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Abstract

In this paper, we study the problem of how to employ checkpointing fault recovery and Dynamic Voltage
and Frequency Scaling (DVFS) techniques to minimize the energy consumption for embedded applica-
tions with stringent deadline and reliability constraints. We find that, similar to the dynamic energy
reduction, a constant working frequency is optimal in terms of reliability maximization when running
a real-time task within a specified interval. If such a speed is not available, then using two closest
neighboring speeds is the optimal choice. We formulate our observations into theorems and prove them
analytically. Based on these observations, we further developed heuristics to determine the number
of checkpoints and task execution working frequencies. Experimental results show that our proposed
execution strategies can save up to 30% more energy than recent work.

1 Introduction

For the past decade, extensive power aware research has been conducted across different design ab-
straction levels, ranging from transistor level to system level [1, 2]. As more and more transistors are
integrated into a single chip, the chip power consumption has been increasing exponentially. As a re-
sult, more and more aggressive power aware reduction techniques have been proposed, such as using
extremely low supply voltages and threshold voltages [3, 4]. While these techniques can greatly reduce
energy consumption, the reliability of the entire application is often degraded. Furthermore, with the
continuing scaling of CMOS technologies and reducing the design margins for higher performance, soft
errors of digital systems caused by transient faults occur more frequently than ever. Therefore, how
to most effectively save energy and, at the same time, ensure the system’s reliability has increasingly
become a prominent issue for embedded system designers [5].

Improving reliability of a system and its energy saving performance are at odds for applications
with deadline constraints. First, in order to recover from the transient errors to improve the system’s
reliability, extra computing resources must be reserved so that programs can be re-executed when fault
strike. This implies that part of the slack time, i.e., time difference between the completion of a task and
its deadline when the processor can potentially be idle, must be reserved for the purpose of recovering
from faults, rather than being utilized for energy saving. The more transient faults that need to be
recovered, the more resources need to be reserved, and thus the less energy saving the system can have.

Earlier research in the area of power management under timing constraints has shown that Dynamic
Voltage and Frequency Scaling (DVFS) technique is one of the most effective techniques to reduce energy
consumption and guarantee deadline satisfication [6, 7, 8]. However, when scaling down the frequency
and lowering down the device supplying voltage, the device fault rate increases and hence causes system
reliability to degrate.

A few papers have been published on the study of the tradeoffs between energy reduction and system
reliability. For instance, Zhu et al. [5] provided reliability-aware power management (RA-PM) scheme
to address the tradeoffs. The RA-PM approach allocates a recovery task for every real-time task whose
execution frequency is scaled down so that when an error does occur, the recover task can be executed
to ensure the required reliability. In order to decide which tasks should be selected for execution under
scaled down frequency for energy saving purpose, some heuristic approaches are proposed, such as longest
task first (LTF) [9] and slack usage efficiency factor (SUEF) based heuristic algorithms [9].

It is not difficult to see that the RA-PM approach is conservative as it statically divides the available
slack time to multiple recovery blocks for a pre-determined set of tasks. Zhao [10] proposed a shared
recovery (SHR) technique. The SHR approach reserves a recovery block, which can be shared by multiple
tasks that need to recover at run-time. However, this technique works only for a single fault recovery. In
other words, when a fault occurs during an execution of a task and used up the recovery block, then the
remaining tasks have to be executed under the maximum processing frequency. Zhao et al later extended
the work to allow multiple fault recoveries [11]. A heuristic approach, i.e., the Incremental Reliability
Configuration (IRCS), is provided to find the number of recovery tasks and task execution frequency
assignments.

Backward fault recovery strategy is a commonly used method for fault recovery. It restores the
system state to a previous safe state and repeats the computation if a fault happens [12, 13]. Task
re-execution and checkpointing are the two common techniques for backward fault recovery. For task
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re-execution technique, fault detection is done at the end of each task. Many recent work in real-time
community has focused on using task re-execution for fault recovery [9, 10, 11]. If fault occurs during
the initial execution and no intermediated state is recorded, to recover from the fault, the task has to
be re-executed from the beginning which could be time-consuming for a task with long execution time.

A widely adopted approach to overcome the long re-execution time is to use checkpoining. By adding
checkpoints into tasks, long tasks are sliced into several short task segments. When a fault is detected, the
recovery only requires re-executing the segment where the fault is located and hence reduces the recovery
cost and potentially saves energy. However, checkpointing itself has overhead and, as pointed out Zhu et
al. [13], the checkpointing overhead can have significant impact on total energy savings. Therefore, how
frequent to take a checkpoint and where to take a checkpoint have to be carefully delt with; otherwise,
it may compromise the performance with respect to system’s energy saving and reliability.

In this paper, we are interested in studying the problem of minimizing the energy consumption for
embedded applications with given reliability and deadline constraints. We adopt the checkpointing based
fault recovery technique in our research. We investigated how we can choose appropriate numbers of
checkpoints for the given real-time tasks (checkpointing stragegy) and also judiciously vary the proces-
sor’s processing frequencis when executing these tasks (execution stragety) such that their deadline and
reliability constraints can be satisfied, and the energy consumption can be minimized. To this end, we
made a number of interesting findings, which we formally formulate them as lemmas and theorems with
proofs. We then present two heuristic algorithm, i.e. one to determine the checkpoint numbers and the
second one to determine the task execution frequencies accordingly. Simulation results show that our
approach can achieve up to 30% energy saving improvement over the most recent work.

The rest of the paper is organized as following. In Section 2, we introduce system models and
definitions the research is built upon, and then formally formulate the problem this paper intends to
address. We discuss the optimal checkpointing stragety and the optimal execution strategy that minimize
energy consumption and guarantee the satisfication of application’s reliability and deadline constraints in
Section 3 and Section 4 for continuously and descretely scalable frequencies, respectively. Experimental
results and discussions are presented in Section 5. We conclude in Section 6.

