
1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2474360, IEEE Transactions on Parallel and Distributed Systems

1

A 2-Approximation Algorithm for Scheduling
Parallel and Time-Sensitive Applications to

Maximize Total Accrued Utility Value
Shuhui Li∗, Miao Song†, Peng-Jun Wan†, Shangping Ren†

∗ Department of Engineering Mechanics, Dalian University of Technology
† Department of Computer Science, Illinois Institute of Technology

Email:shuhuili@dlut.edu.cn, msong8@hawk.iit.edu, wan@iit.edu, ren@iit.edu

Abstract—For a time-sensitive application, the usefulness of its end results (also called the application’s accrued utility value in the
paper) depends on the time when the application is completed and its results are delivered. In this paper, we address the accrued
utility value maximization problem for narrow parallel and time-sensitive applications. We first consider the problem in the context of a
discrete time domain and present the Spatial-Temporal Interference Based (STIB) scheduling algorithm. We formally prove that the
STIB algorithm is a 2-approximation algorithm. Second, we extend our work to a continuous time domain and present a heuristic
scheduling algorithm, i.e., the Continuous Spatial-Temporal Interference Based (STIB-C) algorithm to maximize the system’s total
accrued utility value when the system operates in a continuous time domain. The extensive empirical evaluations reveal that: (1) in a
discrete time domain, the systems’ total accrued utility values obtained through the STIB algorithm are consistent with the theoretic
bound, i.e., they never go below 50% of the optimal value. In fact, on average, the STIB algorithm can achieve over 92.5% of the
optimal value; (2) compared to other scheduling policies listed in the literature, the developed STIB and STIB-C algorithms have clear
advantages in terms of the system’s total accrued utility value and the profitable application ratio. In particular, in terms of the system’s
total accrued utility value, both the STIB and the STIB-C algorithms achieve as much as 6 times for both the First Come First Come
Serve(FCFS) with backfilling algorithm and the Gang Earliest Deadline First(EDF) algorithm, and 4.5 times for the 0-1 Knapsack based
scheduling algorithm. In terms of the profitable application ratio, both the STIB and the STIB-C algorithms obtain as much as 4 times
for both the FCFS with backfilling algorithm and the Gang EDF algorithm, and 2 times for the 0-1 Knapsack based scheduling
algorithm.

Index Terms—Parallel, Time-Sensitive, Scheduling, Approximation Algorithm

F

1 INTRODUCTION

Many parallel applications are time-sensitive. Examples of
these applications include threat detection applications in
air defense systems [1] and in power system operations [2],
anomaly detection application in collaborative information
system [3], radar tracking applications [4], [5], target surveil-
lance and tracking application [6] and weather forecasting
applications [7], to name a few. These applications not
only involve multiple concurrent tasks, but their completion
times also have significant impact on the values of their
end results [8], [9]. For example, for the threat detection
application, the earlier a threat is detected, the more time
a defender has to take action, hence the higher value the
application provides [1].

For time-sensitive applications, a Time Utility Function
(TUF) [10], [11] is often used to represent the dependency
between an application’s accrued value and its completion
time. Different applications may have different time utility
functions to indicate the sensitivity to the completion time.
For example, a video surveillance application may be more
sensitive to its completion time than a weather forecasting
application. In this case, the TUF for the video surveillance

The major work of this paper was done while Shuhui Li was a Ph.D student
at Illinois Institute of Technology.

application decreases faster with time than the TUF for the
weather forecasting application.

Another aspect of a parallel and time-sensitive applica-
tion is that every concurrent task of the application exclu-
sively occupies a processing unit [12]. Hence, the execution
of a parallel and time-sensitive application uses system
resources in two dimensions: spatial, i.e., the number of
processing units needed (which is the same as the number
of concurrent tasks), and temporal, i.e., the time interval
needed to complete the application’s execution once all
the required processing units are available. Under limited
resources, the contention in either dimension may delay
the applications’ completion time and result in their utility
value decrease. In order to maximize the system’s total ac-
crued utility value for a given set of applications, scheduling
decisions about applications’ execution orders have to be
judiciously made.

Scheduling problems on a single processor and multiple
processors for a set of sequential applications have been
studied for many years [13]–[16]. However, as summarized
in [16], in the real-time scheduling community, each applica-
tion is abstracted as a single task and the task is the smallest
scheduling unit. As a result, scheduling decisions only need
to resolve temporal conflicts among applications. However,
for parallel and time-sensitive applications, the execution

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2474360, IEEE Transactions on Parallel and Distributed Systems

2

of one application can have both spatial and temporal
interferences on the remaining applications. Furthermore,
because each application’s sensitivity to its completion time
is different, their TUF functions may also be different.
Hence, the application’s execution order can significantly
impact the system’s total accrued utility value.

In this paper, we focus on scheduling narrow parallel
and time-sensitive applications. By narrow parallel appli-
cations, we mean the applications’ maximal number of
parallelly executable branches is no more than one half the
number of processing units provided by a system. Our goal
is to maximize the system’s total accrued utility value for
a given set of narrow parallel and time-sensitive applica-
tions. To achieve this goal, we use a metric, which is first
introduced in [17], to quantitatively measure the spatial-
temporal interference among applications with respect to
accrued utility values. Based on the metric, we present
a 2-approximation algorithm for systems operating in a
discrete time domain, i.e., the Spatial-Temporal Interfer-
ence Based (STIB) scheduling algorithm, to maximize the
system’s total accrued utility value. The formal analysis of
the STIB scheduling algorithm is added which was missing
in [17]. We then extend the STIB algorithm to a continuous
time domain and develop a heuristic scheduling algorithm,
i.e., the Continuous Spatial-Temporal Interference Based
(STIB-C) algorithm, to maximize continuous time system’s
total accrued utility value.

The rest of the paper is organized as follows. We discuss
related work in Section 2. In Section 3, we define the parallel
and time-sensitive application model and introduce terms
used in the paper. Based on the model, we formulate the
system total accrued utility value maximization problem.
The calculation of the spatial-temporal interference among
parallel and time-sensitive applications is given in Section 4.
For systems operating in a discrete time domain, the Spatial-
Temporal Interference Based (STIB) scheduling algorithm
is presented and the approximation ratio is proved in Sec-
tion 5. In Section 6, we consider a continuous time domain
and introduce a heuristic scheduling algorithm, i.e., the
Continuous Spatial-Temporal Interference Based (STIB-C)
algorithm. Section 7 discusses empirical studies. We con-
clude the paper in Section 8.

2 RELATED WORK

The TUF first introduced by Locke [10] is to describe that
the utility value accrued by an application is a function of
the activity’s completion time. Jensen et al. have proposed
to associate each task with a TUF to indicate the task’s
time-dependent aspect [11]. Since then, different types of
TUFs have been proposed and studied. For instance, step
time-utility functions are studied in [18]–[20] and non-step
time-utility functions are discussed in [10], [21], [22]. Many
researchers have used TUF and accrued utility value as a
criteria in searching for an optimal schedule for a set of time-
sensitive tasks [23], [24]. However, in the aforementioned
work, applications are sequential, i.e., there is no concur-
rency within an application. How to maximize a system’s
total accrued utility value for parallel applications is still an
open challenge.

