
Department of Computing Science
Illinois Institute of Technology

A New Metric for Quantifying Similarity between

Timing Constraint Sets in Soft Real-Time Systems

Yue Yu and Shangping Ren

Department of Computing Science
Illinois Institute of Technology

10 W. 31st Street, Chicago, IL 60616

Telephone (312) 567-5215
Facsimile (312) 567-5067

Email {yyu8, ren}@iit.edu

Technical Report CS-115-01-02-2009

February 8, 2009

Acknowledgements

We would like to thank Dr. Sharon Hu for her insightful comments and suggestions on this work and
would also like to thank Thidapat Chantem for her help with ILOG CPLEX R© while solving the MILP
formulation in Section 6.3.

The research is supported by NSF under CAREER grant CNS 0746643

i

Abstract

Real-time systems are systems that their timing behaviors must satisfy a specified set of timing con-
straints and they often operate in a real-world environment with scarce resources. As a result, real-world
performance of these systems may deviate from the design, either inevitably due to unpredictable factors,
or by intention in order to improve system’s other quality-of-service (QoS) properties. In this paper, we
first introduce a new metric, constraint set similarity, to quantify the resemblance between two different
timing constraint sets. Because directly calculating the exact value of the metric involves calculating the
size of a polytope which is a #P -hard problem, we instead introduce an efficient method for estimating
its bound. We further illustrate how this metric can be exploited for improving system predictability and
evaluating trade-offs between timing constraint compromises and system’s other QoS property gains.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Motivation and Related Work 2

3 Timing Constraint Set Normal Form 3

4 Similarities between Timing Constraint Sets 8
4.1 Similarities between Constraint Sets . 8
4.2 Discussions . 13

5 Application 1: Predicting Tracking Error Rate Based on Constraint Similarity 16

6 Application 2: Improving Systems’ QoS Properties with Constraint Similarity Guar-
antees 18
6.1 System and Task Model . 20
6.2 Reducing Total Energy Consumption . 20
6.3 Determining Constraint Relaxations . 22

7 Conclusion 24

iii

List of Figures

1 The feasible region of constraint 0ms < t(fj)− t(sj) ≤ 22ms. 4
2 The feasible region of a constraint set (1). 5
3 The feasible regions satisfying constraint 0 < t(fj)− t(sj) ≤ 22 and 0 < t(fj)− t(sj) ≤ 25. 8
4 The feasible regions satisfying constraint sets (1) (bold lines) and (14) (light lines), and

their intersection (the shaded region). 9
5 Fixing t(e3) at 5 in (14) can be interpreted as using the plane t(e3) = 5 to cut the feasible

region of (14) in Fig. 4 and view the slice in the x1x2 (t(e1)t(e2)) plane. 11
6 Feasible region similarities of non-uniformly distributed timed data streams. 14
7 Similarity relation is not transitive. 15
8 Similarity between general timing constraint sets. 16
9 Four sensors tracking a moving target. 17
10 Actual trajectories and sensed coordinates of the moving target before and after the data

consistency constraints are modified. 19

iv

List of Tables

v

1 Introduction

Software for real-world systems often operates in an unpredictable environment and interacts with phys-
ical machineries. Hence, for most of these software systems, it is difficult and unrealistic to implement
them in such a way that they behave precisely as specified due to the following facts:

• System Complexity The ever-increasing complexities of software systems have made guarantees
of exact system behavior impractically expensive, if not impossible. For example, advances in
computer architecture and software have made it difficult to predict the execution time of software,
and networking techniques further introduce variability and stochastic behavior into the system [?].

• Unpredictable Operating Environment The intrinsically unpredictable nature of the environ-
ments in which software systems operate determines that even though software operates precisely
as designed, its interactions with the outer world may not be totally expected. For example, Jack-
son et al. have shown that several aircraft accidents have been attributed to “mode confusion”,
where the software operated as designed but not as expected by the pilots [?].

• Computational Intractability From a theoretical point of view, achieving exactness in the
verification of system properties is sometimes intractable. For example, Alur and Dill have shown
that the satisfiability of a very simple class of real-time properties such as “every p-state is followed
by a q-state precisely 5 time units later” turns out to be undecidable in a continuous time model [?].
Although several real-time logics are decidable under discrete approximations of real time [?] or
under interval timing constraints [?], these models unfortunately prohibit infinite precision.

Moreover, real-time and embedded systems often face trade-offs between time and limited resources.
Therefore, even if a system can be implemented precisely as specified, relaxing some of the specifications
may reduce resource consumptions: for hard real-time systems, all timeliness requirements must be
met and thus optimizing other properties such as minimizing energy consumption must not violate
timing constraints; for soft real-time systems, on the other hand, the requirement for timing constraint
satisfaction guarantees is not as stringent. Such timing flexibility allowed by soft real-time systems can
often be utilized to improve system’s other QoS properties, such as reduce total energy consumption.
A challenging task in investigating the trade-offs between timing constraint satisfaction and other QoS
properties is how to quantify the degree of timing constraint satisfaction. That is, how do we measure the
level of satisfaction for some given timing behavior with respect to a set of timing constraints? Another
closely related challenge is to determine which timing constraints to be relaxed and by how much in order
to achieve certain other QoS objectives, e.g., energy consumption bound. Though some researchers have
studied problems that are somewhat related to the above problems (to be discussed in the next section),
we contend that there exists no systematic approach for tackling these challenges.

In this paper, we propose a framework for measuring timing constraint satisfaction which can be used
to address the above challenges. Specifically, we introduce a novel metric, i.e., constraint set similarity,
to capture the resemblance between two timing constraint sets. It is defined in terms of the common
feasible region of two systems constrained by the two given timing constraint sets. This value reflects
the probability of timing constraint satisfaction when the original timing constraints are violated or
intentionally modified for improving QoS properties.

However, directly calculating the exact value of similarity between two sets of timing constraints is
computationally intractable. To overcome this difficulty, we leverage the concept of similarity bound and
derive a closed form formula for computing a tight similarity bound. This bound can be used to guide
the design process and provide confidence guarantees on certain QoS properties.

To show how one may use the timing constraint similarity metric to predict real-world performances
and guide design processes of real-time embedded systems, we

1. study the similarities between timing constraint sets in the specification of an object tracking system
and its real-world deviation, and use the similarity to infer the relationships on other properties
fulfilled by different but similar systems;

2. give a detailed design example in which a set of soft real-time tasks are executed on a multiprocessor
system-on-chip (MPSoC) and the goal is to trade timing constraint satisfaction for reducing energy
consumption. This concrete example serves as a demonstration that the similarity metric provides
an effective tool to measure and guide the trade-offs between different QoS properties.

1

The rest of this paper is organized as follows. Next section provides a motivating example and
reviews related work. Section 3 introduces a timing constraint set normal form. It is used to establish
the constraint similarity metric. Section 4 presents the similarity metric that quantifies how much one set
of timing constraints resembles another. Section 5 applies the theory of timing constraint similarities to
an object tracking system for predicting tracking error rates. Section 6 studies how the theory of timing
constraint similarities can be utilized to reduce the total energy consumption of an MPSoC system with
minimal changes to the satisfaction of original timing constraints. Finally, we conclude and point out
future work in Section 7.

2 Motivation and Related Work

To be able to quantify the level at which a timing constraint is satisfied in a soft real-time system has
several important implications. For instance, it provides a systematic way to compare different system
implementations when none of them can strictly meet the given timing constraints. In addition, it allows
studies of “what if” scenarios where certain timing constraints are relaxed to some extent in order to
improve other QoS properties. Furthermore, it can be used to judiciously decide design specifications.

One intuitive way to quantify the level of timing constraint satisfaction is to measure the probability
with which a system satisfying a set of modified timing constraints still satisfies the original timing
constraints. With such a probability, design alternatives with different timing behavior can be easily
compared. We use a simple example to illustrate this point.

Example 1 Consider scheduling a task j with a relative deadline of 22ms on an MPSoC with three cores
m1, m2, and m3. The worst-case execution times (WCETs) of j on m1, m2, and m3 are 20ms, 25ms,
and 30ms with peak powers 10W , 7W , and 6W , respectively. For simplicity, we also assume that the
actual execution times are uniformly distributed between 5ms and respective WCETs. Now, if we need
to limit the peak power to be less than 8W , but allow some deadline misses, we can schedule the task on
either m2 or m3. If we schedule the task on m2, for instance, what we can guarantee is the satisfaction
of a constraint with a relative deadline of 25ms, rather than 22ms. Similarly, with the task on m3, we
can guarantee the satisfaction of a deadline of 30ms. In other words, in this example, to maintain the
peak power below 8W , we have two different approaches. Now, the question is from timing perspective,
which one is a better option?

If task j is executed on m2, the probability of the system satisfying the original timing constraint of
22ms is 22−5

25−5 = 85%. The probability reduces to 22−5
30−5 = 68% if task j is executed on m3. So for this

simple example, the answer to the question above is obvious. That is, from the timing perspective, using
m2 is better than m3. Note that this conclusion coincides with the intuition that 25ms is ‘closer’ to
22ms than 30ms. However, this may not always be true — One could easily see this by considering the
extreme case where the best-case execution time of j on m2 is greater than 22ms. �

From the above simple example, one can see that the probability with which a system satisfying a
set of modified timing constraints still satisfies the original timing constraints can be used effectively
to compare design alternatives with different timing behaviors. Now the challenge is how to measure
such a probability when there are more complex timing constraints involved. Furthermore, given the
timing constraint satisfaction as one of the system comparison criteria, how can we find a subset of
constraints from a given constraint set and modify them so that the required non-timing properties (e.g.,
power consumption) are satisfied, but the timing property change is minimal, or the timing property is
the most similar (closest) to the original one? The goal of this paper is to address these questions by
introducing a new metric.