2 System Models and Problem Formulation

In this section, we introduce system models and definitions the research is built upon, and then formally
formulate the problem this paper intends to address.

2.1 Models and Definitions

Processor Model

The processor is DVFS enabled with working frequency in the range of [fmin, fmax], where fmin ≤
fmax. We assume that the frequency values are normalized with respected to fmax, that is, fmax = 1.

Application Model

The application being considered has m independent tasks {τ1, · · · , τi, · · · , τm} which share a common
deadline D. The worst case execution time (WCET) of task τi under the maximum processor frequency
fmax is ci. When the processor runs at frequency f , fmin ≤ f ≤ fmax, the corresponding execution time
of task τi is ci

f .

Energy Model

We adopt the system-level energy model as given in [14]. In particular, if a processor operating
under frequency f for t time duration, the consumed energy is given below:

E(f) = (Pind + Ceff
Cm)× t (1)

where Pind, Cef, and Cm(≥ 2) are system-dependent, but frequency-independent constants.
From (1), it is not difficult to see that scaling down the processing frequency can save frequency-

dependent energy, but, on the other hand, it can also increase the frequency-independent energy because
of longer execution time due to lower frequency. Hence, the Energy-Efficient frequency (fee) exists,
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under which, further scaling down the processing frequency will increase the total energy consumption.
Previous research studies [14] have given the definition:

fee = Cm

√
Pind

Cef(Cm − 1)
(2)

Transient Fault and Reliability Model

In this paper, we only consider soft errors caused by transient faults. We take the same assumptions
made in [14] that the arrival of transient faults follows Poisson distribution and in [5] that the average
fault arrival rate at frequency f (< fmax) can be expressed as

λ(f) = λ̂010−p̂f (3)

where λ̂0 = λ010
p

1−fmin , p̂ = p
1−fmin

. λ0 is the average fault arrival rate at fmax and p(≥ 3) is a
system-dependent constant, representing the sensitivity of transient fault due to DVFS.

If we define the reliability of an application as the probability of completing the execution successfully,
then for the case without fault tolerance, the reliability of an application under processing frequency f
can be represented as:

Ri(f) = e−λ(f)·
C
f (4)

where C is the total execution time under fmax.
Base on the models defined above, it is not difficult to see that task execution order within an

application has no impact on the application’s energy consumption and reliability. Hence, in the following
sections, we assume task τi is executed before τj if i < j.

To simplify the representation in the following sections, we introduce the following terms.

• Task segments (~τi): when checkpoints are inserted into a task, the task is partitioned into sections
which are called task segments. For task τi, we use ~τi = [τi1, · · · , τil] to denote all its segments in
task τi, noticing that, if no checkpoint inserted, ~τi = [τ1].

• Checkpointing strategy (Scp): the strategy as to how many checkpoints are needed and where to
insert the checkpoints in a task set. Hence, the checkpointing strategy decides task segments. We
use Scp = (~T ;h) to denote a checkpointing strategy, where ~T = {~τ1, ..., ~τm} and h is the total
number of inserted checkpoints. Notation len(i) will be used to denote the length of the ith longest

task segment among all the ones in ~T . We also assume the checkpointing overhead q is a constant
for a given application.

• Processing strategy (Sps): the strategy as to under what frequencies an application should be
executed and for how long under each frequency. The processing strategy is denoted as Sps =

(
−−−−→
(fi, ti);n), where (

−−−−→
(fi, ti);n) = [(f1, t1), · · · , (fn, tn)]. (fi, ti) indicates that the processor is oper-

ating under frequency fi for ti time units. It is worth pointing out that that multiple task or task
segments can be executed under the same processing frequency and multiple frequencies can be
used for a single task or task segment.

• Recovery strategy (Src): the strategy as to under what operating frequency a failed task or task
segments should be re-executed. In this paper, we assume the maximum frequency, i.e., fmax, is
used for recovery, i.e., Src = (fmax)

• Application execution strategy (Sapp): the composition of its checkpointing strategy, processing
strategy, i.e., (Scp, Sps).

• Processing stage: the state when a processor is executing a task, or a task segment, or taking a
checkpoint.

• Recovery stage: the state when a processor is re-executing a task or task segment when fault
recoveries are invoked.
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Figure 1: Example of application execution strategy
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We use an example to further explain the concepts introduced so far.

Example 1. Given an application with two tasks A and B and their WCET under fmax are c1 and
c2, respectively, as shown in Fig. 1(a). Fig. 1(b) shows a checkpointing strategy where two checkpoints
are added to the application, one in each task. Because of the checkpoints, tasks, including checkpointing
overhead, are sliced into 4 task segments, i.e., A1 +H1, A2, B1 +H2 and B2. Hence, the checkpointing
strategy Scp can be represented as {[A1 +H1, A2, B1 +H2, B2]; 2}. Fig. 1(c) depicts a processing strategy,
where frequency f1 is used to execute A1 + H1 and A2, and B1 + H2 and B2 is executed under f2. In
other words, processing strategy is Sps = [(f1,

c1+q
f1

), (f2,
c2+q
f2

)]. Fig. 1(d) gives a fault recovery strategy,
where faults are detected at the end of A2 and B2, their recovery are executed under fmax.

�

Based on the models and terms introduced above, an application reliability and its energy consump-
tion under a given application execution strategy can be derived.

Lemma 1. Given an application A = {τ1, ..., τm}, and its execution stragegy Sapp = (Scp, Sps), where

Scp = {~T ;h}, Sps = (
−−−−→
(fi, ti);n), respectively. If up to k faults are to be tolerated, then the application

reliability is:

RA(Scp, Sps, k) =

k∑
i=0

(
∑n
j=1 λ(fj)tj)

ie−
∑n

j=1 λ(fj)tj

i!
· e−λ(fmax)(

∑i
j=1 len(j)) (5)

and the energy consumption is:

EA(Scp, Sps, k) =

n∑
i=1

(Pind + Ceffi
Cm)ti (6)

�

To avoid diverging from the main flow of the paper, we leave the proof in the appendix section.
Formula (5) and (6) can be simplified (7) and (8), respectively.