Many researchers have looked into the problem of
scheduling parallel applications, i.e., applications that need
simultaneous use of multiple processors. The First Come
First Serve (FCFS) with backfilling scheduling algorithm [25]
is a commonly used approach to schedule parallel applica-
tions on multiprocessors when applications are not time-
sensitive, while fairness and system utilization are the only
concerns. The FCFS with backfilling scheduling is a First
Come First Serve based scheduling algorithm. It advances
small applications to fill in the fragments in the schedule
only when such advancements do not delay the execution
of the first application in the queue. The advantage of this
approach is that each application is treated fairly and the
application response time tends to be short and system
utilization tends to be high.

Kato et al. [26] have introduced the Gang EDF schedul-
ing algorithm to schedule parallel applications with dead-
line constraints. The Gang EDF scheduling algorithm ap-
plies the EDF policy to Gang scheduling (scheduling a
group, or a gang, of tasks together) to explore the real-time
deadline guarantee for parallel applications. Lakshmanan et
al. [27] and Saifullah et al. [5] have studied the problem of
scheduling parallel applications on multiprocessors. All of
these studies have focused on the schedulability analysis of
a given set of applications on a given set of resources based
on the assumption that all of the applications’ deadlines are
hard deadlines and there is no incentive to complete the
applications before their deadlines.

Kwon et al. later extended the EDF scheduling policy
to maximize the utility value of parallel applications with
given deadlines [28]. However, their work is based on the
assumption that all applications have the same TUFs and
are released at the same time. The developed scheduling
policy fails to achieve the utility value maximization goal
if applications do not satisfy these assumptions. Similarly,
if applications’ utility values are constants, the solution of
the 0-1 Knapsack problem [29] can be applied to obtain
the maximum system total accrued utility value, but the
solution cannot be applied to applications whose utility
values are functions of time.

It is worth noting that for task scheduling, though
preemption provides advantages to high priority tasks,
preemption itself can be prehabitively expensive in many
practical situations [30]. It often introduces significant run-
time overhead and causes high fluctuations in execu-
tion times [31]–[33]. Hence, many systems adapt a non-
preemptive scheduling policy. The FCFS with backfilling
scheduling, the Gang EDF scheduling and the 0-1 Knapsack
based scheduling algorithms all can be used under a non-
preemptive policy.

3 PROBLEM FORMULATION

In this section, we first introduce the models and assump-
tions used in the paper. We then formulate the system’s total
accrued utility value maximization problem that the paper
will address.

Resource Model (R): in the system, there is a set of M
homogeneous and independent processing units, i.e., R =
{R1, R2, · · · , RM}. At any time, each processing unit can

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2474360, IEEE Transactions on Parallel and Distributed Systems

3

only process a single task. The execution of a task is non-
preemptive.

Parallel and Time-Sensitive Application (A): a parallel
and time-sensitive application A is defined by a quadruple,
i.e., A = (r, e,m,G(t)), where

• r is the application’s release time, r ∈ Q+ and Q+

represents positive rational number;
• e is the application’s execution time, e ∈ Q+;
• m is the total number of non-preemptive tasks that

must be executed concurrently on different process-
ing units, m ∈ I+ and I+ represents positive integer;

• G(t) is the application completion time utility func-
tion.

We assume all parallel tasks within an application have
the same execution time and share the same release time as
the parent application. But each application itself can have
a different completion time utility function and different
release time.

It is worth pointing out that if a parallel and time-
sensitive application starts its execution at time s, all of its
m parallel tasks start at time s on m different processing
units and they cannot be preempted during their execution.
Furthermore, we assume all these m concurrently executed
tasks release their processing units at the same time. In other
words, they have the same execution time e. In this paper,
we do not consider the m > M situation where there are
individual applications which need more processing units
than what the system can provide. In addition, the time
utility function G(t) for each application is a non-increasing
function, representing the accrued utility value when the
application completes at time t. For simplicity of discussion
and illustration purposes, we let G(t) be a linear, non-
increasing function given below:

G(t) =

{
−a(t− d) r + e ≤ t ≤ d
0 t > d

(1)

where a and d are positive constants. As an application
cannot finish before r + e time point, it cannot earn any
profit before r + e. For this reason, we define the domain of
G(t) to be [r + e,+∞). However, it is worth pointing out
that the work presented in this paper is not based on this
assumption, rather, it is only based on the requirement that
G(t) is non-increasing.

Non-Profit-Bearing Time Point (d): as G(t) is a non-
increasing function, it intersects with the time-axis. The first
time point t where t = G−1(0) is called the non-profit-bearing
time point. For the completion time utility function defined
in Eq. (1), as G(d) = 0, d is the non-profit-bearing time point.
If an application completes after its non-profit-bearing point,
it accrues zero value. Fig. 1 depicts G(t) defined in Eq. (1).

Narrow vs. Wide Application: if the number of parallel
tasks in a given application is more than half of the total
processing units in the system, i.e., M/2 < m ≤ M , the
application is called a wide application. Otherwise, i.e., if
m ≤M/2, the application is called a narrow application [28].

Since each wide parallel and time-sensitive application
requires more than half of the system’s total processing
units, no more than one wide application can be executed
simultaneously by the system. Therefore, the system’s to-
tal accrued utility value maximization problem for wide

parallel and time-sensitive applications degenerates to a
uniprocessor system utility maximization problem [28]. Ex-
isting scheduling algorithms, such as the Generic Utility
Scheduling algorithm [22], the Profit and Penalty Aware
scheduling algorithm [34], and the Prediction-based Highest
Gain Density First scheduling algorithm [35], can be used to
solve the problem. Therefore, we only focus on scheduling
narrow parallel and time-sensitive applications. We define
the problem the paper will address as follows:
Problem 1. Given a set of M homogeneous, indepen-

dent, and non-preemptive processing units R =
{R1, R2, · · · , RM} and a set of parallel and time-
sensitive applications Γ = {A1,A2, · · · ,AN} where
∀Ai ∈ Γ, Ai = (ri, ei,mi,Gi(t)), and mi ≤ M/2, decide
the starting time (si) for each application Ai ∈ Γ, i.e.,
decide (Ai, si), such that

max
(Ai,si)

∑
Ai∈Γ

Gi(si + ei) (2)

subject to

∀Ai ∈ Γ, mi +
∑

∀Ak ∈ Γ \ {Ai} ∧ sk ≤ si < sk + ek

mk ≤M

(3)

The constraint (i.e., Eq. (3)) indicates that at any time
point the total number of processing units used by ap-
plications shall not exceed the total number of processing
units, i.e., M . �

It should be noted that when m1 +m2 + · · ·+mN ≤M ,
it means that the system has sufficient processing units to
execute all applications at the same time. However, when
m1 + m2 + · · · + mN > M , it indicates there are resource
contentions and not all applications can be executed at the
time when they are released. Hence, decisions about the
application execution order have to be made in order to
maximize the system’s total accrued utility value.