As related work, many researchers have studied feasibility probabilities for tasks with varying exe-
cution times. Tia et al. [?] propose a way to find the probability of a single task meeting its timing
constraint, referred to as task feasibility probability. Kalavade et al. [?] present an approach to compute
the probability of any single task delay exceeding its deadline, which is equivalent to the task feasibility
probability. However, Hu et al. point out in [?] that the probability of each individual task meeting its
timing constraint is not sufficient in several situations since there often exists strong correlation among
events of tasks meeting their deadlines. The authors give a new metric that considers the overall system
probabilistic behavior where tasks have their individual deadlines and the correlations between tasks are
captured by precedence constraints. With this metric in the system-level design exploration process, one

2

can readily compare the probabilistic timing performance of alternative designs. Based on [?], Wang et
al. [?] define a design metric called performance yield, which is the probability of the assigned schedule
meeting the predefined performance constraints. However, none of these works consider the problem
of measuring the level of timing constraint satisfaction when the original timing constraints cannot be
satisfied or are intentionally modified.

Our study, on the other hand, focuses on a more generalized constraint model where correlation
between tasks are treated as linear timing constraints. More specifically, we study similarities between
two different timing constraint sets and use the similarity value to infer constraint satisfaction probability
of a system that satisfies one set of timing constraints satisfies the other. Note that some of the feasibility
research results can be used in combination with our proposed approach.

Many notions on similarities have been defined in the literature for process models. Gupta et al. [?]
give a pseudometric analogue of bisimulation for generalized semi-Markov processes and show that two
metrically similar processes have similar observable quantitative properties. Thorsley et al. [?] use
Wasserstein pseudometrics to quantify the similarities between stochastic processes and introduce an
algorithm to approximate the pseudometrics directly from sampled data rather than from process mod-
els themselves. The notion of similarity on other models are also studied, e.g., in [?, ?, ?]. However,
the pseudometrics proposed in these works are used to compare processes. Though there are similar-
ities between the idea of introducing quantitative metrics to measure two non-equivalent processes or
constraints, the metrics introduced in this paper not only measures the resemblance between two sets
of timing constrains, but also provides quantitative design guidance in deciding the trade-offs between
constraint satisfaction and other QoS properties.

Trading one QoS property for another has been studied in various contexts. For example, reducing
energy consumption through compromising system performance has been considered in a wide spectrum
of computing. To name a few, Moscibroda et al. discuss the trade-off between energy efficiency and
rapidity of event dissemination in ad hoc and sensor networks [?]; in high performance computing, Feng
et al. analyzed NAS and SPEC suites to determine the relationship between frequency and voltage
settings and execution time, and show that a significant decrease in energy is possible with a small
increase in time [?]. In fact, for real-time and embedded system, dynamic voltage scaling techniques,
which reduce system supply voltage for lower operation frequencies, has been extensively used in various
power management schemes [?,?,?]. However, to our best knowledge, there is no quantitative study of
trading timing constraint satisfaction in soft real-time systems for other QoS properties.

3 Timing Constraint Set Normal Form

In this section, we introduce the geometric foundations for characterizing timing constraint sets. The
constraint normal form defined in this section will be used to establish constraint similarity metrics in
Section 4.

In our system model, we take a commonly used approach in that system behaviors (or computations)
are represented as data streams, i.e., a sequence of event occurrences (e1, e2, . . . , en) [?], and a timed
data stream is formed by pairing each event ei with its corresponding occurrence time t(ei), as defined
below [?]:

Definition 1 (Timed Data Stream) A timed data stream (TDS) is a sequence ((e1, t(e1)), (e2, t(e2)), . . . , (en, t(en)))
where (t(e1), t(e2), . . . , t(en)) is a monotonically increasing sequence with elements in <+ ∪{+∞}. Geo-
metrically, a TDS is represented as a point in |E|-dimensional space where each axis represents an event
and the projection of the point on the axis represents the occurrence time of the corresponding event. �

Without timing constraints, events can occur at any time instances and thus the set of all TDS’s
occupies the entire nonnegative portion of the |E|-dimensional space. However, when a set of timing
constraints of the form t(ei) − t(ej) ≤ d(d ∈ <+ ∪ {+∞}) exists, the set of TDS’s satisfying the set
of timing constraints is only a convex region in the |E|-dimensional space and we call it feasible region
throughout the paper. Feasible regions are the key in comparing timing constraint sets and we illustrate
them in Example 2 and 3.

3

Figure 1: The feasible region of constraint 0ms < t(fj)− t(sj) ≤ 22ms.

Example 2 (2-Dimensional Feasible Region) Let sj and fj be the events that task j starts and
finishes, the feasible region of the relative deadline constraint 0 < t(fj) − t(sj) ≤ 22 in Example 1 is
shown in Fig. 1 (shaded area)

In the figure, TDS ((sj , 20), (fj , 38)) in the feasible region satisfies the relative deadline constraint,
while TDS’s ((fj , 16), (sj , 28)) and ((sj , 8), (fj , 40)) outside the feasible region violates causality t(sj) −
t(fj) < 0 and deadline t(fj)− t(sj) ≤ 22, respectively. �

The dimension of feasible regions becomes higher when the number of constrained events increases.
Consider the following example:

Example 3 (3-Dimensional Feasible Region) Let the set of timing constraints that specify the rel-
ative time spans among three events be{

t(e1)− t(e2) ≤ 6, t(e2)− t(e1) ≤ 6,
t(e1)− t(e3) ≤ 7, t(e3)− t(e1) ≤ 3,
t(e2)− t(e3) ≤ 9, t(e3)− t(e2) ≤ 14

}
(1)

Each timing constraint confines a half space in the 3-dimensional space and the intersection of such half
spaces is the feasible region. The feasible region of (1) is shown in Fig. 2 with its boundaries marked as
bold lines.

In the figure, the pentagonal prism circumscribed by all but the plane representing the constraint
t(e3) − t(e2) ≤ 14 characterizes the feasible region, i.e., each point (t(e1), t(e2), t(e3)) in the region
satisfies constraint set (1). �

From Example 2 and 3, we can see that a feasible region characterizes all valid execution time traces,
i.e., a system’s valid timing behaviors under a set of timing constraints. However, when the dimension of
a feasible region becomes higher, its shape becomes more complex and makes the graphical representation
difficult. In order to compare feasible regions, alternative ways to represent high dimensional feasible
regions are needed.

We introduce an algebraic representation to describe feasible regions such that comparisons can be
directly made between feasible regions. This representation builds on the concept of the most stringent
constraints, which we explain below by using Example 3 again. Examine the feasible region of Example 3
shown in Fig. 2. Note that the shape of the feasible region of (1) does not change when the constraint
t(e3)− t(e2) ≤ 14 is changed to t(e3)− t(e2) ≤ 9 (or any other constraint value larger than 9). In fact,
t(e3)− t(e2) ≤ 9 is the most stringent timing constraints between event e3 and e2 which can be implied
by the given constraint set.

For a given set of timing constraints, we can find the most stringent constraint set by leveraging the
approach of finding all-pairs shortest paths. Specifically, we construct a constraint graph G by defining
the vertex set of G as the set of events in the timing constraint set; for every two vertices ei, ej in G,
there is an edge from ei to ej with weight d if there is a constraint t(ei)− t(ej) ≤ d. The most stringent
timing constraint implied by the given constraint set between every pair of events, t(ei) − t(ej) ≤ d∗i,j ,

4

Figure 2: The feasible region of a constraint set (1).

can hence be derived from applying the Floyd-Warshall all-pairs shortest paths algorithm on G [?]. The
most stringent constraint set has an important property which is summarized in the following lemma
which shows that the feasible region of a set of real-time constraints does not change when constraints
between all event pairs are replaced by the corresponding most stringent constraints derived from the
Floyd-Warshall algorithm.

Lemma 1 Given a set of m timing constraints of the form t(ei) − t(ej) ≤ dk among n events, At ≤
d, where A is an m × n matrix, t =

[
t(e1) . . . t(en)

]T, and d =
[

d1 . . . dm

]T. We have

{t |At ≤ d} =
{
t
∣∣∣Ãt ≤ d̃

}
, i.e., the set of solutions of At ≤ d is the same as the set of solutions of

Ãt ≤ d̃ where

Ã =

1 −1
1 −1
...

. . .

1 −1

−1 1
1 −1
...

. . .

1 −1
... · · ·

...

−1 1
−1 1

. . .
...