RA(Scp, Sps, k) = r(

n∑
i=1

λ(fi)ti, Scp, k) (7)

EA(Scp, Sps, k) =

n∑
i=1

δ(fi)ti (8)

where

r(x, Scp, k) =

k∑
i=0

xie−x

i!
· e−λ(fmax)(

∑i
j=1 len(j)) (9)

and

δ(x) = Pind + Cefx
Cm (10)

With the models defined above, we are ready to formally define the research problem this paper
indents to solve, i.e., find an optimal application execution strategy for minimizing energy consumption
while meeting the application’s reliability and deadline constraints. We call the problem the ERD
problem for short.
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2.2 Problem Formulation

Problem 1. Given an application A with m independent tasks, i.e., A = {τ1, · · · , τi, · · · , τm} and the
WCET of task τi under fmax is ci and they share a common deadline D. The reliability requirement
of the application is Rg and the available processing frequency is f , fmin ≤ f ≤ fmax with fmin ≥ fee.

Decide an execution strategy (Sapp), i.e., a checkpointing strategy Scp = (~T ;h) and a processing strategy

Sps = (
−−−−→
(fi, ti);n), with

Objective:

minEA(Scp, Sps, k)

Subject to:

RA(Scp, Sps, k) ≥ Rg
n∑
i=1

ti +

k∑
j=1

len(j) ≤ D

where k is the number of faults can be tolerated.
�

We address the problem in two steps: we first consider the case when the processor frequency can be
continuously scaled within [fmin, fmax] (Section 3), and then consider the case when there is only a set
of discrete frequencies available for scaling (Section 4).

3 Optimal Application Execution Strategy under Continuous
Frequence Scaling

In this section, we assume the processor’s processing frequency can be continuously scaled and call the
problem defined in Section 2.2 under this assumption as C-RDE problem.

3.1 Properties of the Optimal Execution Strategy

Lemma 2 (Uniform Frequency). Given an application A which has a set of independent tasks {τ1, · · · , τi, · · · , τm}
with τi’s WCET as ci under fmax, and the checkpointing strategy Scp = {~T ;h} is determined, if all pro-
cessing strategies take the same time D′ to complete the application and up to k(≥ 0) faults can be

tolerated, then processing the application under uniform frequency f0 = max{
∑m

i=1 ci+qh

D′ , fmin} has the
best performance, i.e., achieves the highest reliability and consume the least energy consumption.

Proof. We use (
−−−−→
(fi, ti);n) = [(f1, ti), · · · , (fn, tn)] to denote any other processing strategy except [(f0, D

′)].
As all the processing strategies have to complete the the same workload within the same time duration,
therefore, we have:

n∑
i=1

fiti = f0D
′

and,

n∑
i=1

ti = D′

Based on formula (7), the application reliability of processing strategy (
−−−−→
(fi, ti);n) and [(f0, D

′)] can be
expressed as:

RA(Scp, (
−−−−→
(fi, ti);n), k) = r(

n∑
i=1

λ(fi)ti, Scp, k)
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and,

RA(Scp, (
−−−−−→
(f0, D

′); 1), k) = r(λ(f0)D′, Scp, k)

respectively.
As λ(x) is convex for x > 0, according to formula (11) 1, we have:

n∑
i=1

λ(fi)ti ≥ λ(f0)D′

Furthermore, r(x, Scp, k) is a monotonically decreasing function when x > 0 for a given Scp and k 2,
hence:

r(

n∑
i=1

λ(fi)ti, Scp, k) ≤ r(λ(f0)D′, Scp, k)

i.e.,

RA(Scp, (
−−−−→
(fi, ti);n), k) ≤ RA(Scp,

−−−−−→
((f0, D

′); 1), k)

Similarly, according to formula (8), the energy consumption of the above two processing strategies can
be expressed as:

EA(Scp, (
−−−−→
(fi, ti);n), k) =

n∑
i=1

δ(fi)ti

and,

EA(Scp,
−−−−−→
((f0, D

′); 1), k) = δ(f0)D′

respectively. As δ(x) is a convex function for x > 0, then:

n∑
i=1

δ(fi)ti ≥ δ(f0)D′

i.e.,

EA(Scp, (
−−−−→
(fi, ti);n), k) ≥ EA(Scp, (

−−−−−→
(f0, D

′); 1), k).

These conclude the proof. �

Noticing that, Lemma 2 is also valid for the case that no checkpoints are inserted, which is the special
case when h = 0. Although Lemma 2 gives the properties of the optimal processing strategy under a
given checkpointing strategy, how to design the checkpointing strategy is yet to know, which will be
discussed in the next section.

3.2 Checkpointing Based Application Execution Strategy

The question about a checkpointing strategy can be divided into two sub-questions:
1) Do we need to take checkpoints?
2) If needed, where to take the checkpoints?

Before giving the answer to question 1), we introduce two Lemmas first.

1Given a convex function g(x), for n ∈ I+ and xi, ti ∈ <+, we have

n∑
i=1

g(xi)ti ≥ g(

∑n
i=1 xiti∑n
i=1 ti

)(
n∑

i=1

ti) (11)

which can be directly derived from convex function definition.
2The proof will be given in appendix.
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Lemma 3 (Uniform Frequency under Deadline). Given an application A with a set of independent
tasks {τ1, · · · , τi, · · · , τm} with τi’s WCET as ci under fmax, and the end-to-end deadline is D. Without
considering reliability constraint, the optimal execution strategy is to take zero checkpoint and executing
the all the tasks under the uniform frequency fd, which will consumes the least energy while meeting the
deadline.

fd = max{
∑m
i=1 ci
D

, fmin} (12)

Proof. Without considering reliability constraint, obviously, no need to take checkpoints. Then, based
on Lemma 2, by setting h = 0, we get the above result.