To solve the problem, we first study how the execution of
a parallel and time-sensitive application may interfere with
the execution of other applications in spatial and tempo-
ral domains. Second, based on the concept of spatial and
temporal execution interferences, we develop scheduling
algorithms that maximize the system total accrued utility
value.

4 SPATIAL-TEMPORAL INTERFERENCE AMONG
PARALLEL AND TIME-SENSITIVE APPLICATIONS

Before we formally define application spatial and temporal
execution interference and present how we may calculate
the interference impact on the system’s total accrued utility
value, we use an example to explain the rationales behind
our strategies.

4.1 Motivating Example
Assume a system has M = 6 homogeneous, independent,
and non-preemptive processing units and three indepen-
dent narrow parallel and time-sensitive applications, i.e.,
Γ = {A1,A2,A3} where

• A1 = (0, 3, 2,−7(t− 5))

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2474360, IEEE Transactions on Parallel and Distributed Systems

4

t

a× d

G(t)

dr + e0

Fig. 1: Application completion time
utility function

0 1 2 3 4 5 6

5

10

15

20

G(t)

t

G1(t)

G3(t)

G2(t)

Fig. 2: Applications’ completion time
utility functions

P1

P2

P3

P4

P5

P6

0 1 2 3 4 5 t

A1 A3A2

Fig. 3:
(
(A1, 0), (A2, 1), (A3, 2)

)

• A2 = (1, 1, 2,−6(t− 5))
• A3 = (1, 3, 3,−5(t− 6))

For the given three applications, their completion time
utility functions are shown in Fig. 2, and their non-profit-
bearing time points are d1 = 5, d2 = 5, and d3 = 6,
respectively.

At time t = 0, since only application A1 is released, the
system starts the execution of A1. Because m1 = 2, four
processing units remain available in the system for other
applications after time 0.

At time t = 1, both A2 and A3 are released and they
need two and three processing units, respectively. If we
schedule (A2, 1) (as shown in Fig. 3), A3’s starting time
is delayed and it can only be scheduled at time 2, when
application A2 completes. As a result, the completion time
of A3 is delayed, causing its utility value contributed to the
system to decrease.

Clearly, the execution of A1 at time 0 may interfere with
the execution of A2 and A3 at time 1; the execution of either
A2 or A3 may further interfere with A3 or A2, respectively.
Whether such interference happens depends on (a) the total
resources in the system, (b) the resources consumed by
applications that have started but yet to be finished, and
(c) the resources needed by applications to be executed.

At time 1, since A3 needs more resources than A2, it is
more likely that A1 will interfere with A3’s execution than
with A2’s execution. To quantify the possibility and inten-
sity of potential interference, we can use the information
about totally available, currently consumed, and currently
needed resources. For instance, at time 1, since A2 needs
two processing units and A1 uses two processing units, we
can measure the risk of A2 being interfered by (A1, 0) by

2
6−2 = 1

2 . The potential interference is related to not only
the occupied resources (A1 uses two processing units), but
also the total (six processing units) and needed resource (A2

needs two processing units). Similarly, the risk of A3 being
interfered by (A1, 0) can be measured as 2

6−3 = 2
3 . More-

over, for A2 and A3, if we schedule A3 before A2, there are
less processing units left for the remaining application than
if we scheduleA2 beforeA3. Hence, it is more likely thatA3

will interfere withA2’s execution thanA2 will interfere with
A3’s execution. We can calculate the risk of A3 interfering
with A2 as 3

6−2 = 3
4 . Similarly, the risk of A2 interfering

with A3 is 2
6−3 = 2

3 , which is less than 3
4 . However, the

risk of interference only measures the possibility of spatial
interference among parallel applications.

The duration of possible interference is another concern.
For instance, if we schedule A2 at time 1 and A3 at time
2, application A2 will not interfere with the execution of
A3 since by the time application A3 is to start, A2 has
already finished. But if we schedule A3 at time 1, we cannot
schedule A2 on A3’s processing units until time 4, i.e., the
interference duration is 3 time units.

Furthermore, as different applications have different
completion time utility functions, when considering appli-
cation execution interference, we have to take into account
not only the risk of interference and the duration of the inter-
ference, but also the severity of the interference with respect
to system total accrued utility values for all applications.

Assume the given three applications are scheduled as
(A1, 0), (A2, 1), (A3, 2). Since (A3, 2) is the last one to start,
it does not interfere with any other applications, therefore
its utility value is also its completion time utility value, i.e.,
G3(2 + 3) = 5.

For (A2, 1), although it starts before (A3, 2), A2’s exe-
cution time interval is [1, 2], which does not interfere with
(A3, 2)’s utility value contributed to the system. Hence,
(A2, 1)’s utility value for the system is G2(1 + 1) = 18.

However, for (A1, 0), since its execution interval is [0, 3],
it may interfere with the executions of both (A2, 1) and
(A3, 2). Hence, its accrued value has to be adjusted to
reflect other applications’ utility decreases caused by its
interference. In particular, there is a 50%(1/2) and 67%(2/3)
possibility that A1 may interfere with A2 and A3, respec-
tively. Hence, we should deduct the possible reductions, i.e.,
1
2 · G2(1 + 1) + 2

3 · G3(2 + 3) from its initial utility, i.e., its
adjusted accrued value is

G1(0 + 3)−
1

2
· G2(1 + 1)−

2

3
· G3(2 + 3) = 14−

1

2
· 18−

2

3
· 5 = 1.67

We observe that after taking into consideration of
A2’s and A3’s potential utility reduction, (A1, 0) can still
bring a utility value of 1.67 to the system. Therefore,
(A1, 0), (A2, 1), (A3, 2) is a schedule in which all three
applications can be profitable.

4.2 Calculating Spatial-Temporal Interference
From the motivating example, we observed that the inter-
ference of one application on other applications depends
on the properties of both the interfering and interfered
applications, i.e., their processing unit and execution time
demands. We introduce the potential interference factor metric
C
(
(Ai, sj), (Ak, sl)

)
to measure the interference risk that

execution of Ai at sj , i.e., (Ai, sj), has on (Ak, sl). We
consider two cases, i.e., interference between two different

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2474360, IEEE Transactions on Parallel and Distributed Systems

5

applications and interference of the same application at
different starting times.
Case 1: interference between two different applications, i.e.,
(Ai, sj) on (Ak, sl), where i 6= k. In this case, interference
only exists during the execution interval of the interfering
application, i.e., Ai. The interference possibility between
two different applications is

C
(
(Ai, sj), (Ak, sl)

)
=

mi

M −mk
(4)

where i 6= k ∧ sj ≤ sl < sj + ei. 1

Case 2: interference of (Ai, sj) on (Ai, sl), where sj ≤ sl.
As the same application can only start at one time point, the
interference possibility of the same application at a different
starting time is 1, i.e.,

C
(
(Ai, sj), (Ai, sl)

)
= 1 (5)

where sj ≤ sl.
Combining these two cases, we have the following defi-

nition:
Potential Interference Factor: given (Ai, sj) and

(Ak, sl), the potential interference factor of (Ai, sj) on
(Ak, sl), i.e., C

(
(Ai, sj), (Ak, sl)

)
is:

C
(
(Ai, sj), (Ak, sl)

)
=


mi

M−mk
i 6= k ∧ sj ≤ sl < sj + ei

1 i = k ∧ sj ≤ sl
0 otherwise

(6)

We want to emphasize that C
(
(Ai, sj), (Ak, sl)

)
is an aux-

iliary metric to quantitatively measure the spatial-temporal
interference. It is not symmetric, i.e., C

(
(Ai, sj), (Ak, sl)

)
may not necessarily be the same as C

(
(Ak, sl), (Ai, sj)

)
.

