Similarities between Timing Constraints

Towards Interchangeable Constraint Models for Real-World Software Systems

Yue Yu

yyu8@iit.edu

Illinois Institute of Technology

Illinois Institute of Technology

Yue Yu

Similarities between Timing Constraints – p. 1/11

Software for real-world systems

- System Complexity: guarantees of exact system behavior are impractically expensive [Lee, 2005].
- Operating Environment: The unpredictable nature of the environments in which software systems operate determines that their interactions with the outer world may not be totally expected [Jackson et al., 2007].
- Computational Intractability: From a theoretical point of view, achieving exactness in the verification of system properties is sometimes intractable [Alur and Dill, 1994].

$$\Box \left(p \to \diamond_{=5} q \right)$$

Similarities between timed state sequences

• A timed state sequence is a linear structure $(\delta_0, I_0), (\delta_1, I_1), (\delta_2, I_2), \dots$ where $\delta_i \subseteq Prop$ $\overline{\tau}_1 \underbrace{\begin{smallmatrix} \delta_0 & \chi & \delta_1 & \chi & \delta_2 & \chi & \delta_3 & \chi & \delta_4 & \cdots \\ \hline \overline{\tau}_2 \underbrace{\begin{smallmatrix} \delta_0 & \chi & \delta_1 & \chi & \delta_2 & \chi & \delta_3 & \chi & \delta_4 & \cdots \\ \hline 1.2 & 2.2 & 3.4 & 4.2 & \cdots \\ \hline \end{array}$

Absolute displacement between two interval sequences
$$\overline{I}$$
 and $\overline{I'}$

$$D_{a}^{\mathcal{I}}\left(\bar{I},\bar{I}'\right) = \left[d_{a_{\text{inf}}}^{\mathcal{I}}\left(\bar{I},\bar{I}'\right),d_{a_{\text{sup}}}^{\mathcal{I}}\left(\bar{I},\bar{I}'\right)\right]$$

where

$$d_{a_{\text{sup}}}^{\mathcal{I}}\left(\bar{I},\bar{I}'\right) = \sup\left\{l(I'_{i}) - l(I_{i})|i < n\left(\bar{I}\right)\right\}$$
$$d_{a_{\text{inf}}}^{\mathcal{I}}\left(\bar{I},\bar{I}'\right) = \inf\left\{l(I'_{i}) - l(I_{i})|i < n\left(\bar{I}\right)\right\}$$

Illinois Institute of Technology

Similarities between Timing Constraints February 22, 2008 Related Works [Huang et al., 2003, Huang et al., 2004]

Absolute [x, y]-tube function

Let \overline{I} and $\overline{I'}$ be two interval sequences. There exists an absolute [x, y]-tube function from \overline{I} to $\overline{I'}$ iff $D_a^{\mathcal{I}}(\overline{I}, \overline{I'}) \subseteq [x, y]$

Similarities between Timing Constraints **Timing Constraints**

Difference relations between every pairs of events determine the shape of the trace polyhedron.

Illinois Institute of Technology

Timed Trace Inclusions and Intersections

Illinois Institute of Technology

Illinois Institute of Technology

• Absolute differences $D_{a}(C, C') = \left[d_{a_{inf}}(C, C'), d_{a_{sup}}(C, C') \right]$ where $d_{a_{sup}}(C, C') = \sup \left\{ d_{i,j}^{*} - d_{i,j}^{\prime *} \middle| i = 1, \dots, n, j = 1, \dots, n, i \neq j \right\}$ $d_{a_{inf}}(C, C') = \inf \left\{ d_{i,j}^{*} - d_{i,j}^{\prime *} \middle| i = 1, \dots, n, j = 1, \dots, n, i \neq j \right\}$

For example, in the previous slide, the absolute difference between the two timed trace sets is derived as

$$d_{a_{sup}}(C, C') = \sup \{6 - 5, 6 - 7, 7 - 5, 3 - 2, 9 - 10, 9^a - 5\} = 4,$$

$$d_{a_{inf}}(C, C') = \inf \{6 - 5, 6 - 7, 7 - 5, 3 - 2, 9 - 10, 9 - 5\} = -1, \text{and}$$

$$D_a(C, C') = [-1, 4].$$

^anote that $d_{3\,2}^* = 9$ instead of 14

Illinois Institute of Technology

Proposition:(This directly follows from the inclusion theorem)

- Systems satisfying timing constraint set *C* will satisfy timing constraint set *C'* when every constraint in *C'* is incremented by $d_{a_{sup}}(C, C')$, i.e., for all $i \neq j$: $d'_{i,j} + d_{a_{sup}}(C, C')$; and symmetrically,
- Systems satisfying timing constraint set C' will satisfy timing constraint set C when every constraint in C is incremented by $d_{a_{sup}}(C', C)$, i.e., for all $i \neq j$: $d_{i,j}^* + d_{a_{sup}}(C', C) = d_{i,j}^* + d_{a_{inf}}(C, C').$

Transitive relations can be bounded by:

 $D_{a}(C,C'') \subseteq \left[d_{a_{\inf}}(C,C') + d_{a_{\inf}}(C',C''), d_{a_{\sup}}(C,C') + d_{a_{\sup}}(C',C'')\right]$

Relative differences $D_r(C, C') = \left[d_{r_{inf}}(C, C'), d_{r_{sup}}(C, C') \right]$

where

$$d_{r_{sup}}(C, C') = \sup\left\{\frac{d_{i,j}^*}{d_{i,j}'^*} \middle| i = 1, \dots, n, j = 1, \dots, n, i \neq j\right\}$$
$$d_{r_{inf}}(C, C') = \inf\left\{\frac{d_{i,j}^*}{d_{i,j}'^*} \middle| i = 1, \dots, n, j = 1, \dots, n, i \neq j\right\}$$

For example, the relative difference between the two timed trace sets is

$$d_{r_{sup}}(C, C') = \sup \{6/5, 6/7, 7/5, 3/2, 9/10, 9/5\} = 9/5,$$

$$d_{r_{inf}}(C, C') = \inf \{6/5, 6/7, 7/5, 3/2, 9/10, 9/5\} = 6/7, \text{and}$$

$$D_r(C, C') = [6/7, 9/5].$$

Conjecture: The proportion of the "volume" of the intersection in that of *C* is lower bounded by $\frac{1}{d_{r_{sup}}(C,C')}$; and symmetrically, the proportion of the "volume" of the intersection in that of *C'* is lower bounded by $\frac{1}{d_{r_{sup}}(C',C)} = d_{r_{inf}}(C,C')$.

References

- [Alur and Dill, 1994] Alur, R. and Dill, D. L. (1994). A theory of timed automata. *Theoretical Computer Science*, 126(2):183–235.
- [Huang et al., 2003] Huang, J., Voeten, J., and Geilen, M. (2003). Real-time property preservation in approximations of timed systems. In *MEMOCODE '03: Proceedings of the First ACM and IEEE International Conference on Formal Methods and Models for Co-Design (MEMOCODE'03)*, page 163, Washington, DC, USA. IEEE Computer Society.
- [Huang et al., 2004] Huang, J., Voeten, J., and Geilen, M. (2004). Real-time property preservation in concurrent real-time systems. In *Proceedings of the 10th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications*.
- [Jackson et al., 2007] Jackson, D., Thomas, M., and Millett, L. I. (2007). *Software for Dependable Systems: Sufficient Evidence?* The National Academies Press, Washington, D.C.
- [Lee, 2005] Lee, E. A. (2005). Building unreliable systems out of reliable components: The real time story. Technical Report UCB/EECS-2005-5, EECS Department, University of California, Berkeley.