−1 1

and d̃ =

d∗1,2

d∗1,3

...
d∗1,n

d∗2,1

d∗2,3

...
d∗2,n

...

d∗n,1

d∗n,2

...
d∗n,n−1

(2)

and d∗i,j , i 6= j are the shortest path weights.
Proof:

5

(i) {t |At ≤ d} ⊇
{
t
∣∣∣Ãt ≤ d̃

}
This directly follows from the fact that A contains some rows of Ã and the corresponding d’s in d is

no less than those in d̃ (the shortest path weights).
(ii) {t |At ≤ d} ⊆

{
t
∣∣∣Ãt ≤ d̃

}
Assume to the contrary that there is a vector t′ =

[
t1 . . . tn

]T s.t. t′ ∈ {t |At ≤ d} ∧ t′ /∈{
t
∣∣∣Ãt ≤ d̃

}
. This implies that the following set of linear inequalities has no solution I

−I
Ã

 t ≤

 t′

−t′

d̃

 (3)

Based on Farkas’ Lemma, together with the infeasibility of (3), we have that there exists an (n2 + n)-
vector

[
tT
1 tT

2 tT
3

]T where t1 and t2 are two n-vector and tT
3 is a (n2−n)-vector, such that (4), (5),

and (6) hold [
I −I ÃT

] t1

t2

t3

 = 0 (4)

 t1

t2

t3

 ≥ 0 (5)

[
t′T −t′T d̃T

] t1

t2

t3

 < 0 (6)

From (4) we have that
t1 − t2 = −ÃTt3 (7)

Insert (7) into (6) we have that

−t′TÃTt3 + d̃Tt3 =
(
d̃T − t′TÃT

)
t3 < 0 (8)

Therefore, it must be that
∃i, j : d∗i,j < ti − tj (9)

since otherwise d̃T − t′TÃT ≥ 0 together with (5) would imply
(
d̃T − t′TÃT

)
t3 ≥ 0 which contra-

dicts (8). However, (9) contradicts the fact that d∗i,j is the optimal solution to the linear program

maximize t(ei)− t(ej)
subject to At ≤ d (10)

i.e., d∗i,j is the shortest path weight. Therefore, we have {t |At ≤ d} ⊆
{
t
∣∣∣Ãt ≤ d̃

}
and thus {t |At ≤ d} ={

t
∣∣∣Ãt ≤ d̃

}
. �

An important implication of Lemma 1 is that the shape of the feasible region is determined solely by
the most stringent timing constraints between all pairs of events. Therefore, the constraint matrix that
represents the most stringent constraints among all pairs of events uniquely characterizes the shape of
the feasible region. We define this as the normal form of the constraint set.

Definition 2 (Constraint Set Normal Form) Given a timing constraint set C and the correspond-
ing constraint graph G, its all-pairs shortest paths matrix, denoted as D∗, where

D∗ =

0 d∗1,2 · · · d∗1,n

d∗2,1 0 · · · d∗2,n

...
...

. . .
...

d∗n,1 d∗n,2 · · · 0

 (11)

6

and d∗i,j is the shortest path weight between t(ei) and t(ej) in the constraint graph G. D∗ is called
constraint set C’s normal form. �

With Definition 2, the inclusion relation of two feasible regions defined by two timing constraint sets
can be validated by comparing the constraint sets’ normal forms.

Theorem 1 Given two sets of real-time constraints C = At ≤ d and C ′ = A′t ≤ d′ on the same set of
events1. Let their corresponding normal forms be D∗ and D′∗, respectively. The feasible region of C ′ is
included within that of C if and only if D∗ ≥ D′∗, i.e., ∀i, j : d∗i,j ≥ d′∗i,j.
Proof:

Note that the feasible region of A′t ≤ d′ is included in that of At ≤ d iff the feasible region of[
A
A′

]
t ≤

[
d
d′

]
is same as that of A′t ≤ d′. Hence, we can instead prove that the feasible regions of[

A
A′

]
t ≤

[
d
d′

]
and A′t ≤ d′ are the same iff D∗ ≥ D′∗. In the following, for a constraint normal

form D∗, we use its equivalent system of linear inequalities representation Ãt ≤ d̃ where Ã and d̃ are
defined in (2).
(i) D∗ ≥ D′∗ ⇒ C includes C ′:

Suppose we have D∗ ≥ D′∗, i.e., d̃ ≥ d̃′, it is not hard to see that
[eAeA

]
t ≤

[eded′
]

has the same

feasible region as Ãt ≤ d̃′. Then, from Lemma 1,
[

A
A′

]
t ≤

[
d
d′

]
has the same feasible region as

A′t ≤ d′.
(ii) C includes C ′ ⇒ D∗ ≥ D′∗:

If
[

A
A′

]
t ≤

[
d
d′

]
has the same feasible region as A′t ≤ d′, then from Lemma 1,

[eAeA
]
t ≤

[eded′
]

has the same feasible region as Ã′t ≤ d̃′. To prove the necessary condition, we should have D∗ ≥ D′∗,
i.e., d̃ ≥ d̃′. Assume to the contrary that there is some d∗i,j in d̃ and d′∗i,j in d̃′ such that d∗i,j < d′∗i,j .
Since d′∗i,j is the optimal solution to the linear program

maximize t(ei)− t(ej)
subject to Ãt ≤ d̃′

(12)

and thus the optimal solution to the linear program (13)

maximize t(ei)− t(ej)

subject to

[
Ã
Ã

]
t ≤

[
d̃
d̃′

]
(13)

However, the optimal solution to (13) can be at most d∗i,j when the solution set of
[eAeA

]
t ≤

[eded′
]

is

not empty. The contradiction implies that D∗ ≥ D′∗. �

From Theorem 1, we have the following:

D∗ = D′∗ ⇔ D∗ ≥ D′∗ ∧D′∗ ≥ D∗

⇔ feasible region of C include that of C ′

∧ feasible region of C ′ include that of C

⇔ feasible regions of C and C ′ are identical

In other words, there is a one-to-one correspondence between a timing constraint normal form and
a feasible region. Therefore, the constraint normal form bridges the geometric problem of a feasible
region and their corresponding algebraic problem of linear inequalities and can serve as the algebraic
representation that we stated earlier in this section. We can hence derive the relationship between
feasible regions of two different constraint sets by studying the constraint normal forms.

1Note that the event sets of the two constraint sets need not be the same in order for the two feasible regions to be
comparable. One can always extend both event sets to the same one by adding unconstrained events.

7

4 Similarities between Timing Constraint Sets

The example in Section 1 has shown that timing constraint changes often affect system’s other QoS
properties. In other words, there are trade-offs between the stringency of timing constraints and other
QoS properties. For instance, relaxing some deadlines, or allowing certain probability of constraint
violations, may reduce total energy consumptions. It is hence important to know how much the timing
behavior compromise is in order to bring such QoS benefits.

4.1 Similarities between Constraint Sets

In this section, we focus on quantifying timing behavior similarities and we base our model on the
feasible regions of timing constraint sets discussed in Section 3. The following example of the similarities
between feasible regions in 2 and 3-dimensions gives the intuition. Note that in the following discussions,
for simplicity, we assume that event occurrence times allowed by a set of constraints are uniformly
distributed in the feasible region of the constraint set.

Example 4 (Feasible Region Similarity) In Example 1, the original constraint was 0 < t(fj) −
t(sj) ≤ 22 and the relaxed one is 0 < t(fj)− t(sj) ≤ 25. The relationship between the two corresponding
feasible regions is depicted in Fig. 3.

Figure 3: The feasible regions satisfying constraint 0 < t(fj)− t(sj) ≤ 22 and 0 < t(fj)− t(sj) ≤ 25.

As can be seen from the figure, timed data stream ((sj , 20) , (fj , 38)) satisfies both constraint sets while
((sj , 8) , (fj , 32)) satisfies only the relaxed deadline. In fact, the common area of the two feasible regions
occupies 22

25 = 88% of that of the relaxed deadline 25ms.
Advancing to 3-dimensional feasible regions, consider the feasible region of the following timing con-

straint set that has three events:{
t(e1)− t(e2) ≤ 5, t(e2)− t(e1) ≤ 7,
t(e1)− t(e3) ≤ 5, t(e3)− t(e1) ≤ 2,
t(e2)− t(e3) ≤ 10, t(e3)− t(e2) ≤ 5

}
(14)

The relationship between feasible regions satisfying constraint sets (1) and (14) is illustrated in Fig.4,
where bold lines, light lines, and the shaded region represent constraint sets (1), (14), and the intersection
between their feasible regions, respectively.

From Fig.4, we can see that although feasible regions satisfying constraint sets (1) and (14) are not
identical, they share some common region. Hence, we can expect that they have some timing behaviors
in common. �

Generalizing the above discussions, we define the similarity between two timing constraint sets as the
following:

Definition 3 (Constraint Set Similarity) Let S(C) denote the size of the feasible region of a timing
constraint set C. Given two timing constraint sets C,C ′, the similarity relation is defined as C ∼ C ′ =
S(C∩)
S(C′) , where C∩ is the intersection of C and C ′. �

8

Figure 4: The feasible regions satisfying constraint sets (1) (bold lines) and (14) (light lines), and their
intersection (the shaded region).

Intuitively, if C ∼ C ′ = P%, i.e., the intersection of the feasible regions of constraint sets C and C ′

occupies P% of the feasible region of C ′, we know that P% of all the timed data streams satisfying C ′

satisfies C. Therefore, system satisfying C ′ will have a P% guarantee of satisfying C. Unfortunately,
directly calculating the similarity between two sets of complete timing constraints is difficult. In fact,
calculating the size of a polytope formed by a set of linear inequalities (S(C) in our context) has been
shown to be #P -hard [?], and thus directly calculating the proportions of the intersection in any of
the feasible regions, i.e., the similarity metric, by comparing their sizes is costly. To overcome the
computational hurdle of evaluating directly the constraint set similarity between two constraint sets, we
resort to finding a lower bound on the constraint set similarity such that it is easily computable and is
tight. The following theorem defines such a bound.

