses a sufficient
utilization bound to check schedulability. The scenario where
a task set violates the bound but is still schedulable exists and
the necessary utilization bound for RM scheduling on periodic
resources is yet to be found.

Next section, we experimentally evaluate how well it per-
forms when it is compared with other heuristic approaches and
the optimal solution.
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TABLE I
HARMONICITY FOR Γ AND R

(a) Initial State (Before Assignment)
H(τi, γj) γ1 γ2 γ3

τ1 12/13 10/13 7/13
τ2 18/23 20/23 21/23
τ3 24/27 25/27 21/27
τ4 12/17 15/17 14/17

(b) After Assigning τ1 to γ1

H(τi, γj) γ1 γ2 γ3

τ1 12/13 10/13 7/13
τ2 12/23 20/23 21/23
τ3 24/27 25/27 21/27
τ4 12/17 15/17 14/17

(c) Final State (Assignment Done)
H(τi, γj) γ1 γ2 γ3

τ1 12/13 10/13 7/13
τ2 12/23 20/23 21/23
τ3 24/27 25/27 21/27
τ4 12/17 15/17 7/17

VI. PERFORMANCE EVALUATION

In this section, we empirically evaluate the performance of
the proposed Best-Harmonically-Fit algorithm. We compare
the BHF task assignment algorithm with three commonly
used multiprocessor task assignment algorithms, namely Best-
Fit (BF), First-Fit (FF), and Worst-Fit (WF) algorithms [15],
[16], [17].

When BF, FF, and WF are used, Shin’s utilization
bound [11], i.e., formula (7), is used to decide if a task set
assigned to a resource is schedulable.
• Best-Fit (BF) [15]: Assign task τ ∈ Γ to the periodic

resource γ ∈ R so that the remaining capacity percentage
is minimal after the assignment, i.e.,

UΓγ + Uτ ≤ UBγ ∧
UBγ − UΓγ − Uτ

Uγ
= min{

UBγj − UΓγj
− Uτ

Uγj
|∀γj ∈ R}

• First-Fit (FF) [16]: Assign task τ ∈ Γ to the first periodic
resource γ ∈ R that satisfies τ ’s schedulability condition,
i.e.,

UΓγ + Uτ ≤ UBγ

• Worst-Fit (WF) [17]: Assign task τ ∈ Γ to the periodic
resource γ ∈ R so that the remaining capacity percentage
is maximal after the assignment, i.e.,

UΓγ + Uτ ≤ UBγ ∧
UBγ − UΓγ − Uτ

Uγ
= max{

UBγj − UΓγj
− Uτ

Uγj
|∀γj ∈ R}

The performance of a task assignment algorithm is evaluated
in two aspects, i.e., (1) resource utilization rate URR, and (2)
total number of periodic resources used Mused. The higher the
URR and the smaller the Mused, the better the performance of
the algorithm.

In the following experiments, the task sets and the resource
sets are generated using the UUniFast algorithm [26] which
gives an unbiased distribution of utilization values.

A. Harmonicity Impact

This set of experiments is to evaluate harmonicity impact
on the performance of task assignment algorithms.
Experiment Settings
• Task number: 10
• Task period range: [11639628, 200, 000, 000]
• Task utilization range: [0.1, 1.0]
• Resource number: 10
• Resource period: 11639628
• Resource capacity range: [0.468, 1.0]
• Resource set capacity: 6.5
• Harmonicity: varies in the range of [0.55, 1.0] with step

0.05

The reason we choose such large task periods and resource
period is to guarantee that for each harmonicity value in the set
{0.55, 0.6, 0.65, . . . , 1.00}, we are able to generate a resource
set and a task set that satisfy the harmonicity requirement and
Constraint 1 to Constraint 3 given in Section III-C.

Based on the task set and resource set harmonicity
definition, and the integer requirement of both task pe-
riods and resource periods, the resource period has to
be dividable by every harmonicity value H in the set
{0.55, 0.6, 0.65, . . . , 1.00}. The smallest value that is divisible
by H ∈ {0.55, 0.6, 0.65, . . . , 1.00} is 11639628. Hence, the
resource period is set to be 11639628.

According to Constraint 3 in Section III-C, a task’s period
must be no less than a resource’s period. To guarantee that
a task period has enough available values to choose from
with a given harmonicity, we set the task period range to be
[11639628, 200000000].

It is worth pointing out that the harmonicity value for
a given task set and a given resource set is the average
harmonicity among all tasks and all resources in the given
sets. Hence, when resource periods are set to be constant and
we guarantee that the harmonicity between a task and any
resource in the sets is the same, then the harmonicity between
the task set and the resource set is the same as harmonicity
between the task set and a resource in the sets.
Testing Procedure

The following steps are used to generate valid task sets and
resource sets:
• The UUniFast algorithm [26] is used to generate resource

sets which contain 10 resources with total capacity UR
equal to 6.5 and each resource’s capacity Uγj within
[0.468, 1.0].