Lemma 4 (Uniform Frequency for Reliability). Given an application A which has a set of independent
tasks {τ1, ..., τi, · · · , τm} with τi’s WCET as ci under fmax. The application’s reliability constraint is
Rg. If all processing strategies take the same time to complete the application and zero fault is tolerated,
without considering the deadline constraint, then processing the application under the uniform frequency
fr given by (13) consumes the least energy while meeting the reliability constraint.

fr = max{f ′r, fmin} (13)

where f ′r satisfies the following condition:

10p̂f
′
rf ′r =

λ̂0
∑m
i=1 ci

−lnRg
(14)

Proof. As zero fault tolerance, no need to take checkpoints, that is h = 0. Hence, based on the reliability
model given in (4), if all the tasks in the application are executed under the uniform processing frequency
fr, to satisfy the reliability constraint, we have:

e−λ(fr)·
∑m

i=1 ci
fr ≥ Rg

i.e.,

10p̂frfr ≥
λ̂0

∑m
i=1 ci

−lnRg
As 10p̂xx is a strictly increasing function when x > 0, hence, if f ′r is the value to make the above
inequality get the equal sign, then fr ≥ f ′r. As the processing frequency is no less than fmin, we have
fr = max{f ′r, fmin}. According to Lemma 2, executing the application under uniform frequency achieves
highest reliability with minimum energy consumption, as fr is the lowest processing frequency to meet
reliability constraint (or the minimum available frequency), then using fr to execute the application
costs the least energy while meeting reliability constraint.

As a valid execution strategy must meet both the reliability and deadline constraints, which are
affected by the processing execution frequencies, we take the conquer the dominant approach.

Definition 1 (Dominant Relation (�)). For constraint C1 dominates C2, i.e., C1 � C2 iff the satisfaction
of C1 implies the satisfaction of C2. �

Based on Lemma 3 and Lemma 4, if fd ≥ fr, the deadline constraint dominates the reliability
constraint. Hence, the application’s optimal executing strategy is to use frequency fopt = fd for the
entire execution and no need to take the checkpoints. However, if fr > fd, the reliability constraint
is the dominant one. In this case, if there exists slack time before the deadline, we need to consider
the question 2), i.e., where to take checkpoints to utilize the slack time to further reduce the energy
consumption without violating the reliability constraint.

Different checkpointing strategy will partition a given application into different task segments, which
will significantly impact the application execution performance with respect to the reliability and energy
consumption. As we mentioned before, if k faults are guaranteed to be tolerated, the fault recovery
stage may take the longest k task segments, that is, the length of longest k task segments determine the
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duration of recovery stage, and the longest one contribute most. If we add more checkpoints to the task
having the longest task segment, then we will get shorter task segments instead (noticing that, a task is
always evenly splited by the inserted checkpoints), based on the new task segments, the length of longest
k task segments may reduce. Hence, more slack time can be used for frequency adjustment to save the
energy. Based on these senses, our strategy is, if more checkpoints available, we always insert it to the
task that have the longest task segment, which is shown in Algorithm 1.

Algorithm 1 INSERT-CHK(TC, q)

1: sort all the TC by len in descending order
2: TC[1].chk = TC[1].chk + 1;
3: TC[1].len = TC[1].wcet/TC[1].chk + q;
4: return TC;

An array of data structure TC is used to record the checkpointing strategy for application A, one TC
for each task, the four tags: index, wcet, chk, and len represents the task’s index, WCET under fmax,
number of checkpoints, and the length of task segment within the task, respectively. We first sort all
the TC by the len in descending order (line 1) to get the task having the longest task segment, which is
indicated by TC(1).index, then we add one more checkpoint to this task (line 2 - 3).

Having a checkpointing strategy, based on Lemma 2, we know that executing the application under a
uniform frequency has the highest reliability and consumes the least energy. Now, we give the algorithm,
Algorithm 2, for finding this optimal processing frequency.

Algorithm 2 FIND-OPT (TC,Rg, D, ε, F)

1: get the checkpointing strategy Scp = {~T ;h} from TC
2: calculate total number of task segments as N
3: for k = 0 to N do

4: if RA(Scp, (
−−−−−−−−−−−−−→
(g(Scp, k), C

g(Scp,k)
); 1), k) < Rg and g(Scp, k) < fmax then

5: k = k + 1;
6: else
7: break;
8: end if
9: end for

10: fcoarse = min{g(Scp, k), fmax};
11: fopt = fcoarse;
12: if k > 0 then
13: f ′ = g(Scp, k);
14: while f ′ < fcoarse do

15: if RA(Scp, (
−−−−→
(f ′, Cf ′ ); 1), k − 1) ≥ Rg then

16: fopt = f ′;
17: k = k − 1;
18: break;
19: else
20: f ′ = f ′ + ε;
21: end if
22: end while
23: end if

24: Eopt = EA(Scp,
−−−−−−−−→
(fopt,

C
(fopt

); 1), k);

25: return Eopt, fopt, k;

Before giving the detailed explanations for the algorithm, we introduce a function g(Scp, k) first,

which is used to calculate the optimal processing frequency for the case when D′ = D −
∑k
i=1 len(i) in
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Lemma 2.

g(Scp, k) = max{ C + qh

D −
∑k
i=1 len(i)

, fmin} (15)

We can see executing the application under g(Scp, k) is optimal, i.e., has highest reliability and
consumes least energy, when the all the available time except the one reserved for k fault recovery in
recovery stage are used to process the application.

Algorithm 2 is divided in to two procedures: coarse-grain search (line 3 - 10) and fine-grain search
(line 12 -23).