Theorem 2 Given two timing constraint sets C and C ′, and corresponding normal forms be D∗ and
D′∗, respectively. If the feasible region of C ′ is not included in that of C, i.e., D∗ � D′∗, then the
similarity is bounded by: min

i,j=1,...,n,
i 6=j, d∗i,j≤d′∗i,j

{
d∗i,j
d′∗i,j

}
|E|−1

≤ C ∼ C ′ < 1 (15)

where |E| is the cardinality of the event set being constrained, d∗i,j and d′∗i,j are the corresponding entries
in D∗ and D′∗, respectively. The similarity reaches upper bound 1 when feasible region of C ′ is included
in that of C, i.e., D∗ ≥ D′∗.
Proof Preliminary:

Before giving the formal proof for the theorem, we briefly introduce some background in computing
volumes of high-dimension polytopes. In [?], Lawrence gives an algorithm for computing polytope volume
based on a combinatorial form of Gram’s relation. A convex polytope P is given as

P = {x ∈ <n : x ≥ 0,Ax ≤ b} (16)

where A is an m×n matrix and b is a column vector in <m which has only nonnegative entries. If P is

9

a simple (or non-degenerate)2 polytope, then the volume of P can be derived by extracting parameters
from basic feasible tableaux for the following linear programming problem

maximize f(x)
subject to Ax ≤ b, x ≥ 0 (17)

where f(x) = ctx + d can be any function that is not constant on any one of the hyperplanes defining
P . The volume of P , denoted as vol(P), is thus computed as

vol(P) =
∑

all vertices v of P

1
n!

1
δv

d̃n

γi1 · · · γin

(18)

where δv is the cumulative product of the pivot elements, γi1 , · · · , γin
are the non-basic feasible solutions,

and d̃ is the value of the objective function. The pivot elements, non-basic feasible solutions, and the
values of the objective function can all be retrieved from the basic feasible tableaux for (17).

To apply the volume computation algorithm in our setting, the following issues need to be addressed:

1. As can be seen in Fig. 2, the feasible region formed by the intersections of half spaces corresponding
to timing constraints is not bounded. We need to find a way to bound the feasible region.

2. The volume computation algorithm crucially relies upon simplex-pivoting-based vertex enumera-
tion algorithms. However, McMullen [?] has shown that the maximum number of vertices a poly-
tope defined by m inequalities on n non-negative variables can have is (m+bn/2c

m) + (m+dn/2e+1
m).

Therefore, in (18), summing for “all vertices v of P” generally has exponential cost. In fact, Dyer
et al. [?] have shown that computing vol(P) is #P -hard. Therefore, in our context, directly cal-
culating the proportion of the intersection in any of the feasible regions by comparing the volumes
is costly. We need to find a way to utilize the special properties of the feasible regions being
compared.

The first issue can be addressed by “fixing” one of the n timers of events e1, . . . , en. As the selection
of the “fixed” one does not change the ratio of the intersection in any of the feasible regions, without loss
of generality, we choose to fix t(en) at d = maxi=1,...,n−1 d∗n,i(in fact, as can be seen from (2), d could be
any value larger than maxi=1,...,n−1 d∗n,i). The geometric interpretation for this is that the hyperplane
t(en) = d is used to “cut” the feasible region so that the resulting region is bounded in <n−1.

Example 5 For example, in (14), if we let t(e3) = 5, the constraint set becomes{
t(e1)− t(e2) ≤ 5, t(e2)− t(e1) ≤ 7,
t(e1) ≤ 10, t(e1) ≥ 3, t(e2) ≤ 15

}
(19)

which is illustrated as dash line segments in Fig. 5.
Since the volume computation algorithm requires that the origin in <n is a vertex of the polytope3,

we shift the feasible region to the origin (illustrated as the gray region in Fig. 5), the constraint set will
become {

t(e1)− t(e2) ≤ 2, t(e2)− t(e1) ≤ 10,
t(e1) ≤ 7, t(e2) ≤ 15

}
(20)

As can be easily seen from the figure, the area of the feasible region is 80. To gain some insights into the
volume computation algorithm which will facilitate our proof of Theorem 2, we illustrate the derivation
of the area using the algorithm as follows:

Adopting the volume computation algorithm on the bounded feasible region, we choose the objective
function f((t(e1), t(e2))T) = t(e1) + t(e2) and have the initial tableau 1 −1 1 0 0 0 2 = d′∗3,1 + d′∗1,2 − d′∗3,2

−1 1 0 1 0 0 10 = d′∗3,2 + d′∗2,1 − d′∗3,1
1 0 0 0 1 0 7 = d′∗3,1 + d′∗1,3
0 1 0 0 0 1 15 = d′∗3,2 + d′∗2,3

−1 −1 0 0 0 0 0

 (21)

2An n-dimensional simple (or non-degenerate) polytope is a polytope where each vertex is the intersection of exactly n
hyperplanes (defined by n of the m inequalities in (16) with ≤ replaced by =). This requirement is inherited from vertex
enumeration algorithms used in the volume computation algorithm. Although feasible regions in this paper are sometimes
not non-degenerate, the requirement can be dropped by perturbing the auxiliary hyperplanes by a very small amount and
the same result holds.

3This requirement can be discarded by lexicographic techniques for handling primal degeneracy in linear programming.

10

Figure 5: Fixing t(e3) at 5 in (14) can be interpreted as using the plane t(e3) = 5 to cut the feasible
region of (14) in Fig. 4 and view the slice in the x1x2 (t(e1)t(e2)) plane.

where we have n = 3− 1 = 2, δv = 1 (the initial pivot element enclosed in a box in (21)), the non-basic
feasible solutions are the two nonnegative numbers (−1,−1) in the lower left partition of the tableau, and
d̃ = 0 (the lower right partition of the tableau, i.e., the value of the objective function at the current
vertex (0,0)). Then the first element of the summation in (18) is 1

2!
1
1

02

(−1)(−1) = 0. Continuing pivoting
at (t(e1), t(e2)) = (2, 0) using the 1st row, we have

1 −1 1 0 0 0 2 = d′∗3,1 + d′∗1,2 − d′∗3,2
0 0 1 1 0 0 12 = d′∗1,2 + d′∗2,1

0 1 −1 0 1 0 5 = d′∗1,3 + d′∗3,2 − d′∗1,2
0 1 0 0 0 1 15 = d′∗3,2 + d′∗2,3
0 −2 1 0 0 0 2 = d′∗3,1 + d′∗1,2 − d′∗3,2

 (22)

and 1
2!

1
1

22

(−2)(1) = −1. Pivoting at (t(e1), t(e2)) = (7, 5) using the 3rd row, we have
1 0 0 0 1 0 7 = d′∗1,3 + d′∗3,1
0 0 1 1 0 0 12 = d′∗1,2 + d′∗2,1
0 1 −1 0 1 0 5 = d′∗1,3 + d′∗3,2 − d′∗1,2

0 0 1 0 −1 1 10 = d′∗1,2 + d′∗2,3 − d′∗1,3
0 0 −1 0 2 0 12 = 2d′∗1,3 + d′∗3,1 + d′∗3,2 − d′∗1,2

 (23)

and 1
2!

1
1

122

(−1)(2) = −36. Pivoting at (t(e1), t(e2)) = (7, 15) using the 4th row, we have
1 0 0 0 1 0 7 = d′∗1,3 + d′∗3,1

0 0 0 1 1 −1 2 = d′∗2,1 + d′∗1,3 − d′∗2,3
0 1 0 0 0 1 15 = d′∗2,3 + d′∗3,2
0 0 1 0 −1 1 10 = d′∗1,2 + d′∗2,3 − d′∗1,3
0 0 0 0 1 1 22 = d′∗1,3 + d′∗3,1 + d′∗2,3 + d′∗3,2

 (24)

and 1
2!

1
1

222

(1)(1) = 242. Pivoting at (t(e1), t(e2)) = (5, 15) using the 2nd row, we have 1 0 0 −1 0 1 5 = d′∗2,3 + d′∗3,1 − d′∗2,1
0 0 0 1 1 −1 2 = d′∗2,1 + d′∗1,3 − d′∗2,3
0 1 0 0 0 1 15 = d′∗2,3 + d′∗3,2
0 0 1 1 0 0 12 = d′∗2,1d′∗1,2
0 0 0 −1 0 2 20 = 2d′∗2,3 + d′∗3,2 + d′∗3,1 − d′∗2,1

 (25)

and 1
2!

1
1

202

(−1)(2) = −100. Pivoting at (t(e1), t(e2)) = (0, 10) using the 1st row, we have
1 0 0 −1 0 1 5 = d′∗2,3 + d′∗3,1 − d′∗2,1
1 0 0 0 1 0 7 = d′∗3,1 + d′∗1,3

−1 1 0 1 0 0 10 = d′∗3,2 + d′∗2,1 − d′∗3,1
0 0 1 1 0 0 12 = d′∗2,1 + d′∗1,2

−2 0 0 1 0 0 10 = d′∗3,2 + d′∗2,1 − d′∗3,1

 (26)

and 1
2!

1
1

102

(−2)(1) = −25. Pivoting at (t(e1), t(e2)) = (0, 0) using the 3rd row, we have 0 1 0 0 0 1 15 = d′∗3,2 + d′∗2,3
1 0 0 0 1 0 7 = d′∗3,1 + d′∗1,3

−1 1 0 1 0 0 10 = d′∗3,2 + d′∗2,1 − d′∗3,1
1 −1 1 0 0 0 2 = d′∗3,1 + d′∗1,2 − d′∗3,2

−1 −1 0 0 0 0 0

 (27)

11

and 1
2!