• Resource period Πj is set as 11639628, and resource
allocation time Θj is set as Πj · Uγj .

• The UUniFast algorithm [26] is used to generate task sets
with 10 tasks that satisfy the following two conditions:
(1) each task’s utilization Uτi is within [0.1, 1.0], and
(2) the task set satisfies Constraint 1, Constraint 2, and
Constraint 3 given in Section III-C.

• We fix the utilization of each task and adjust task period
Ti to be within [11639628, 200000000] such that the
harmonicity between the resource set and the task set
is one of the values in the harmonicity variable set
{0.55, 0.6, 0.65, . . . , 1.00}.
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• Task execution time Ci is set to Ti · Uτi .
We use the above generating procedure to randomly gener-

ate 200 resource sets and 10 task sets for each resource set.
For each test case, we apply the BF, the FF, the WF, and the
BHF algorithms to assign the generated tasks to resources.
The average value of 200 ∗ 10 repeats is used to represent the
performance of each algorithm.

Fig. 1(a) shows the resource utilization rate under different
harmonicities. From Fig. 1(a), we have the following obser-
vations:

1) For all four task assignment algorithms, the resource
utilization rate increases when harmonicity increases;

2) The BHF algorithm is more sensitive to harmonicity
change than the other three algorithms;

3) The BHF algorithm results in a much higher resource
utilization rate, as much as 40.77% more than the other
three algorithms.

Fig. 1(b) depicts the number of periodic resources used by
different algorithms. Similar observations can be made:

1) For all four task assignment algorithms, the number
of periodic resources used decreases when harmonicity
increases;

2) The BHF algorithm is more sensitive to harmonicity
change than the other three algorithms;

3) The BHF algorithm needs less number of resources, as
much as 54.92% less than the other three algorithms.

In addition, from Fig.1, we can also see that the BHF
algorithm is more sensitive to harmonicity than the other
three algorithms. The behavior is consistent with the design
of the BHF algorithm, i.e., BHF is based on harmonicity. The
sensitivity of BHF is demonstrated with the following two
aspects:

1) discrepancy of the resource utilization rate between BHF
and the other three algorithms increases with an increase
in harmonicity,

2) BHF has a larger increase of the resource utilization rate
than the other three algorithms.

B. Task Set Utilization Impact

The second set of experiments evaluates the performance of
the proposed BHF task assignment algorithm under different
task set utilizations. The experiment parameters are given
below.
Experiment Settings
• Task number: 10
• Task period range: [20, 50]
• Task utilization range: [0.1, 1.0]
• Task set utilization: random
• Resource number: 10
• Resource period range: [1, 20]
• Resource capacity range: [0.325, 1.0]
• Resource set capacity: 6.5

Testing Procedure
The following steps are taken to generate valid task sets and

resource sets:
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Fig. 1. Harmonicity Impact

• The UUniFast algorithm [26] is used to generate a re-
source set with 10 individual periodic resources with total
capacity UR equal to 6.5 and each resource’s capacity
Uγj within [0.325, 1.0].

• Resource period Πj is randomly selected from [1, 20],
and resource allocation time Θj is set to Πj · Uγj .

• The UUniFast algorithm [26] is used to generate a task
set with 10 tasks that satisfy the following two conditions:
(1) each task’s utilization Uτi is within [0.1, 1.0], and (2)
the task set satisfies the three constraints in Section III-C.

• Task period Ti is randomly selected from [20, 50], and
task execution time Ci is set to Ti · Uτi .

We use the above generating procedure to randomly gen-
erate 200 resource sets and 100 task sets for each resource
set. For each test case, we apply the four different task
assignment algorithms. We run the 200 ∗ 100 test cases, and
combine the results based on task set utilizations rounded to
the nearest hundredth. The average value is used to represent
the performance of each algorithm.
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Fig. 2(a) depicts the average resource utilization rate under
different task set utilizations. As shown in Fig. 2(a), in general,
when the task set utilization increases, the resource utilization
rate also increases. Among the four task assignment algo-
rithms, the BHF algorithm has the highest resource utilization
rate. The resource utilization rate resulting from the BHF
algorithm is always above 50.86%. When task set utilization
is above 2, variations increase, and the average resource
utilization rate for BHF is 64.95%, while BF is 48.99%, FF
is 52.73%, and WF is 54.49%.