4.3 Adjusting Application Accrued Utility Value
The interference factor indicates the potential that the ex-
ecution of an application Ai may postpone the execution
of another application Aj , and hence causes application
Aj ’s accrued utility value to decrease. Therefore, when we
calculate application Ai’s accrued value, we have to take
into consideration potential decreases of other applications’
accrued values caused by the execution of application Ai.

An application which starts at any time instance within
the interval [r, d − e] will bring positive utility value to
the system since it will complete before its non-profit-
bearing point. Therefore, for a given application set Γ =
{A1,A2, · · · ,AN}, we can order the possible profitable
candidates (A, s) based on the descending order of its
starting time s, and obtain an ordered set. We use vector
~S to denote the ordered set and x to denote x-th element
in ~S, i.e., ~S[x] = (Ak, si). We also use ~S[x].A and ~S[x].T
to represent the corresponding application and its starting
time, respectively. If x < y, then ~S[x].T ≥ ~S[y].T .

For instance, in the motivating example, the possible
starting time candidates for application A1, A2, and A3 are
(A1, 0), (A1, 1), (A1, 2); (A2, 1), (A2, 2), (A2, 3), (A2, 4);

1. It is worth pointing out that this formula is improved from the
formula Eq.(4) in [17]. As shown in the motivating example, the current
formula can also measure the risk between two applicationsA2 andA3

that are released at the same time. Application A3 has a higher risk of
interfering with application A2, i.e., 3

6−2
= 3

4
, than the risk of A2

interfering with A3 which is 2
6−3

= 2
3

. This change not only reflects
our intuition better, it also improves the experimental results.

and (A3, 1), (A3, 2), (A3, 3), respectively. The ordered
schedule set for the three applications is:

~S = {(A2, 4), (A3, 3), (A2, 3), (A3, 2), (A2, 2),

(A1, 2), (A3, 1), (A2, 1), (A1, 1), (A1, 0)}.

i.e.,
~S[1] = (A2, 4), and ~S[1].A = A2, ~S[1].T = 4;

· · ·
~S[10] = (A1, 0), and ~S[10].A = A1, ~S[10].T = 0

When the context is clear, we use si to denote ~S[x].T .
We use a stack, denoted as E(n−1), to store the profitable

candidates that still generate positive utility values after
potential interference among applications are taken into
consideration. In the notation of E(n−1), the superscript
n−1 represents the state of the stack when the n-th element
in ~S is being compared. In other words, if ~S[n].A’s adjusted
accrued utility value is positive, the value of ~S[n] is pushed
to the stack E(n), otherwise the value of ~S[n] is ignored and
E(n) = E(n−1).

Consider the applications given in the motivating ex-
ample. We start with an empty stack E(0) as shown in
Fig. 4(a). For ~S[1], i.e., (A2, 4), it does not interfere with
any other applications, therefore its adjusted utility value
is its completion time utility value G2(4 + 1) = 0. As
G2(4+1) 6> 0, the value of ~S[1], i.e., (A2, 4), is ignored, hence
E(1) = E(0) = ∅. For ~S[2], i.e.,(A3, 3), since it does not
interfere with any profitable candidates, its adjusted utility
value is its completion time utility value G3(3 + 3) = 0. As
G3(3 + 3) 6> 0, hence E(2) = E(1) = ∅.

However, for ~S[3], i.e., (A2, 3), as G2(3 + 1) = 6 > 0, the
value of ~S[3], i.e., (A2, 3) is pushed to the stack, therefore
we have E(3)[1] = ~S[3] = (A2, 3) as shown in Fig. 4(b).

To generalize, we have the following definition:
Adjusted Accrued Utility Value (Ḡ~S[n].A(sn)): given

an application set Γ = {A1,A2, · · · ,AN}, we obtain the
ordered set ~S based on the descending order of the starting
time s of all possible profitable candidates (A, s). The appli-
cation ~S[n].A’s adjusted accrued utility value Ḡ~S[n].A(t) is
defined recursively as follows:

Ḡ~S[n].A(sn) = G~S[n].A(sn + e~S[n].A)

−
|E(n−1)|∑

j=1

C
(
~S[n], E(n−1)[j]

)
· ḠE(n−1)[j].A(sj) (7)

where 1 ≤ n ≤ L and L = |~S|, E(n−1)[j] is to get the j-th
element in the stack E(n−1) from the bottom to the top, and

E(0) = ∅

E(n) =


push(E(n−1), ~S[n]) if Ḡ~S[n].A(sn) > 0

E(n−1) otherwise
(8)

where push(~S[n], E(n−1)) means E(n)[|E(n−1)|+ 1] = ~S[n].
Algorithm 1 illustrates the process of how the adjusted
accrued utility value is to be calculated.

Continuing with the above example, for ~S[4], i.e.,(A3, 2),
its adjusted utility is

Ḡ~S[4].A(s4) = G~S[4].A(s4 + e~S[4].A)− C
(
~S[4], E(3)[1]

)
· ḠE(3)[1].A(s3)

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2474360, IEEE Transactions on Parallel and Distributed Systems

6

Algorithm 1: CALCULATE Ḡ~S[i].A(si)(R, ~S)

1: Ḡ~S[i].A(si) = G~S[i].A(si + e~S[i].A)

2: if E(i−1) 6= ∅ then
3: for j = 1 to |E(i−1)| do
4: Ḡ~S[i].A(si) =

Ḡ~S[i].A(si)− C
(
~S[i], E(i−1)[j]

)
· ḠE(i−1)[j].A(sj)

5: end for
6: end if
7: if Ḡ~S[i].A(si) > 0 then

8: E(i) = push(E(i−1), ~S[i])
9: else

10: E(i) = E(i−1)

11: end if
12: return Ḡ~S[i].A(si)

i.e.,

Ḡ3(2) = G3(2 + 3)− C
(
(A3, 2), (A2, 3)

)
· Ḡ2(3) = 5−

3

4
× 6 > 0

therefore, as shown in Fig. 4(c), E(4)[2] = ~S[4] = (A3, 2),
where E(4)[2] indicates that the second element in the stack
E from the bottom to the top.

After checking all elements in ~S, we have six profitable
candidates in E(10). As shown in Fig. 4(d), (A1, 0), with
Ḡ1(0) = 7.42, is the earliest candidate. It is worth pointing
out that the adjusted accrued utility value is calculated
based on the order of the possible profitable candidates in
set ~S. If the order changes, the adjusted accrued utility value
may change as well.