1
1

02

(−1)(−1) = 0. Therefore, from (18), the area of the slice is 0− 1− 36 + 242− 100− 25 + 0 = 80,
which conforms to our early observation. Similarly, the corresponding areas of the feasible region of (1)
and its intersection with that of (14) are 112 and 73, respectively.

Note: As can be seen from (21) to (27), the linear combinations of d∗i,j’s on the right side of each
tableau correspond to cycles in the constraint graph of the timing constraint set. In fact, as shown in
Provan’s algorithm [?] for enumerating vertices of a polytope related to a network linear program, the
hyperplanes of the polytope P adjacent to a vertex v is in one-to-one correspondence with simple cycles
of a directed graph modified (with respect to v) from the directed graph defined by the network linear
program. Therefore, although a network linear program is significantly simpler than the general linear
program as in (17), the number of terms in the summation (18) is still generally exponential. Therefore,
deriving exact similarity ratio is of exponential cost. �

From Example 5, we have the following observations that are crucial in our proof of Theorem 2:
Observation 1 The pivoting operation is essentially a Gaussian elimination, thus the value of the
objective function at any pivoting step must be a linear combination of d∗i,j ’s.
Observation 2 As the corresponding hyperplanes of different timing constraint sets are parallel, the
pivoting sequences for enumeration vertices of the two feasible regions are the same regardless of the
value of d∗i,j ’s. This property overcomes the second issues identified above.

We now prove Theorem 2 based on these observations.
Proof:

Given constraint sets C and C ′ whose normal forms are D∗ and D′∗, respectively. Let C∩ denote
the intersection of C and C ′ and D∩∗ denote its normal form. We define a new constraint set C ′′ whose
normal form D′′∗ is

D′′∗ = sup
i,j=1,...,n,

i 6=j

{
d∗i,j
d′∗i,j

}
·D∩∗ =

1
drinf (C,C ′)

·D∩∗ (28)

Since the constraint graph of C∩ comprises of edges from either C or C ′, for any entry d∩∗i,j of D∩∗, we
have

d∩∗i,j = d
(′)∗
i,k1

+ d
(′)∗
k1,k2

+ · · ·+ d
(′)∗
kt−1,kt

+ d
(′)∗
kt,j

(29)

where d
(′)∗
ks,ks+1

denotes either d∗ks,ks+1
or d′∗ks,ks+1

. Therefore, from (28), when supi,j=1,...,n,
i 6=j

{
d∗i,j

d′∗i,j

}
=

1
drinf (C,C′) ≥ 1, we have

d′′∗i,j =
(
d
(′)∗
i,k1

+ · · ·+ d
(′)∗
kt,j

)
· sup

i,j=1,...,n,
i 6=j

{
d∗i,j
d′∗i,j

}
(30)

If d
(′)∗
ks,ks+1

is d′∗ks,ks+1
, since supi,j=1,...,n,

i 6=j

{
d∗i,j

d′∗i,j

}
≥

d∗ks,ks+1
d′∗ks,ks+1

we have

d
(′)∗
ks,ks+1

· sup
i,j=1,...,n,

i 6=j

{
d∗i,j
d′∗i,j

}
≥ d∗ks,ks+1

(31)

and if d
(′)∗
ks,ks+1

is d∗ks,ks+1
, as supi,j=1,...,n,

i 6=j

{
d∗i,j

d′∗i,j

}
≥ 1, (31) also holds. Thus, from (30) and (31), we have

d′′∗i,j ≥ d∗i,k1
+ d∗k1,k2

+ · · ·+ d∗kt−1,kt
+ d∗kt,j ≥ d∗i,j (32)

i.e., D′′∗ ≥ D∗. Therefore, from Theorem 1, the feasible region of C is included within that of C ′′ and
thus

vol(C ′′)/vol(C) ≥ 1 (33)

We now use the volume computation algorithm to calculate the ratio between vol(C∩) and vol(C ′′).
From Observation 1, at each pivoting step, the value of the objective function is a linear combination of
d∗i,j ’s, i.e., at the k’th pivoting step, the values of the objective functions for vol(C∩) and vol(C ′′) are∑

i,j=1,...,n,
i 6=j

a
∩(k)
i,j · d∩∗i,j and

∑
i,j=1,...,n,

i 6=j

a
′′(k)
i,j · d′′∗i,j (34)

12

respectively. From Observation 2, since the pivoting sequence for deriving vol(C∩) and vol(C ′′) are the
same, we have

∀i, j, k : a
∩(k)
i,j = a

′′(k)
i,j (35)

Moreover, from (28), we have

∀i, j = 1, . . . , n, i 6= j :
d∩∗i,j

d′′∗i,j

= drinf (C,C ′) (36)

Therefore, from (35) and (36), we have∑
i,j=1,...,n,

i 6=j
a
∩(k)
i,j · d∩∗i,j∑

i,j=1,...,n,
i 6=j

a
′′(k)
i,j · d′′∗i,j

=
d∩∗1,2

d′′∗1,2

= · · · =
d∩∗n,n−1

d′′∗n,n−1

= drinf (C,C ′)

(37)

From Observation 2, we also know that at each pivoting step, the cumulative products of pivoting
elements and the non-basic feasible solutions for deriving vol(C∩) and vol(C ′′) are the same. Therefore,
from (18) and (37), we have

vol(C∩)
vol(C ′′)

=

∑
∀v∈C∩

1
n!

1
δv

0@P
i,j=1,...,n,

i 6=j

a
∩(k)
i,j ·d∩∗i,j

1A|E|−1

γi1 ···γin

∑
∀v∈C′′

1
n!

1
δv

0@P
i,j=1,...,n,

i 6=j

a
′′(k)
i,j ·d′′∗i,j

1A|E|−1

γi1 ···γin

= (drinf (C,C ′))|E|−1

(38)

Finally, from (33) and (38), we have

vol(C∩)
vol(C)

=
vol(C∩)
vol(C ′′)

· vol(C ′′)
vol(C)

≥ (drinf (C,C ′))|E|−1 (39)

�

From Theorem 2, one can see that the similarity lower bound can be calculated easily once the normal
forms of the constraint sets are available. Comparing similarities of different constraint set pairs then can
be indirectly achieved through evaluating their similarity bounds. Before discussing various implications
of using the similarity bound in Section 4.2, we demonstrate the use of Theorem 2 on the constraint
sets given in Example 4. From Theorem 2, the ratio of the common region between (1) and (14) to
the feasible region of (14) is bounded by

[
36
49 , 1

)
where 36

49 =
(
min

{
6
7 , 9

10

})3−1. Therefore, assuming a
uniform distribution of the event timing behavior in the feasible regions, Theorem 2 guarantees that
at least 36

49 = 73% timed data streams that satisfy (14) also satisfy (1). This gives us a quantitative
measure of the resemblance between systems constrained by (1) and (14), respectively. Actually, as
shown in Example 5, the exact ratio of the common region between (1) and (14) to the feasible region
of (14) is 73

80 = 91.25%.

4.2 Discussions

Timed data stream distribution in the feasible region
In the above discussions, we assume that timed data streams are uniformly distributed in the feasible

region of the constraint set. The bound given in Theorem 2 is based on the assumption. However, the
definition of constraint feasible region similarities can be extended to non-uniform cases. For example,
consider two 2-dimensional feasible regions of constraint sets C = {t(e1)− t(e2) ≤ 5, t(e2)− t(e1) ≤ 15}
and C ′ = {t(e1) − t(e2) ≤ 15, t(e2) − t(e1) ≤ 9}. Assuming timed data streams are not uniformly
distributed in the regions, but are as shown in Fig. 6(a) and 6(b), respectively. Obviously, in order to

13

(a) (b)

(c)

Figure 6: Feasible region similarities of non-uniformly distributed timed data streams.

14

compare their similarities, not only their areas but also the densities within the areas must be considered.
For instance, the intersection of the feasible regions of C and C ′ is denser than the complements of the
regions as depicted in Fig. 6(c). Therefore, the concept S(C) in Definition 3 are to be extended to
weighted sizes.

In a soft real-time system, the distribution of timing values (such as the completion time of a task)
can be evaluated by methods presented in existing work, e.g., [?, ?,?,?]. The distribution can then be
used in combination with our proposed similarity bound concept to compare timing behaviors of different
designs. The detail of this is beyond the scope of this paper.

Symmetry and transitivity of constraint set similarity
It is worth pointing out that the constraint set similarity relation is neither symmetric nor transitive.

From Definition 3, it is not hard to see that in general C ∼ C ′ 6= C ′ ∼ C. For instance, for constraint sets
C = {0 < t(fj)− t(sj) ≤ 22} and C ′ = {0 < t(fj)− t(sj) ≤ 25} as given in Example 4, C ∼ C ′ = 88%,
while C ′ ∼ C = 1.

Similarly, neither can we infer C ∼ C ′′ from C ∼ C ′ and C ′ ∼ C ′′. Figure 7 shows an example. In
the figure, the feasible regions of three constraint sets C, C ′, and C ′′ are represented as a tetragon, a
pentagon, and a hexagon, respectively. The similarity between C and C ′ (C ∼ C ′) is the same for both
figure Fig. 7(a) and Fig. 7(b). However, depending on the positions from which C ′′ similar to C ′, C and
C ′′ can be either very similar (as shown in Fig. 7(b)) or very dissimilar (as shown in Fig. 7(a)).