In the coarse-grain search stage, as shown in line 3 - 10, we set the granularity as the length of task
segments. If the coarse-grain search returns with k = 0 at line 8, which means no fault tolerance is needed.
Otherwise, k faults to be tolerated, where k ≥ 1. The reason for increasing the tolerated fault from k−1

to k due to reliability constraint is not satisfied, i.e., RA(Scp,
−−−−−−−−−−−−−−−−−−−→
((g(Scp, k − 1), C

g(Scp,k−1) ); 1), k − 1) < Rg
and g(Scp, k − 1) < fmax. Hence by adding one more tolerated faults, that is, increasing the recovery
stage and decreasing the processing stage by the granularity of kth longest task segment, then we get
the fcoarse (assume running the application under fmax can be guaranteed as a valid solution), which
can meet the reliability and deadline constraint. Therefore, we can conclude that the optimal processing
frequency is within the interval [g(Scp, k − 1), fcoarse].

In fine-search stage (line 12 -23), we gradually increase the frequency from g(Scp, k− 1) to fcoarse by
the granularity of ε to approach the optimal solution.

Having Algorithm 1 and Algorithm 2, now we propose our execution strategy for C-RDE problem,
which is given in Algorithm 3.

The basic idea is as follows. Adding checkpoints may reduce the recovery time and hence more slack
time can be utilized to scale down the frequency to save energy; however, reduced frequency also reduces
reliability. Hence, to meet application reliability constraint, we may need to increasing the number of
tolerated faults, which, however, needs more recovery time, and hence, processing frequency should be
scaled up and more energy will be consumed. Therefore, we can perform actions of taking checkpoints
and increasing number of faults to be tolerated iteratively until no more energy can be further saved or
no slack time is available for adding more checkpoints. Hence, we implement it in the following steps:

1. find the optimal processing strategy according using Algorithm 2 based on the current checkpointing
strategy (The initial state is no checkpoints inserted).

2. compare the recorded application execution strategy with the one returned by step 1), then record
the one with less energy consumption (Initially, the recorded execution strategy consume infinite
energy).

3. if the slack time is available for more checkpoints, change the checkpointing strategy using Algo-
rithm 1.

4. repeat the above three steps until no more checkpoints are available and return the recorded
execution strategy as the optimal one.

Algorithm 3 gives the details, TCopt and fopt are to record the currently optimal checkpointing
strategy and the processing frequency, respectively. Line 1 - 5 is to do the initialization, line 8 is step
1), line 9 - 11 is step 2), line 13 is step 3). And the while loop (line 9) will be broken if already adding
the maximum number of checkpoints, which can be calculated as:

max chk =
D −

∑m
i=1 ci

q
(16)

The time complexity of the CHK-C-RDE algorithm is dominated by while loop (line 7-14). For line 8,
that is, FIND-OPT, the complexity of which depends on how to choose ε, if we set ε to x%fmax, the time
complexity for this step is O(m+max chk). And the amortized time cost of INSERT-CHK (line 13) is
O(m+max chk), as max chk should be constant for a given application, then the total time complexity
should be O(m).
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Algorithm 3 CHK-C-RDE(A, Rg, D, q, F)

1: for i = 1 to m do
2: TC(i).index = i; TC(i).wcet = ci;
3: TC(i).chk = 0; TC(i).inv = ci;
4: end for
5: h = 0; TCopt = TC; Eopt =∞;
6: calculate max chk based on formula (16);
7: while h ≤ max chk do
8: (E, f, k) = FIND-OPT (TC,Rg, D, F );
9: if Eopt > E then

10: Eopt = E;fopt = f ;TCopt = TC;
11: end if
12: h = h+ 1;
13: TC = INSERT-CHK (TC, q);
14: end while
15: return TCopt, fopt, k;

4 Optimal Application Execution Strategy under Discrete Fre-
quence Scaling

In this section, we discuss the case that only a set of discrete processing frequencies, i.e., {f1, f2, ..., fn}
with fi < fj if i < j, are available for scaling. We call the problem defined in Section 2.2 D-RDE problem
for short.

4.1 Properties of the Optimal Execution Strategy

Lemma 5. Assume F = {f1, · · · , fn} are available frequencies with fi < fj if i < j, given a check-
pointing strategy, if the optimal processing strategy for C-RDE problem is [(fopt, topt)], then for D-RDE
problem, by applying the same checkpointing strategy, the optimal performance, i.e., the minimum energy
consumption while meeting the reliability and deadline constraints can be obtained by:

1. using the frequency fopt to process the whole application, if ∃fv ∈ F with fv = fopt.

2. using the neighboring frequencies fv and fv+1 to process the application, if ∃{fv, fv+1} ⊂ F with fv <
fopt < fv+1.

The proof of lemma 5 will be given in the appendix section.

4.2 Checkpointing Based Application Execution Strategy

According to Lemma 5, when fv = fopt, just use the frequency fv to execute the whole application. If
fopt is not available, we should use the neighboring frequencies fv and fv+1, but for how long they need
to be executed, respectively, is still unknown. In order to minimize the disturbance for the application
execution, we assume the frequency adjustment is only allowed at the end of the task segments. Then the
problem turns how to assign the frequencies fv and fv+1 to the task segments to achieve the minimum
energy consumption while satisfying the deadline and reliability constraints.

Our proposed algorithm to do the frequency assignment ASSIGN-FRE is given in Algorithm 4. As
both fv and fv+1 are greater than fee, from energy saving perspective, the frequency of fv should be
used to execute the application as long as possible if reliability and deadline constraints are not violated.
This is the basic idea of the Algorithm 4.