(a)
E(0), E(1),
E(2) = ∅

(A2, 3)

(b) E(3)

(A2, 3)

(A3, 2)

(c) E(4)

(A2, 3)

(A3, 2)

(A2, 1)

(A3, 1)

(A2, 2)

(A1, 0)

(d) E(10)

Fig. 4: Profitable candidate set

Once we have the profitable candidates, our next step
is to decide the starting time for each application from the
profitable candidates.

5 SPATIAL-TEMPORAL INTERFERENCE BASED
SCHEDULING ALGORITHM FOR MAXIMIZING
SYSTEM TOTAL ACCRUED UTILITY VALUE IN
DISCRETE TIME DOMAIN

5.1 The Spatial-Temporal Interference Based Algorithm
From the previous section, we obtain a set of profitable
candidates stored in stack E. We use a greedy approach
to schedule these applications based on the profitable can-
didates to fully utilize the processing units. Continuing the
above example, as shown in Fig. 4(d), at time 0, A1 is the
only candidate, hence we schedule A1 at time 0, i.e., we
have (A1, 0). The candidate (A1, 0) is then removed from
stack E. The next element on the top of the stack is (A2, 1).

Since there are still sufficient processing units to support
application A2 at time 1, A2 is scheduled at time 1, i.e.,
we have (A2, 1), and (A2, 1) is removed from the stack.
Once A2 starts at time 1, as both A1 and A2 are running,
the system does not have sufficient processing units to start
A3 at time 1, therefore (A3, 1) is removed from stack E.
Since we have decided to start A2 at time 1, (A2, 2) is also
removed from the stack due to each application only having
one starting time. Then, (A3, 2) is on the top of the stack and
there are sufficient processing units for A3 to start at time
2, hence (A3, 2) is added to the schedule. Once all three
applications are scheduled, then the remaining elements in
the stack are removed. We obtain an application execution
schedule

(
(A1, 0), (A2, 1), (A3, 2)

)
.

From the example, we can see that if the system operates
in a discrete time domain, we can construct a schedule
for a given set of parallel and time-sensitive applications
based on their execution spatial-temporal interferences. The
construction steps are:
Step 1: Form a possible profitable candidate set without
considering potential interferences (~S). For a given set of
applications, the size of ~S is |~S| =

∑N
i=1 (di − ei − ri + 1),

where di, ei, and ri are application(Ai)’s non-profit-bearing
time point, execution time, and release time, respectively,
and N is the number of applications to be scheduled.
Step 2: Decide a profitable candidate set after interferences
are taken into consideration (E). Since finding E is an
iterative process, until the process completes, we do not
know the size of E. To accommodate the dynamic growth
of E, we use a stack structure to store the elements of E.
Step 3: Decide a schedule for a given application set based
on the profitable candidate stack E.

Algorithm 2 gives the details of the STIB algorithm.
where R and Γ are given system resource and applica-

Algorithm 2: STIB SCHEDULING(R,Γ)

1: set E = Π = ∅;
2: set ~S = {(Ai, k)|Ai ∈ Γ, k ∈ Q+ ∧ ri ≤ k ≤ di − ei};
3: sort ~S in descending order of starting time s;
4: Π = STIB-Exe(R, ~S);
5: return Π

tion set. Line 2 to line 3 in Algorithm 2 implement the
first step of obtaining the ordered set ~S with all possi-
ble profitable candidates without considering potential in-
terference. Line 3 takes O(|~S| log |~S|) time, where |~S| =∑N

i=1 (di − ei − ri + 1), i.e., the size of possible profitable
candidates set without considering potential interferences,
and N is the number of applications to be scheduled. Line 4
implements the second and the third steps of the STIB algo-
rithm, i.e., STIB-Exe(R, ~S), which is defined as Algorithm 3
given below:

The for loop from line 1 to line 3 in Algorithm 3 im-
plements the second step, i.e., finding profitable candidates
after taking into consideration of potential interferences
among applications. It calculates the adjusted application’s
accrued utility and pushes the profitable (Ai, sj) into stack
E. Line 4 through line 9 implement the third step which
checks whether application Ai is already scheduled or
whether the system’s capacity is enough for (Ai, sj). If the

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2474360, IEEE Transactions on Parallel and Distributed Systems

7

Algorithm 3: STIB-EXE(R, ~S)

1: for j = 1 to |~S| do
2: Calculate Ḡi(sj)
3: end for
4: while !empty(E) do
5: (Ai, sj) = pop(E);
6: if (Ai /∈ Π) ∧ (mi +

∑
∀(Ak, sl) ∈ Π∧

sl ≤ sj < sl + ek

mk ≤M)

then
7: add (Ai, sj) to Π
8: end if
9: end while

10: return Π

application is not scheduled and there is enough capacity in
the system, then it is added into schedule Π. Otherwise,
the candidate is removed. The time complexity of STIB-
Exe(R, ~S) is O(|~S|2). Hence, the complexity of the STIB al-
gorithm is O(|~S|2 + |~S| log |~S|), i.e., O(|~S|2).

5.2 Formal Analysis of the Spatial-Temporal Interfer-
ence Based Algorithm
In this subsection, we prove that the STIB algorithm is a
2-approximation algorithm.

First, we show that the application execution order Π
generated by the STIB algorithm results in at least the same
amount of accrued utility value as all the profitable can-
didates in stack E would generate when the applications’
execution interferences are taken into consideration. Second,
we show that the amount of adjusted utility value of all
profitable candidates in stackE is at least half of the accrued
utility value of the optimal solution.
Theorem 1. Given a parallel and time-sensitive appli-

cation set Γ = {A1,A2, · · · ,AN} where Ai =
(ri, ei,mi,Gi(t)), assume Π = {(Ai, sj)|Ai ∈ Γ} is
an execution schedule generated by the STIB algorithm
based on the profitable candidate stack E, after taking
into consideration potential interferences, then

G(Π) ≥ Ḡ(E)

where G(Π) =
∑

∀(Ai,sj)∈Π

Gi(sj + ei) and Ḡ(E) =∑
∀(Ak,sl)∈E

Ḡk(sl). �

Proof: We prove the theorem in the following two steps: first,
from the process of calculating the adjusted utility value,
we have that the total utility value obtained by following
schedule Π can be represented by a function of the adjusted
utility value of candidates in stack E; second, the greedy
selection of Π from stack E guarantees that the function has
a larger value than the summation of the adjusted utility
value of all candidates in stack E.

First, since Π is selected from E, i.e., Π ⊆ E, therefore
∀(Ai, sj) ∈ Π, we have (Ai, sj) ∈ E.

Assume, at the time when we need to decide if (Ai, sj)
shall be pushed into the stack of E, the elements that are

already in the stack are denoted as E≺(Ai,sj) as shown in
Fig. 5(a). According to the procedure of forming E, i.e.,
Eq. (8), if Ḡi(sj) > 0, then (Ai, sj) is pushed into the stack as
shown in Fig. 5(b). Clearly, once (Ai, sj) is pushed to the top
of the stack, applicationAi can potentially execute before all
other elements in the stack, i.e., (Am, sn) ∈ E�(Ai,sj), hence
it may interfere with the execution of (Am, sn).