(a) (b)

Figure 7: Similarity relation is not transitive.

The tightness of the similarity bound
From Theorem 2, it is easy to see that as the dimension of feasible regions gets higher, the similarities

between their corresponding constraint sets decrease significantly due to the exponent |E| − 1. This is
quite intuitive since, on one hand, as more events and constraints get involved, the chance of timed
data streams satisfying one constraint set but violating the other gets bigger; on the other hand, from
a geometric point of view, the volume of a polytope is exponential to its dimension, and so does the
similarity between two polytopes.

Dealing with unconstrained event pairs in a constraint set
In Example 4, we illustrate the similarities between timing constraint sets where there is a constraint,

either explicit or implicit, for every pair of events. However, there are cases where there are event pairs
which are not constrained. For example, for constraint sets C1 = {−5 ≤ t(e2) − t(e1) ≤ 22} and C2 =
{t(e2)−t(e1) ≤ 25}, the similarity C1 ∼ C2 is close to 0 since in C2 we implicitly have t(e1)−t(e2) ≤ +∞
and the feasible region is not bounded on the corresponding direction. In this case, the similarity relation
stated in Theorem 2 still applies, but it approaches to 0 (C1 ∼ C2 = min

{
22
25 , 5

+∞

}
→ 0+), such 0

similarities render the metric too coarse. Hence, a refinement that considers unconstrained events is
needed.

15

For most real-time applications, we observe that events often form groups such that those within the
same group are pairwisely constrained either explicitly or implicitly as shown in Section 4.1, and the
timing relations between groups are either nonexistent or constrained by unidirectional constraints such
as precedence constraints or delays. Therefore, given two timing constraint sets C and C ′ on the same
set of events E, in order to take the unconstrained event pairs into consideration, we take the following
steps
I. Partition E by strongly connected components of constraint graphs of C and C ′. We only consider
the case where both partitions are the same. It is not hard to see that each pair of events in a partition
is explicitly or implicitly constrained.
II. Let E1, . . . , EK denote the K partitions and C1, . . . , CK and C ′

1, . . . , C
′
K denote the constraints of C

and C ′ within the partitions, respectively. Then C ∼ C ′ is bounded by

C ∼ C ′ ≥ min
k=1,...K

{Ck ∼ C ′
k} (40)

≥ min
k=1,...K

 min
i,j=1,...,n,

i 6=j, d∗ki,j
≤d′∗ki,j

{
d∗ki,j

d′∗ki,j

}|Ek|−1
 (41)

By partitioning events as well as the constraints among them, we reduce the dimensions of feasible
regions of a constraint sets, filter out constraints that are irrelevant to the measurement of similarities,
and thus get a more fine-grained view of similarities between the constraint sets.

We demonstrate the approach through a simple example. Consider vote-and-decide applications
where several groups of voters vote within groups and a decision unit collects decisions from all groups.
A typical constraint set constrains events within each voting group by relative deadlines to guarantee
voting consistency and defines certain delays for the decision unit to make decision after all votes are
collected. Figure 8 shows the timing constraint graphs of two timing constraint sets. According to
strongly connected components, we partition the events into E1 = {e1, e2, e3}, E2 = {e4, e5}, and
E3 = {e6}, where partitions E1 and E2 are events from the corresponding voting groups, and partition
E3 is the deciding event. The similarity between the two sets of constraints, C ∼ C ′, is then lower
bounded by min{ 36

49 , 9
13 , 1} ≈ 69%.

(a) timing constraint graph of C (b) timing constraint graph of C′

Figure 8: Similarity between general timing constraint sets.

5 Application 1: Predicting Tracking Error Rate Based on Con-
straint Similarity

In this section, we use a simplified real-time target tracking system to illustrate how a timing constraint
set in a real-world setting may differ from the one under ideal assumptions. We further illustrate that
despite partially-known and changing environments, the constraint similarity study given in Section 4

16

can be utilized to infer the tracking error rate and thus improve the predictability of the system in
real-world environment.

Example 6 As an illustrative example, we consider a target tracking system presented in Enviro-
Track [?]. To simplify our discussion, we assume a rectangular grid of sensors that periodically report
to a control center their distances to a moving target. Each sensor si has a bounded unknown delay,
denoted by ti ∈ [0, d], from sensing the data to reporting the data. A target that moves in the area is
detected by the sensors and the final coordinates of the target are decided by the control center aggregating
the sensed data from them. The system’s QoS is measured by the tracking error rate which is the ratio
of inaccurately reported data due to inconsistent data from sensors to the total number of data reported.
The tracking error rate is determined by the sensor data freshness and sensor data consistency.

In order to have fresh data, it is desirable for the control center to have short decision times. In
addition, the sensor data aggregated at the control center should belong to the same sampling period to
minimize data inconsistency among different sensors. More specifically, let t(ei(k)) denote the time that
sensor si reports to the control center of its distance to the target in the k’th detecting period, under the
ideal assumption that a sensor locates the target at the beginning of the k’th detecting period. We have

t(ei(k)) = kT + ti (42)

where T is the detecting period for all sensors. Hence, for data consistency, we require |t(ei(k)) −
t(ej(k))| = |ti − tj | ≤ d, where ti, tj ∈ [0, d]. However, if we consider the signal transmission time, or
possible objects in between the sensors and target, (42) should be changed into

t(ei(k)) = kT + ti + δi(k) (43)

where δi(k) is the time discrepancy caused by the Euclidean distance between the sensor si and the location
of the target at the k’th period. The constraint thus becomes |t(ei(k))− t(ej(k))| ≤ d + |δi(k)− δj(k)|.

To simplify our discussion, we restrict our attention to an r × r (r = 1m) square field with four
ultrasonic sensors (whose detecting signal speed is V = 340m/sec) located on the corners of the field.
The detecting radius of each sensor is assumed to be large enough to cover the entire field.

Figure 9: Four sensors tracking a moving target.
From time 0 and for every T = 0.2sec, all sensors try to measure their distances to a moving target,

and after their distinct bounded unknown delays ti ∈ [0, d] (d = 0.025sec), the sensors report the distances
to a control center which decides the coordinates of the target by aggregating the distance values from
the four sensors. Under the ideal assumption that a sensor measures the distance at the beginning of
the k’th detecting period, the time that the new distance value for sensor si is available for reporting is
t(ei(k)) = kT + ti as given in (42). As mentioned earlier in Example 6, to guarantee the consistency of
the reported data, the control center requires that the time distances between every two reporting events
from two sensors, be bounded by |t(ei(k))− t(ej(k))| = |ti − tj | ≤ d. This results in a constraint set C
and its constraint matrix D is given in (44). In case of a constraint violation, i.e., the control center
does not receive data from one of the sensor(s) before the corresponding deadline, the data received in
previous periods will be used in the coordinates calculations4.

D =

 0 d d d
d 0 d d
d d 0 d
d d d 0

 (44)

4Note that if the target is restricted to move only within the square field, the control center will only need two distance
values in order to decide the coordinates of the target. However, although four sensors bring some redundancy, there can
still be cases where less than two distance values come before deadlines. In this case, the control center takes the values
received in previous periods for approximation.

17

However, if we take into account the travel time of ultrasonic distance measuring signals, the time of the
event that sensor si reports the distance value is

t(ei(k)) ≈ kT + ti + 2li/V (45)

where li is the distance from sensor si to the target5. For instance, when the target appears at the same
site as sensor s1, we have l1 = 0, l2 = l3 = r and l4 =

√
2r, and the actual data consistency requirement

on t(ei(k)), i = 1, . . . , 4, becomes C ′ whose constraint matrix is D′ = D + ∆, where

∆ =

 0 2r
V

2r
V

2
√

2r
V

− 2r
V

0 0 2(
√

2−1)r
V

− 2r
V

0 0 2(
√

2−1)r
V

− 2
√

2r
V

− 2(
√

2−1)r
V

− 2(
√

2−1)r
V

0

 (46)

Therefore, if the control center uses constraint matrix (44) to monitor the events from the sensors,
some timed data streams satisfying (44) may in fact correspond to inconsistent data, i.e., distances sensed
in previous periods. Moreover, different locations of the target in the field result in different actual data
consistency constraint sets (similar to (46)). It is thus difficult for the control center to adjust the data
consistent constraints.

�

Given the data consistency constraint matrix D in (44) under ideal assumptions, and a real-world
deviation D′ as the one in (46), some timed data streams that satisfy C ′ may violate C. These vi-
olations cause the imprecise coordinates (ones that have blatant regressions due to data taken from
previous periods). They are circled in Fig. 10(a), 10(c), and 10(e). From Theorem 2, the proportion
of timed data streams satisfying C ′ that violate C is bounded by

[
0, 1− (drinf (C ′, C))|E|−1

]
. Again,

1 − [drinf (C ′, C)]|E|−1 has the largest value when the target is at one of the four corners of the field,
where drinf (C ′, C) = infi,j=1,...,n,

i 6=j

{
d∗i,j

d′∗i,j

}
= d

d+2
√

2r/V
≈ 3

4 . Therefore, we can estimate that the ratio of

timed data streams satisfying C ′ that violate C to be bounded by
[
0, 1− (3/4)(4−1)

]
= [0, 58%]. In fact,

as can be observed from Fig. 10, approximately 3 (marked with gray circles) of the entire 8 reported
coordinates in Fig. 10(a), 3 of the 9 coordinates in Fig. 10(c), and 6 of the 17 coordinates in Fig. 10(e)
significantly deviate from the actual target location, indicating tracking error rates of 37.5%, 33.3%, and
35.3%, respectively.