The details of Algorithm 4 are as follows. Av and Av+1 are the stacks used to record the task
segments to be executed under fv and fv+1, respectively. By default, all tasks’ execution frequencies are
set as fv+1 (line 1). Then for each possible number of tolerated faults, i.e., k′, we move the longest task
segment from Av+1 to Av as long as reliability and deadline constraints are satisfied (line 4 - 17). The
optimal assignment will be recorded in Ãv+1 and Ãv.
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Having these in mind, Algorithm 5 is our proposed execution strategy for D-RDE problem. Line 1-2
is to use CHK-C-RDE algorithm to get the frequencies fv and fv+1. Line 3 is the frequencies assignment.

Algorithm 4 ASSIGN-FRE (TC, Rg, D, F ′)

1: push all the task segments in TC to Av+1 by their lengths in ascending order
2: calculate the number of task segments N
3: Ãv+1 = Av+1; Ãv = Av = Φ;
4: for k′ = 0 to N do
5: while |Av+1| > 0 do
6: if Reliability ≥ Rg and Deadline ≤ D then

7: Ãv+1 = Av+1; Ãv = Av;
8: τij = pop(Av+1);
9: push(Av, τij);

10: else
11: break;
12: end if
13: end while
14: if Reliability ≥ Rg and Deadline ≤ D then

15: Ãv+1 = Av+1; Ãv = Av;
16: end if
17: end for
18: return Ãv, Ãv+1

Algorithm 5 CHK-D-RDE (A, Rg, D, F)

1: (TCopt, fopt, k) = CHK-C-RDE (A, Rg, D, q, F )
2: get F ′ = {fv, fv+1} satisfying fv < fopt < fv+1

3: (A′v, A
′
v+1) = ASSIGN-FRE(TCopt, Rg, D, F ′)

4: return A′v, A
′
v+1

5 Evaluation and Discussion

We first introduce two baseline algorithms and one definition.

• LTF (longest-task-first) [9]: Always select the task with longest WCET and allocate as much slack
to it as possible.

• SUEF (slack usage efficiency factor) [9]: Always select the task with the largest ratio of the amount
of energy saved to the required slack time.

Definition 2. Tasks execution time’s heterogeneity (TETH)

TETH =

√
max{ci|1 ≤ i ≤ n}
min{ci|1 ≤ i ≤ n}

Where ci is the WCET of task i.
In the following experiments, we set the average soft error rate λ0 = 10−6, Cm = 3 and Pind = 0.05Pd,

and Cef = 1. The WCET of the tasks are randomly generated between the min{ci} and max{ci},
where min{ci} is set to 20. As LTF and SUEF only work when the reliability constraint is set to the
reliability of executing the application under fmax without fault tolerance, to be fairness, which is also
set as the reliability constraint Rg in our experiments. And we use q to indicate checkpointing cost and
utilization(Γ) to represent the utilization of the processor, which can be written as:

utilization(Γ) =

∑m
i=1 ci
D
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Figure 2: Impact of TETH (utilization(Γ) = 0.7, q = 2, p = 3)

We use normalized energy cost to evaluate the energy performance, which is defined as the energy
cost normalized to the one of executing the application under fmax.

5.1 Simulation Results for the C-RDE problem

In this section, we will evaluate the performance of our proposed algorithms for C-RDE problem under
different scenarios.

Fig. 2 evaluates the impact of task execution time variation. From which, we can see the energy
performance of all the three algorithms are not sensitive to the task execution time variation. Among
these algorithms, CHK-C-RDE always has the least energy consumption, which can save up to 30%
more normalized energy than SUEF and LTF.

Fig. 3 gives the utilization impact. LTF and SUEF always consume more energy than CHK-C-RDE,
while the gap becomes smaller when utilization becomes larger. The reason is, high utilization means
less slack time, and hence, fewer checkpoints can be used to for energy saving. However, even under
utilization(Γ) = 0.9, CHK-C-RDE still can save about 10% more normalized energy cost than the other
two.

Fig. 4 evaluates the impact of checkpointing overhead on CHK-C-RDE algorithm, which is compared
with the strategy without checkpointing, that is, the fault recovery will re-execute the whole task where
fault occurs, we name it as TRE-C-RDE for short. In this experiment, the WCET of shortest task
and longest one are 20 and 500, respectively, and the average WCET is 260. When q = 2, i.e., 0.7%
of the average WCET, CHK-C-RDE algorithm saves 7% normalized energy more than TRE-C-RDE,
when the q is increased to 8% of the average WCET (q = 20), the two algorithms have the same energy
consumption.

Fig. 5 shows the impact of p, which is a system constant indicating the sensitivity of soft-error. We
can see that the energy performance of CHK-C-RDE degrades slowly when p becomes larger. Even
for the case p = 5, the advantage of our CHK-C-RDE is still obvious, which can save up to 25% more
normalized energy consumption than LTF and SUEF .
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Figure 3: Impact of utilization (TETH = 5, chk cost = 2, p = 3)

Figure 4: Impact of checkpointing cost (TETH = 5, utilization(Γ) = 0.7, p = 3)
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Figure 5: Impact of d (TETH = 5, utilization(Γ) = 0.7, q = 2)

5.2 Simulation Results for the D-RDE problem

We show the effectiveness of our proposed execution strategy for D-RDE problem in this section, the
available discrete frequencies are set as {0.4, 0.6, 0.8, 1.0}.

Fig. 6 shows the effectiveness of the CHK-D-RDE algorithm, the energy consumption of which is
closed to that of CHK-C-RDE (about 3% gap), and the utilization variation seems have no impact.

Fig. 7 investigates the impact of tasks execution time variation. When the TETH increases form 1
to 6, the performance gaps between CHK-C-RDE and CHK-D-RDE are always around 2% to 5%.