(a) E≺(Ai,sj) (b) Ḡi(sj) > 0

Fig. 5: Forming profitable candidate set E

Assume at the end of the STIB algorithm, the state of E
is shown in Fig. 6. Let E�(Ak,sl) denote the subset which
includes elements from the top to (Ak, sl) in E, i.e., the
elements in the subset that can potentially execute before
(Ak, sl).

Fig. 6: Profitable candidates set E
By the definition of G(Π), we have

G(Π) =
∑

∀(Ai,sj)∈Π

Gi(sj + ei) (9)

From Eq. (7) and Eq. (8), we have

G~S[n].A(sn + e~S[n].A) = Ḡ~S[n].A(sn)

+

|E(n−1)|∑
j=1

C
(
~S[n], E(n−1)[j]

)
· ḠE(n−1)[j].A(sj)

where 1 ≤ n ≤ L and L = |~S|. Combine the right two parts
together, we have

G~S[n].A(sn + e~S[n].A) =

|E(n)|∑
j=1

C
(
~S[n], E(n)[j]

)
· ḠE(n)[j].A(sj)

where 1 ≤ n ≤ L and L = |~S|. Convert to the same repre-
sentation, we have

Gi(sj + ei) =
∑

∀(Ak,sl)∈E�(Ai,sj)

C
(
(Ai, sj), (Ak, sl)

)
· Ḡk(sl)

Expand the right-hand side of Eq. (9), we have

G(Π) =
∑

∀(Ai,sj)∈Π

∑
∀(Ak,sl)∈E�(Ai,sj)

C
(
(Ai, sj), (Ak, sl)

)
· Ḡk(sl)

(10)

Eq. (10) examines every element (Ai, sj) in Π and finds
all elements in E that may be interfered by (Ai, sj), i.e.,
∀(Ak, sl) ∈ E�(Ai,sj). To have the same result, we can

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2474360, IEEE Transactions on Parallel and Distributed Systems

8

also iterate through every element (Ak, sl) in E and find
all elements in Π which may interfere with (Ak, sl), i.e.,
∀(Ai, sj) ∈ Π ∩ E�(Ak,sl). Therefore, the value of G(Π) can
also be calculated as follows:

G(Π) =
∑

∀(Ak,sl)∈E

∑
∀(Ai,sj)∈ Π∩E�(Ak,sl)

C
(
(Ai, sj), (Ak, sl)

)
· Ḡk(sl)

=
∑

∀(Ak,sl)∈E

Ḡk(sl)
∑

∀(Ai,sj)∈ Π∩E�(Ak,sl)

C
(
(Ai, sj), (Ak, sl)

)
(11)

As Π ⊆ E, ∀(Ak, sl) ∈ E, either (Ak, sl) ∈ Π or
(Ak, sl) /∈ Π.

For the second step of the proof, we consider the follow-
ing two cases:
Case 1: (Ak, sl) ∈ Π. Based on the definition of
the potential interference factor from Eq. (6), we have
C
(
(Ak, sl), (Ak, sl)

)
= 1. Therefore, the following inequal-

ity holds: ∑
∀(Ai,sj)∈ Π∩E�(Ak,sl)

C
(
(Ai, sj), (Ak, sl)

)
≥ 1

Case 2: (Ak, sl) /∈ Π. For this case, we discuss the following
two scenarios:
Case 2.1: (Ak, sm) ∈ Π ∧ sm < sl. Based on the definition
of the potential interference factor given in Eq. (6), we
have C

(
(Ak, sm), (Ak, sl)

)
= 1. Therefore, the following

inequality holds:∑
∀(Ai,sj)∈ Π∩E�(Ak,sl)

C
(
(Ai, sj), (Ak, sl)

)
≥ 1

Case 2.2: @ ((Ak, sm) ∈ Π ∧ sm < sl). According to the
selection of Π, the reason that (Ak, sl) /∈ Π is that the
available processing units are not enough for (Ak, sl), i.e.,
the interference from the applications in the schedule is no
less than 1, i.e., ∑

∀(Ai,sj)∈ Π∩E�(Ak,sl)

C
(
(Ai, sj), (Ak, sl)

)
≥ 1

Therefore, combining these two cases in Eq. (11), we
have

G(Π) ≥
∑

∀(Ak,sl)∈E

Ḡk(sl) = Ḡ(E)

�

Theorem 2. The STIB algorithm given in Algorithm 2 is a
2-approximation algorithm for Problem 1.

Proof: We take the following steps: we first prove that
for each possible profitable schedule candidate ~S[i] (i =
1, · · · , L), where L = |~S|, their accrued utility value can
be represented by the adjusted accrued utility value of
candidates in the stack of E(i−1), i.e., ∀~S[i] ∈ ~S,

G~S[i].A(si + e~S[i].A) ≤
∑

∀(Ak,sl)∈E(i−1)

C
(
~S[i], (Ak, sl)

)
· Ḡk(sl)

Convert to another representation with the same meaning,
we first want to prove

Gi(sj + ei) ≤
∑

∀(Ak,sl)∈E�(Ai,sj)

C
(
(Ai, sj), (Ak, sl)

)
· Ḡk(sl) (12)

Second, we prove that if the accrued utility value of the
optimal solution O is G(O), then the total adjusted accrued
utility value of element (Ak, sl) in E(L) is at least 1

2G(O),

i.e.,
∑

∀(Ak,sl)∈E(L)

Ḡk(sj) ≥
1

2
G(O), where L = |~S|. Then,

by Theorem 1, the approximation ratio of Algorithm 2 is at
most 2.

Let ~S be the set of all possible profitable candidates
without considering potential interferences for the schedule,
E be the profitable candidate set after potential interferences
are taken into consideration, Π be the schedule generated by
Algorithm 2, and O be an optimal solution.

As E ⊆ ~S, hence, for each element (Ai, sj) in ~S, either
(Ai, sj) ∈ E or (Ai, sj) /∈ E. For the first step of proof, we
divide all elements in ~S into two parts: (a) (Ai, sj) ∈ E and
(b) (Ai, sj) /∈ E.