It is worth pointing out that although the bound given in Theorem 2 may not be tight for constraint
satisfaction ratio, it is a quick and easy way to get an estimation of constraint similarity and of how the
system’s behaviors in a real-world environment confirm or deviate from the initial design.

6 Application 2: Improving Systems’ QoS Properties with Con-
straint Similarity Guarantees

The constraint similarity study is important as it has broad applications in areas where other types of
QoS requirements, such as total energy consumption, are directly affected by a system’s timing behav-
iors. As an example, we consider the energy-aware task assignment for soft real-time applications on a
multiprocessor system-on-chip (MPSoC) which is similar to the one discussed in [?]. In particular, in
this section, we will demonstrate (a) given the similarity metric and its bound (Section 4), calculate the
probability guarantee that the original timing constraints are still satisfied by the modified constraint
set for the purpose of reducing total energy consumption; and (b) given a maximum allowed constraint
comprise, determine the constraint relaxations that best reduces energy consumption.

It is worth pointing out that reducing energy consumption is used only as an example to illustrate
our approach. The similarity metric and the methodologies of using the metric to guide the trade-offs
between timing and other QoS properties can be applied in a broad spectrum of soft real-time applications
which involve timing and limited resources.

5We assume the speed of the moving target v is much smaller than the speed of the detecting signal V , i.e., v � V .

18

(a) (b)

(c) (d)

(e) (f)

Figure 10: Actual trajectories and sensed coordinates of the moving target before and after the data
consistency constraints are modified.

19

6.1 System and Task Model

The MPSoC under consideration consists of a set of heterogeneous cores M . Let J be the set of tasks
to be executed on M . For each task j ∈ J , the following parameters are used in our discussions:

• EX(j, m): j’s worst-case execution time on core m,

• ex(j, m): j’s actual execution time when running on core m, ex(j, m) ∈ (0, EX(j, m)],

• dj : the relative deadline of j,

• sj : the start event of task j,

• fj : the finish event of task j, t(fj) = t(sj) + ex(j, m),

• P (j, m): the power consumption of core m ∈ M when task j executes on m.

The goal is to determine a static assignment of tasks to cores to further reduce the energy consumption
while ensuring the required probability of constraint satisfactions guarantees. The hard real-time version
of the problem, where a 100% deadline satisfaction must be ensured, is discussed in [?]. From the
constraint satisfaction perspective, a deadline miss indicates that an execution trace falls outside of the
feasible region defined by the given timing constraint set. When we allow a certain percentage of deadline
misses, we actually include some execution traces outside the original feasible region, or in other words,
the feasible region is expanded. The expanded feasible region can be considered as a relaxed constraint
set. The constraint similarity study discussed in Section 4 allows us to quantitatively compare the
deviations of the changed constraint from its original set, and hence to select which constraint(s) to
relax based on a quantitative measure.

6.2 Reducing Total Energy Consumption

As shown in [?], the problem of minimizing total energy consumption for the MPSoC is to minimize∑
j∈J

∑
m∈M P (j, m) · EX(j, m) · δ(j, m) where

δ(j, m) =

{
1 if j is assigned to m

0 otherwise
(47)

However, in our case, the actual execution time ex(j, m) is not a constant value, and we assume it follows
a certain probability distribution over the interval (0, EX(j, m)]. Therefore, the goal is to minimize
the expectation of the total energy consumption and the objective function thus becomes minimizing∑

j∈J

∑
m∈M P (j, m) · E [ex(j, m)] · δ(j, m).

Below, we demonstrate through an example how to use the similar bound to reduce total energy
consumption by relaxing timing constraints.

Example 7 Consider two tasks j1 and j2 with relative deadline constraints dj1 = dj2 = 20ms and
synchronization constraints |t(sj1)− t(sj2)| ≤ 5ms. We thus have the following set of constraints:{

t(fj1)− t(sj1) ≤ 20, t(sj1)− t(sj2) ≤ 5,
t(fj2)− t(sj2) ≤ 20, t(sj2)− t(sj1) ≤ 5,
t(sj1)− t(fj1) ≤ ε, t(sj2)− t(fj2) ≤ ε

}
(48)

where t(sj1) − t(fj1) ≤ ε(ε → 0−) guarantees causality. The normal form of the constraint set (indexed
by t(sj1), t(fj1), t(sj2), t(fj2)) is given by (49).[

0 ε 5 5 + ε
20 0 25 25 + ε
5 5 + ε 0 ε
25 25 + ε 20 0

]
(49)

Now, consider the scheduling problem of task j1 and j2 on the following MPSoC with 4 cores:

20

10W 10W
20ms m1 m2 20ms

22ms m3 m4 25ms

7W 5W

where P (j1,m1) = P (j2,m1) = 10W , EX(j1,m1) = EX(j2,m1) = 20ms, etc.
To satisfy the constraint set (48), j1 and j2 can only be assigned to m1 and m2, respectively. Assuming

the actual execution time is uniformly distributed in the interval (0, Ex(j1,m1)], the expected total energy
consumption is 10W × 10ms + 10W × 10ms = 200W ·ms.

If we are willing to compromise the timing constraints, the deadline constraint of j1 can be relaxed to
dj1 = 22ms from 20ms, the new constraint set becomes.{

t(fj1)− t(sj1) ≤ 22, t(sj1)− t(sj2) ≤ 5,
t(fj2)− t(sj2) ≤ 20, t(sj2)− t(sj1) ≤ 5,
t(sj1)− t(fj1) ≤ ε, t(sj2)− t(fj2) ≤ ε

}
(50)

with normal form [
0 ε 5 5 + ε
22 0 27 27 + ε
5 5 + ε 0 ε
25 25 + ε 20 0

]
(51)

Based on Theorem 2, the similarity between these two constraint sets is lower-bounded by
(

20
22

)4−1 ≈
75%. In other words, a system that satisfies the new constraints (50) has at least 75% guarantee of
satisfying the initial system constraints (48). The benefit of relaxing the constraint is that we can now
use m3 to shedule j1 or j2 and the expected total energy consumption is thus reduced to 177W ·ms, a
11.5% reduction.

Similarly, if we further relax the deadline constraint of j2 to dj2 = 25ms, one can easily verify that
the similarity between the original and the modified constraint sets is bounded by [51.2%, 1] (

(
20
25

)4−1 =
51.2%). In other words, systems that satisfy the modified constraints still have at least 50% chance
to satisfy the original one. However, with such deadline relaxation, we can now schedule tasks j1 and
j2 on m3 and m4, respectively, with the corresponding expected total energy consumption reduced to
139.5W ·ms, a 30.25% reduction.

Suppose we now have another job j3 with a relative deadline of 22ms. New constraints t(fj3)−t(sj3) ≤
22ms and t(sj3)− t(fj3) ≤ ε need to be inserted into (48). Since j3 has no timing relations with j1 and
j2, based on Section 4.2, we partition the constraint set into two smaller normal forms.[

0 ε 5 5 + ε
20 0 25 25 + ε
5 5 + ε 0 ε
25 25 + ε 20 0

]
and

[
0 ε
22 0

]
(52)

For (52), the most energy-efficient assignment is to assign j1, j2, and j3 to m1, m2, and m3, respec-
tively, with a total expected energy consumption of 277W ·ms. If the deadlines for j1 and j3 are reduced
to 22ms and 25ms, respectively, the corresponding normal forms are changed from (52) to (53)[

0 ε 5 5 + ε
22 0 27 27 + ε
5 5 + ε 0 ε
25 25 + ε 20 0

]
and

[
0 ε
25 0

]
(53)

We can then assign j1, j2, and j3 to m3, m2, and m4, respectively, reducing the total expected
energy consumption to 239.5W · ms, 14% reduction. The similarity between (52) and (53) is bounded
by min

{(
20
22

)4−1
,
(

22
25

)2−1
}
≈ 75%. In other words, we have at least 75% guarantee to satisfy the initial

constraints with the relaxed constraint set. �

The above examples show that understanding the implication of constraint changes both from the
system timing property and non-timing properties points of view plays a key role in conducting design
tradeoffs. The similarity metric provides a quantitative measure about this implication in terms of timing
constraint satisfaction. Specifically, the similarity bound between the orignal constraint set and that the
modified one quantifies the maximal timing constraint satisfaction compromise in order to achieve certain
desired QoS improvements. It thus allows us to make well-found decisions.

21

For the above examples, we manually picked some timing constraints to relax and calculated the
similarity between the resultant constraint set and the original one. Under the same setting given in
Example 7, a more interesting problem is: suppose we are allowed to relax the predefined constraints by
certain amounts, can we determine which constraints to relax and how to relax them in order to find an
assignment that further reduces expected total energy consumption?

6.3 Determining Constraint Relaxations

As we have seen from Section 6.2, relaxing timing constraints can further reduce total energy consump-
tion, and Theorem 2 gives the bound of similarity between the modified constraint set and the original
one. However, for real systems with a large number of events and constraints, there are possibly infinite
ways even to relax a single timing constraint, not to mention there are combinatorial choices of con-
straints to relax. Therefore, relaxing constraints through exhaustive search is not realistic. Below, we
consider one type of design problems and provide a systematic approach.