Fig. 2(b) depicts the number of periodic resources used
under different task set utilizations. From Fig. 2(b), we ob-
serve that BF uses the most number of resources, which is
consistent with the observation that BF has the lowest resource
utilization rate. The WF, on the other hand, uses less number
of resources than the proposed BHF approach, but also has a
lower utilization rate, which seems to be counter intuitive.
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Fig. 2. Task Set Utilization Impact ( Θ
Π

∈ [0.325, 1.0])

Further study reveals that since the WF algorithm always
selects the largest resource to assign tasks to, when resource

capacity is relatively small, the remaining portion of the
resource resulting from the WF algorithm would have a
higher possibility than other approaches to host other tasks.
Therefore, the WF algorithm results in less number of re-
sources used. To verify this reasoning, we repeat the above
experiments but with a higher capacity resource set: each
resource capacity is in the range of [0.8, 1.0] and we do not
fix the total resource set capacity. The results are shown in
Fig. 3.

As shown in Fig. 3, BHF has better performance (higher
resource utilization rate and smaller number of resources used)
than the other three algorithms. When task set utilization is
between 2.5 and 5.0, the advantages of the BHF algorithm over
the other three approaches are significant. In particular, the
BHF algorithm uses 15.49% less number of resources than the
other three approaches on average. Another observation from
Fig. 3 is that the performance difference among BF, FF, and
WF algorithms is small when individual resource capacity is
large. The experiment also confirms our observation that when
individual resource capacity is small, the WF algorithm may
have some advantage with respect to the number of resources
needed.

C. BHF and Optimal Solution Comparison

The third set of experiments compares the performance of
the proposed BHF task assignment algorithm with the opti-
mal solution obtained by brute-force search. The experiment
parameters are given below.
Experiment Settings
• Task number: 3
• Task period range: [20, 50]
• Task utilization range: [0.1, 1.0]
• Task set utilization: random
• Resource number: 3
• Resource period range: [1, 20]
• Resource capacity range: [0.325, 1.0]
• Resource set capacity: 1.95

Testing Procedure
In this experiment, the task set and resource set generating

procedure is the same as in Section VI-B except that the
parameter ranges are different. We run the 20, 000 test cases,
and combine the results based on task set utilizations rounded
to the nearest hundredth. The average value is used to represent
the performance of each algorithm.

For each test case, we apply the four different task assign-
ment algorithms, and consider all possible task assignments.
We choose the one with the largest resource utilization rate as
the optimal solution. It is worth noting that when searching
for the optimal solution, we use both Shin’s utilization bound
(Theorem 1) and the harmonic utilization bound (Theorem 3)
to check schedulability. We consider tasks to be schedulable
if either bound is satisfied.

Fig. 4(a) depicts the average resource utilization rate. Com-
pared with the optimal solution, on average, the BHF, BF, FF,
and WF result in a 13.02%, 18.94%, 26.82%, and 21.81%
lower resource utilization rate, respectively.
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Fig. 3. Task Set Utilization Impact ( Θ
Π

∈ [0.8, 1.0])

Fig. 4(b) depicts the number of periodic resources used.
Compared with the optimal solution, on average, the BHF,
BF, FF, and WF use 18.47%, 40.95%, 34.47%, and 17.16%
more number of resources, respectively.

In addition, from an average performance aspect, the WF
uses less number of resources than the proposed BHF ap-
proach, but also has a lower utilization rate. This scenario is
studied in the second experiment of Section VI-B (Fig. 3).

VII. CONCLUSION

Periodic resource models and their scheduling problems
have drawn more attention in real-time community in recent
years. However, to our best knowledge, there has not been
much work, if any, in the literature dealing with the task
assignment problem on multiple periodic resources. In this
paper, we study the task assignment problem in the context
of assigning multiple periodic tasks to multiple periodic re-
sources. Specifically, we first study the harmonic properties
between periodic tasks and periodic resources. We prove that
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Fig. 4. BHF and Optimal Solution Comparison

if a harmonic task set is also harmonic with the resource,
the task set can 100% utilize the resource’s capacity under
the RM scheduling algorithm. Then we propose a heuristic
Best-Harmonically-Fit (BHF) task assignment algorithm to
maximize the resource utilization rate based on the harmonic
properties between periodic tasks and periodic resources.
We compare the performance of Best-Harmonically-Fit with
Best-Fit (BF), First-Fit (FF), Worst-Fit (WF) task assignment
algorithms, and the optimal task assignment (found through
exhaustive search for a small-sized task set and resource set).
The experimental results show that, on average, the BHF
results in a 32.58%, 23.17%, and 19.2% higher resource
utilization rate than the Best-Fit (BF), the First-Fit (FF), and
the Worst-Fit (WF) task assignment algorithms, respectively,
and a 13.02% lower resource utilization rate than the optimal
solution.
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