For each (Ai, sj) ∈ E, based on Eq. (7) and Eq. (8), we
have,

Gi(sj + ei) =
∑

∀(Ak,sl)∈E�(Ai,sj)

C
(
(Ai, sj), (Ak, sl)

)
· Ḡk(sl) (13)

For each (Ai, sj) /∈ E, we have,

Gi(sj + ei) = Ḡi(sj)

+
∑

∀(Ak,sl)∈E≺(Ai,sj)

C
(
(Ai, sj), (Ak, sl)

)
· Ḡk(sl) (14)

where E≺(Ai,sj) denotes the subset of E. It contains the
elements in E when deciding whether (Ai, sj) should be
added into E in the process of adjusting accrued utility
value. Based on Eq. (8), for (Ai, sj) /∈ E, we have Ḡi(sj) ≤ 0
and E�(Ai,sj) = E≺(Ai,sj). Therefore, for Eq. (14), we have

Gi(sj + ei) ≤
∑

∀(Ak,sl)∈E�(Ai,sj)

C
(
(Ai, sj), (Ak, sl)

)
· Ḡk(sl) (15)

From Eq. (13) and Eq. (15), we have ∀(Ai, sj) ∈ ~S,

Gi(sj + ei) ≤
∑

∀(Ak,sl)∈E�(Ai,sj)

C
(
(Ai, sj), (Ak, sl)

)
· Ḡk(sl)

Clearly, each element (Ai, sj) in an optimal solution O,
must be in ~S, i.e., ∀(Ai, sj) ∈ O, (Ai, sj) ∈ ~S. Hence, we
have:

G(O) =
∑

∀(Ai,sj)∈O

Gi(sj + ei)

≤
∑

∀(Ai,sj)∈O

∑
∀(Ak,sl)∈E�(Ai,sj)

C
(
(Ai, sj), (Ak, sl)

)
· Ḡk(sl) (16)

Similar to the transformation from Eq. (10) to Eq. (11) in
Theorem 1, Eq. (16) can also be transformed to:

G(O) ≤
∑

∀(Ak,sl)∈E

∑
∀(Ai,sj)∈ O∩E�(Ak,sl)

C
(
(Ai, sj), (Ak, sl)

)
· Ḡk(sl)

=
∑

∀(Ak,sl)∈E

Ḡk(sl)
∑

∀(Ai,sj)∈ O∩E�(Ak,sl)

C
(
(Ai, sj), (Ak, sl)

)
(17)

Each element (Ak, sl) ∈ E may or may not belong to O,
i.e., ∀(Ak, sl) ∈ E, either (Ak, sl) ∈ E ∧ (Ak, sl) ∈ O or
(Ak, sl) ∈ E ∧ (Ak, sl) /∈ O. To prove Ḡ(E) has the lower
bound of 1

2G(O), we consider the following two cases:
Case 1: (Ak, sl) ∈ E ∧ (Ak, sl) ∈ O. Based on the definition
of the potential interference factor from Eq. (6), we have

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2474360, IEEE Transactions on Parallel and Distributed Systems

9

C
(
(Ak, sl), (Ak, sl)

)
= 1. Since (Ak, sl) ∈ O, other applica-

tions in the optimal solution, i.e., ∀(Ai, sj) ∈ O \ {(Ak, sl)},
occupy at most M −mk processing units at time sl, i.e.,∑
∀(Ai,sj)∈(O\{(Ak,sl)})∩E�(Ak,sl)

C
(
(Ai, sj), (Ak, sl)

)
≤ 1

otherwise O is not schedulable. Adding them together, we
have, ∑

∀(Ai,sj)∈ O∩E�(Ak,sl)

C
(
(Ai, sj), (Ak, sl)

)
≤ 2

Case 2: (Ak, sl) ∈ E∧(Ak, sl) /∈ O. Because (Ak, sl) /∈ O, at
time sl, ∀(Ai, sj) ∈ O occupy at most M processing units,
i.e., ∑
∀(Ai,sj)∈ O∩E�(Ak,sl)

C
(
(Ai, sj), (Ak, sl)

)
≤ M

M −mk

otherwise O would not be schedulable. Since we only con-
sider narrow applications in this paper, i.e., mk ≤ M/2, we
have ∑

∀(Ai,sj)∈ O∩E�(Ak,sl)

C
(
(Ai, sj), (Ak, sl)

)
≤ 2

Therefore, combining these two cases in Eq. (17), we
have

G(O) ≤ 2 ·
∑

∀(Ak,sl)∈E

Ḡk(sl) = 2 · Ḡ(E) (18)

where Ḡ(E) =
∑

∀(Ak,sl)∈E

Ḡk(sl).

Finally, by Theorem 1, we have

G(Π) ≥ Ḡ(E)

where Π is the schedule generated by Algorithm 2 and
G(Π) =

∑
∀(Ai,sj)∈Π

Gi(sj + ei).

So,

G(O) ≤ 2 · Ḡ(E) ≤ 2 · G(Π) (19)

Therefore, Algorithm 2 is a 2-approximation algorithm
for Problem 1. �

With the STIB algorithm, every possible starting point
is checked, and the size of ~S is

∑N
i=1 (di − ei − ri + 1). In

the next section, we will empirically investigate whether we
can reduce the number of points being checked in finding
the best starting time point for each application.

5.3 Impact of Reducing Potential Starting Time Points

Before discussing the empirical investigation, we first intro-
duce the terms which will be used in the experiments.

Maximum Application Demand Density (δmax): given
a parallel and time-sensitive application set Γ =
{A1,A2, · · · ,AN}, where Ai = (ri, ei,mi,Gi(t)), the maxi-
mum application demand density δmax of the application set
is defined as

δmax = max
Ai∈Γ
{ ei
di − ri

} (20)

System Workload (ω): system workload ω is defined as
the product of the application arrival rate λ and the max-
imum application demand density δmax of the application
set, i.e., ω = λ · δmax. The workload ω indicates statistical
application resource demand under a worst case scenario.
For instance, ω = 2 indicates that the total application
resource demand under the worst case is twice the resource
provided by the system.

We take an empirical approach to study the impact of
reducing the number of needed checks for potential starting
time points. In this experiment, rather than selecting every
point within an application’s valid starting time interval
[r, d− e], we choose (a) only two end time points, i.e., r and
d− e; and (b) only the release time r, of each application as
potential starting time points. We only check these points
for each application’s adjusted accrued utility value and
compare the system total accrued utility value with the
value when all time points within the interval [r, d − e] are
selected as potential starting time points.

For the experiment, we assume that there are 40 process-
ing units in the system, i.e., M = 40. We randomly generate
application sets with 100 applications and repeat this 100
times. The average values of the results of the 100 times test
are used in the evaluation.

1 1.5 2 2.5 3

85%

90%

95%

100%

ω

N
or

m
al

iz
ed

 S
ys

te
m

T
ot

al
 A

cc
ru

ed

U

til
ity

 V
al

ue

r & d−e
r only

0.5
80%

Fig. 7: Impact of reducing potential starting time point set
on the performance of the STIB

Fig. 7 shows the result of the system’s total accrued
utility value normalized to the system’s total accrued utility
value obtained when all time points within [r, d − e] are
evaluated. Fig. 7 reveals the results of two conditions: (a)
only the application’s release time and non-profit-bearing
starting time point are used as the application’s potential
starting points; (b) only the release time r is used. For the
first condition, the STIB can still achieve almost the same
amount of accrued utility value (97% to be specific) as when
all integer points within the interval [r, d − e] are used as
potential starting points. However, if only the release time
r is used, the accrued utility value has significant decreases,
especially when the system is highly overloaded.