Given an application with both timing requirements and a desired QoS property, suppose that the
design problem is formulated as an optimization of some QoS property under multiple types of constraints
(including timing constraints). The goal is to find appropriate timing constraints and relax them to
appropriate degrees so that the desired QoS property can be further improved while the initial timing
constraints are still at least P% satisfied. We introduce the following steps for solving the problem.
Step 1: Based on given timing constraints, construct the corresponding timing constraint graph G.
Partition G by strongly connected components. And for each strongly connected component, compute
its normal form.
Step 2: Modify the original timing constraints such that each event pair of a constraint within a partition
is constrained by a variable deadline (instead of the original deadline). Add new constraints to constrain
the newly introduced deadline variables based on the specified similarity bound P%.
Step 3: Solve the modified optimization problem using standard algorithms. The optimization solution
contains the optimized value of the objective function which is the improved QoS property value, and
the variable assignments which define the necessary timing constraint relaxations.

In the following, we illustrate the use of the above general steps through the example given in
Section 6.2. More specifically, consider the specific example of assigning a set of five tasks j1, . . . , j5 to
the MPSoC illustrated under the following timing constraints:

1. The relative deadlines of all tasks are 20ms, i.e., dj1 = dj2 = dj3 = dj4 = dj5 = 20ms;

2. There are synchronization constraints between j1 and j2, and between j3 and j4, i.e., |t(sj1) −
t(sj2)| ≤ 5ms and |t(sj3)− t(sj4)| ≤ 5ms;

3. Task j3 and j4 should start no later than 10ms after t5 finishes, i.e., we have constraints t(sj3)−
t(fj5) ≤ 10 and t(sj4)− t(fj5) ≤ 10.

Chantem et al. [?] formulate the problem as an MILP to optimize expected total energy consumption as
following:

minimize ∑
j∈J

∑
m∈M

P (j, m) · E [ex(j, m)] · δ(j, m) (54)

subject to

∀j ∈ J : t(fj) = t(sj) +
∑

m∈M

δ(j, m) · EX(j, m) (55)

∀j ∈ J :
∑

m∈M

δ(j, m) = 1 (56)

∀ei, ej ∈ E : t(ei)− t(ej) ≤ dki,j (57)

where E = {sj , fj |j ∈ J}, and (57) generalizes timing constraints to a pairwise form (dki,j are constants
obtained from the original constraints, for events that are not constrained, dki,j = +∞).6

6Note that the constraints to guarantee that all tasks execute for their durations without overlap [?] are omitted from
the formulation for clarity of presentation.

22

Solving the MILP gives the non-preemptive schedule of tasks on the cores such that all timing
constraints are met and the total energy consumption is minimized. Now, if we allow timing constraint
relaxations but require a 75% constraint satisfaction guarantee, the original MILP needs to be modified
based on the steps given above. In particular,
Step 1: For the constraint set given in (57), construct its corresponding constraint graph and partition
the event set E into E1, . . . , EK based on the graph’s strongly connected components. Only timing
constraints within partitions are possible candidates for relaxations. Note that for any j ∈ J , sj and
fj must be in the same partition since they are strongly connected by the relative deadline of j, i.e.,
t(fj)− t(sj) ≤ dj and t(sj)− t(fj) ≤ ε. Therefore, all relative deadlines are possible to be relaxed.

For ∀k = 1, . . . ,K, derive the constraint normal form D∗
k for constraints among Ek, i.e., for ∀ei, ej ∈

Ek, t(ei)−t(ej) ≤ d∗ki,j
. For this example, we have partitions E1 = {sj1 , fj1 , sj2 , fj2}, E2 = {sj3 , fj3 , sj4 , fj4},

and E3 = {sj5 , fj5}. The constraint normal forms D∗
1, D∗

2, and D∗
3 on these partitions are

D∗
1 = D∗

2 =

[
0 ε 5 5 + ε
20 0 25 25 + ε
5 5 + ε 0 ε
25 25 + ε 20 0

]
,D∗

3 =
[

0 ε
20 0

]
(58)

respectively.
Step 2: For constraints within partitions, modify (57) in the MILP formulation to

∀ei, ej ∈ Ek, k = 1, . . . ,K : t(ei)− t(ej) ≤ d′ki,j
(59)

∀ei, ej ∈ Ek, k = 1, . . . ,K : d′ki,j
≤
⌊

d∗ki,j

|Ek|−1
√

P%

⌋
(60)

where d′ki,j
is the newly introduced variable for constraint relaxations. In the modified MILP, (59) and

(60) are responsible for the selection and relaxation of constraints. From (60), we have(
d∗ki,j

d′∗ki,j

)|Ek|−1

≥

(
d∗ki,j

d′ki,j

)|Ek|−1

≥ P% (61)

where d′∗ki,j
is the corresponding entry in the normal form of the relaxed constraints and thus d′∗ki,j

≤ d′ki,j
.

According to Theorem 2 and Section 4.2, the probability that the system satisfying the relaxed constraint
set also satisfies the original constraint set is no less than P%.

For example, for constraint t(sj1)− t(sj3) ≤ 5, we derive two constraints, i.e., t(sj1)− t(sj3) ≤ d′sj1sj3

and d′sj1sj3
≤
⌊
5/ 3
√

0.75
⌋
; for constraint t(sj3) − t(fj5) ≤ 10, since sj3 and sj5 belong to different

partitions, the constraint is still in the modified MILP but cannot be relaxed. Specifically, (57) in the
MILP is replaced by the following constraints

t(sj1)− t(fj1) ≤ d′sj1fj1
, d′sj1fj1

≤
⌊
ε/ 3
√

0.75
⌋

,

t(sj1)− t(sj3) ≤ d′sj1sj3
, d′sj1sj3

≤
⌊
5/ 3
√

0.75
⌋

,

· · · · · ·
t(fj5)− t(sj5) ≤ d′fj5sj5

, d′fj5sj5
≤
⌊
20/ 1

√
0.75

⌋
,

t(sj3)− t(fj5) ≤ 10 , t(sj4)− t(fj5) ≤ 10

Step 3: Solve the modified MILP using an MILP solver (such as ILOG CPLEX R©). The solution
contains the minimum expected total energy consumption and the assigned value of d′ki,j

which is the
new constraint values in the correspondingly relaxed constraints. In this example, solving the modified
instance of the MILP formulation, we have an optimal solution of 416.5W ·ms, with δ(1, 1) = 1, δ(2, 3) =
1, δ(3, 2) = 1, δ(4, 3) = 1, and δ(5, 4) = 1. The corresponding schedule is to run j1, j2, and j5 on core
m1, m3, and m4 from time 0, respectively, with their new relative deadlines being 20ms, 22ms, and
26ms, respectively. Since j2 and j4 are both assigned to core m3, to void overlap, from time 22ms, j3
and j4 are scheduled to run on m2 and m3, with their new relative deadlines being 20ms and 22ms,
respectively. The total execution time in this case is 44ms with all constrains satisfied. However, with
the original MILP, we can only schedule all five tasks on m1 and m2, with a minimum total execution
time of 60ms and expected energy consumption of 500W · ms. Therefore, by compromising no more

23

than 25% of satisfaction guarantees of the original constraints, we gain a reduction of expected energy
consumption and total execution time by 16.7% and 26.7%, respectively.

Through the above example of reducing total energy consumption with constraint similarity guaran-
tees, we have demonstrated that when we do not require 100% constraint satisfaction guarantees, which
is often the case for soft real-time applications, the flexibility allowed can be used to improve system’s
other QoS properties. We have further illustrate the detailed steps in obtaining better system QoS
properties while still maintaining the required system’s timing behavior resemblance.

7 Conclusion

Real-world real-time and embedded systems may behave differently from specification in the time domain:
some systems deviate from the designs due to unpredictable factors; some other soft real-time systems
allow certain timing flexibilities that can often be utilized to improve QoS properties of the systems.
These deviations need to be exploited in a quantitative and predictable manner. Specifically, if a set of
timing constraints are subject to imprecision or allowed to be modified, we need to measure how much
the deviation differs from the origin set. Based on this need, in this paper, we introduce a quantitative
metric to compare the similarity between two timing constraint sets. We based our study on feasible
regions and proved that for a set of timing constraints, its feasible region is uniquely characterized by the
constraint normal form. The similarity metric is then defined based on the common feasible region of the
given two timing constraint sets, and reflects their mutual satisfactions. Since directly calculating the
similarity metric is computationally intractable, we give a similarity bound based on the normal form.
To demonstrate the capability of the new metric, we apply the theory of timing constraint similarities
to an object tracking system for predicting tracking error rates; moreover, we use an MPSoC system to
illustrate how we may use the similarity metric to guide the design phases for reducing system energy
consumption. This example leads to a more general conclusion that the similarity metric between timing
constraint sets can be used to guide the trade-offs between different QoS properties.

As future work, we plan to investigate the effect of non-uniformly distributed timed data streams
on the evaluation of the similarity metric and its bound. Specifically, we will consider combining our
earlier work on non-uniformly distributed interval-based events [?] with the computation of the similarity
bounds. Intuitively, a set of interval-based events {I1 = [min(I1),max(I1)], . . . , In = [min(In),max(In)]},
can be represented as a hypercube in the n-dimensional space whose density is determined by the joint
distribution of all events. It will be revealing to understand the relationship between this hypercube
with the hyperprism of a timing constraint set feasible region. This research is significant in deciding
the satisfaction of timing constraints by events of a more practical model. Regarding the quality of the
similarity bound, we realize that our bound may not be as tight, especially for higher dimension cases.
We will further examine and improve the quality of the similarity bound.

24