6 Conclusion

In this paper, we have discussed the problem about how to improve the energy performance for a
real-time application under given reliability and deadline constraints. We assume that fault arrival rate
follows Poisson distribution, by focusing on checkpointing based fault recovery technique, we theoretically
analyze the problem and derive some necessary properties about the optimal application execution
strategy that has best performance with respect to energy saving and at the same time guarantees
meeting the application’s reliability and timing constraints. Based on these theoretical results, we also
give our application execution strategies when the processor’s frequency can be scaled continuously, or
discretely. Comparing with other heuristics in literature, the experiment results show that our approaches
outperform by as much as 30% with respective to energy saving.

The current work is based on uniprocessor. Extending the work to multi-processor environment will
be our immediate next step.
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7 Appendix

In this section, we first show that r(x, Scp, k)(k ≥ 0) is a decreasing function when x > 0 and then
provide the proof for Lemma 1.

According to the definition of r(x, Scp, k), we have

r(x, Scp, k) =

k∑
i=0

xie−x

i!
· e−λ(fmax)(

∑i
j=1 len(j))

17



If k = 0, then r(x, Scp, 0) = e−x, which is obviously decreasing for x > 0. For the scenario k > 0, as
the Scp is determined, then len(j) is fixed and we can treat it as constant. If we define:

b(i) = e−λ(fmax)(
∑i

j=1 len(j))

then we have b(i+ 1) < b(i) and 0 < b(i) ≤ 1 when i ≥ 0. Hence, the first derivation of r(x, Scp, k) is:

r′(x, Scp, k) = (

k−1∑
i=0

xi(b(i+ 1)− b(i))
i!

− b(k)xk

k!
) · e−x

As b(i + 1) − b(i) < 0 and b(k) > 0 when x > 0, we have r′(x, Scp, k) < 0, which implies r(x, Scp, k) is
decreasing when x > 0. These conclude the proof.

Lemma 1: Given an application A = {τ1, ..., τm}, and its execution stragegy Sapp = (Scp, Sps), where

Scp = {~T ;h}, Sps = (
−−−−→
(fi, ti);n). If up to k faults are to be tolerated, then the application reliability is:

RA(Scp, Sps, k) =

k∑
i=0

(
∑n
j=1 λ(fj)tj)

ie−
∑n

j=1 λ(fj)tj

i!
· e−λ(fmax)(

∑i
j=1 len(j))

and the energy consumption is:

EA(Scp, Sps, k) =

n∑
i=1

(Pind + Ceffi
Cm)ti

Proof: According to the property of poisson distribution, when the fault arrival rate is λ(f), the
probability of at most k faults arriving in the time interval of [0, t] can be expressed as[15]:

R(λ(f), t, k) =

k∑
i=0

(λ(f)t)ie−λ(f)t

i!

Then, assuming the checkpointing strategy Scp is given, when k faults happen, in the worst case
scenario, fault recoveries will take the duration of the longest k task segments. Having these in mind,
we prove the lemma by induction.

Step 1): When n = 1, then Sps = [(f1, t1)], we have

RA(Scp, Sps, k) =

k∑
i=0

(λ(f1)t1)ie−λ(f1)t1

i!
· e−λ(fmax)(

∑i
j=1 len(j))

This is obviously true.
Step 2): Suppose n = n1(> 1), we have

RA(Scp, Sps, k) =

k∑
i=0

(
∑n1

j=1 λ(fj)tj)
ie−

∑n1
j=1 λ(fj)tj

i!

·e−λ(fmax)(
∑i

j=1 len(j))

Step 3): When n = n1 + 1, then Sps = [(f1, t1), (f2, t2), · · · , (fn1+1, tn1+1)]. If exactly i faults happen
in the processing stage, there must be l (0 ≤ l ≤ i) of them occur when the processing frequency is
f ∈ {f1, · · · , fn1

} and the remaining i − l faults happen when f = fn1+1, then the reliability of the
application can be written as:

RA(Scp, Sps, k) =

k∑
i=0

i∑
l=0

(
∑n1

j=1 λ(fj)tj)
le−(

∑n1
j=1 λ(fj)tj)

l!

· (λ(fn1+1)tn1+1)(i−l)e−λ(fn1+1)tn1+1

(i− l)!
· e−λ(fmax)(

∑i
j=1 len(j))
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Figure 8: convex function: λ(f) and δ(f)

According to binomial formula, that is:

i∑
l=0

xly(i−l)

l!(i− l)!
=

(x+ y)i

i!

we have:

RA(Scp, Sps, k) =

k∑
i=0

(
∑n
j=1 λ(fj)tj)

ie−
∑n

j=1 λ(fj)tj

i!

·e−λ(fmax)(
∑i

j=1 len(j))

For the energy consumption, as the probability of fault occurrence is relatively small, the expected
energy consumption for recovery stage is ignorable comparing to the energy consumption for processing
stage. Hence, the expected energy consumption of the application can be approximately defined as:

EA(Scp, Sps, k) =

n∑
i=1

(Pind + Ceffi
Cm)ti

These conclude the proof.
Lemma 5: Assume F = {f1, · · · , fn} are available frequencies with fi < fj if i < j, given a check-

pointing strategy, if the optimal processing strategy for C-RDE problem is [(fopt, topt)], then for D-RDE
problem, by applying the same checkpointing strategy, the optimal performance, i.e., the minimum
energy consumption while meeting the reliability and deadline constraints can be obtained by:

1. using the frequency fopt to process the whole application, if ∃fv ∈ F with fv = fopt.

2. using the neighboring frequencies fv and fv+1 to process the application, if ∃{fv, fv+1} ⊂ F with fv <
fopt < fv+1.

Proof: It is trivial for case 1), we only need to give the proof for case 2).
For case 2), we assume the optimal processing strategy is Sps = [(fv, tv), (fv+1, tv+1)] when the chosen

processing frequencies are fv and fv+1, and up to k faults can be tolerated under this strategy. Then,
we need to prove this strategy Sps consumes less energy than any other valid processing strategy, i.e.,
executing the application under which can meet the reliability and deadline constraints. As one, two or
multiple (three or even more) processing frequencies can be chosen in the processing strategy, hence, we
need to prove Sps is optimal among all these three scenarios.

A) Sps = [(fv, tv), (fv+1, tv+1)] consumes less energy than any processing strategy under uniform
processing frequency.
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For any processing strategy with uniform processing frequency fj , as fopt > fv, and all the processing
strategies need to finish the same workload, i.e., fopttopt = fjtj , as [(fopt, topt)] is the optimal processing
strategy when frequency can be scaled continuously, hence, we have fj ≥ fv+1. As all the fv, fv+1 and fj
are higher than fee, executing the tasks under higher frequency consumes more energy, so the processing
strategy under uniform frequency fj costs more energy.

B) Sps = [(fv, tv), (fv+1, tv+1)] consumes less energy than any other processing strategy using the
combination of two processing frequencies except fv and fv+1.

Let S′ps = ([(fa, ta), (fb, tb)]) denotes any other valid processing strategy using two frequencies except
[(fv, tv), (fv+1, tv+1)], and k′ is the number of faults can be tolerated at most under S′ps. Then the
possible combinations of fa and fb should fall into the following two categories:
B.1) fa ≥ fv+1, fb ≥ fv+1

B.2) fa ≤ fv, fb > fv+1 or fa < fv, fb ≥ fv+1

For B.1), as both fa and fb are no lower than fv+1, therefore, S′ps consumes more energy than the
processing strategy as ([(fv, tv), (fv+1, tv+1)]).

For B.2), assume the checkpointing strategy is Scp, then the reliability and energy consumption un-
der processing strategy Sps can be expressed as RA(Scp, Sps, k) = r(λ(fv)tv + λ(fv+1)tv+1, Scp, k) and
EA(Scp, Sps, k) = δ(fv)tv + δ(fv+1)tv+1, respectively. Similarly, we have RA(Scp, S

′
ps, k

′) = r(λ(fa)ta +
λ(fb)tb, Scp, k

′), EA(Scp, S
′
ps, k

′) = δ(fa)ta+δ(fb)tb, respectively. Now we need to prove EA(Scp, S
′
ps, k

′) >
EA(Scp, Sps, k).

Considering another processing strategy S′′ps = [(fv, t
′
v), (fv+1, t

′
v+1)] with t′v + t′v+1 = ta + tb and

fvt
′
v + fv+1t

′
v+1 = fata + fbtb, then we know at most k′ faults can be tolerated and RA(Scp, S

′′
ps, k

′) =

r(λ(fv)t
′
v + λ(fv+1)t′v+1, Scp, k

′). By defining t̃ = ta + tb and f̃ = fata+fbtb
t̃

, we have fvt
′
v + fv+1t

′
v+1 =

fata + fbtb = t̃f̃ . As λ(f) is decreasing and convex, by denoting λ1 = λ(fv)
t′v
t̃

+ λ(fv+1)(
t′v+1

t̃
) and

λ2 = λ(fa) ta
t̃

+ λ(fb)(
tb
t̃

), we have λ1 < λ2 (Fig. 8(a)). As r(x, Scp, k
′) is decreasing for given Scp and

k′ when x > 0, we have r(t̃λ1, Scp, k
′) > r(t̃λ2, Scp, k

′), which implies RA[Scp, S
′′
ps, k

′] > RA(Scp, S
′
ps, k

′).
As S′ps is valid, and the processing strategy S′′ps costs the same time unit and has higher reliability than
S′ps, hence, which is also valid.

For the energy consumption, as δ(f) = Pind+Ceff
Cm(Cm ≥ 2) is increasing and convex for f > 0, as

shown in Fig. 8(b), by setting δ1 = δ(fv)
t′v
t̃

+ δ(fv+1)
t′v+1

t̃
and δ2 = δ(fa) ta

t̃
+ δ(fb)

tb
t̃

, where t̃ = ta+ tb =
t′v+t′v+1, we have δ1 < δ2, then δ(fv)t

′
v+δ(fv+1)t′v+1 < δ(fa)ta+δ(fb)tb, which implies EA(Scp, S

′′
ps, k

′) <
EA(Scp, S

′
ps, k

′). As Sps is the optimal processing strategy if frequencies fv and fv+1 are chosen, then
we have EA(Scp, Sps, k) ≤ EA(Scp, S

′′
ps, k

′), hence, we have EA(Scp, Sps, k) < EA(Scp, S
′
ps, k

′).
C) The processing strategy Sps consumes less energy than any valid one with multiple (three or even

more) processing frequencies.
Suppose PR′′′ = [(fc, tc), (fc+1, tc+1), · · · , (fd, td)] with fd > ... > fc+1 > fc and d − c + 1 ≥ 3 is a

valid processing strategy, and up to k′′ faults can be tolerated. Then either
C.1) fc ≥ fv+1

or,
C.2) fc ≤ fv and fd ≥ fv+1

For C.1), all the processing frequencies in S′′′ps is no lower than fv+1, which implies the energy
consumption of which is higher than that under Sps.

For C.2), assume the processing strategy is [(fc, tc), ..., (fj , tj), (fj+1, tj+1), (fd, td)] with fj ≤ fv
and fj+1 ≥ fv+1, then according to lemma 2, the processing strategy ([(f ′c,

∑j
i=c ti), (f

′
d,
∑d
i=j+1 ti)])

with f ′c(
∑j
i=c ti) =

∑j
i=1 fiti and f ′d(

∑d
i=j+1 ti) =

∑d
i=j+1 fiti has higher reliability and less energy

consumption.
Based on proof in B), the processing strategy [(fv, tv), (fv+1, tv+1)] is the optimal one when two

frequencies are chosen, which means it costs less energy than PR′′′, hence, we get the conclusion.
Finally, A), B) and C) conclude the proof for Lemma 5.
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