Further investigation reveals that although only two end
time points, i.e., r and d − e, are selected from each appli-
cation for considering their adjusted accrued utility values,
when the system is overloaded, i.e., applications’ execution
time intervals overlap with each other, it is possible that the
actual points selected for checking within an application are
larger than two. We use an example to explain this scenario.

Given three applicationsA1,A2, andA3, their r and d−e
time points are shown in Table 1.

If we only check the two end points for each application,
then time instants 0, 1, 2, 3, 4, and 7 are checked, where
1, 2, and 3 fall in application A2’s valid execution interval.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2474360, IEEE Transactions on Parallel and Distributed Systems

10

TABLE 1: Applications’ important time points

Application r d-e
A1 0 7
A2 1 3
A3 2 4

Similarly, for application A3, 2, 3, and 4 are all checked.
For application A1, if only r and d − e for each application
are selected as the potential starting time points, we would
lose time points 5 and 6, which could be a better solution
for application A1. Even in such case, most of the time
points within the interval of A1, i.e., [0, 7], are compared.
The observation provides the support that we can reduce
the number of potential starting time points and still accrue
a good system total accrued utility value.

However, if only application’s release time is selected,
we do lose a relatively large number of potential starting
time points and hence, the results become inferior.

From the experiment, we observe that the larger the
potential starting time point sets are selected, the higher
the system’s total accrued utility value obtained by the
STIB algorithm. Based on the observation, we present an
approach that extends the STIB strategy to systems that
operate in a continuous time domain.

6 APPLY SPATIAL-TEMPORAL INTERFERENCE
BASED SCHEDULING STRATEGY IN CONTINUOUS
TIME DOMAIN

From the previous Section 5.3, we observed that we can
still achieve good performance even if we do not explore
all possible starting time point candidates. This observation
reveals a possible solution for maximizing the system’s
total accrued utility value in a continuous time domain.
That is, although there are infinitely many possible starting
time points for a given application within its profitable
interval [r, d − e] in a continuous time domain, we can
judiciously select a finite subset of starting time points and
apply the STIB strategy to the finite set. Based on this idea,
we propose a scheduling algorithm, i.e. the Continuous
Spatial-Temporal Interference Based (STIB-C) algorithm, to
solve Problem 1 defined in Section 3 for a continuous time
domain.

6.1 Deciding Finite Starting Time Points
The basic idea of handling infinite starting time points in
a continuous time domain is to judiciously select a finite
number of starting time points within the infinite point set.

For a given application, if it starts within the time inter-
val [r, d− e], it will generate a positive utility value since it
will complete before its non-profit-bearing point. Therefore, r
and d− e are two important time points for an application.
For a given application set Γ = {A1,A2, · · · ,AN}, if we
only use these important time points as potential starting
time points, there are a total of at most 2N such crucial
time points that the applications can start with. It is worth
pointing out that if applications have dense overlapping
execution intervals, it is possible that all 2N points fall in
a single application’s execution interval, as explained in the
example in Section 5.3.

Clearly, we can also select more intermediate points
within each application’s profitable execution interval to
increase the number of potential comparisons. We let n
control the number of intermediate points we select. Once a
set of discrete points is decided for applications operating
in a continuous time domain, we can apply the STIB-
C algorithm. The next subsection gives the details of the
STIB-C scheduling algorithm for a continuous time domain.

6.2 The Continuous Spatial-Temporal Interference
Based Algorithm

The Continuous STIB algorithm involves two steps, i.e., (a)
deciding on a finite set of potential starting time points
within each application’s potential profitable interval [r, d−
e], and (b) applying the STIB scheduling strategy to the finite
time point set obtained in step (a). The details of the STIB-
C algorithm are given in Algorithm 4, where parameter n
in the algorithm decides how many intermediate points are
to be selected within each application’s potential profitable
interval [r, d− e].

Algorithm 4: STIB-C SCHEDULING(R,Γ, n)

1: set E = Π = S′ = ∅;
2: for Ai ∈ Γ do
3: S′ ← S′ ∪ {ri, ri + 1

n · (di − ei − ri), · · · ,
ri + n−1

n · (di − ei − ri), di − ei};
4: end for
5: for j = 1 to |S′| do
6: ~S ← ~S ∪ {(Ai, sj)|Ai ∈ Γ ∧ sj ∈ [ri, di − ei]}
7: end for
8: sort ~S in descending order of starting time s;
9: Π =STIB-Exe(R, ~S);

10: return Π

Line 2 to line 8 of Algorithm 4 decides the finite prof-
itable candidates without considering potential interfer-
ences for the application set Γ and sorts them in descending
order. The time complexity is O(|~S|2). The STIB-Exe(R, ~S)
in line 9 is given in Section 5.1 and its time complexity is
O(|~S|2). Hence, the time complexity of STIB-C is O(|~S|2).

It is worth pointing out that when n = 0, as each
application’s release time and its non-profit-bearing time
points are selected by default, the size of potential starting
time point set S′ can be as large as 2N , where N is the num-
ber of applications to be scheduled. Hence, the number of
possible profitable candidates without considering potential
interferences, i.e., the size of ~S, can reach 2N2.

7 EMPIRICAL EVALUATION

In this section, we empirically evaluate the proposed
STIB and STIB-C algorithms. For a discrete time domain,
we compare the STIB algorithm with (a) the optimal solu-
tions obtained by brute-force search for small application
sets; and (b) three existing approaches in the literature
for large application sets, i.e., the FCFS with backfilling
scheduling [25], the Gang EDF scheduling [26], and the 0-
1 Knapsack based scheduling [29]. It should be noted that
the technique of reducing potential starting time points is

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2474360, IEEE Transactions on Parallel and Distributed Systems

11

not considered for a discrete time domain. For a continuous
time domain, we (a) study the impact of the number of
intermediate points on the performance of the STIB-C al-
gorithm; (b) compare the STIB-C algorithm with the FCFS
with backfilling scheduling, the Gang EDF scheduling, and
the 0-1 Knapsack based scheduling for large application sets.
The comparison criteria are the system’s total accrued util-
ity value and profitable application ratio which is defined
below:

Profitable Application Ratio (γ) is the ratio between the
total number of applications being successfully completed
with positive accrued utility value and the total number of
applications submitted to the system, i.e.,

γ =
|Γpositive|
|Γtotal|

(21)

where |Γpositive| and |Γtotal| are the total number of applica-
tions completed with positive accrued utility value and total
number of applications submitted, respectively.

7.1 Experiment Settings
The experiments are conducted on a simulator we have de-
veloped. In our experiments, the parallel and time-sensitive
applications, i.e., A = (r, e,m,G(t)), are generated as fol-
lows:

• Total number of processing units M is set to be 12
for small systems and 40 for large systems;

• Number of tasks m is randomly generated based on
a uniform distribution in the range of [1,M/2] for a
given M ;

• Release time r is randomly generated based on the
Poisson distribution with a given λ which is a vary-
ing parameter in our evaluation;

• Execution time e is randomly generated based on
a uniform distribution within [1, δmax · (d − r)] for
a given maximum application demand density δmax
which is a varying parameter in our evaluation;

• Non-profit-bearing time point of G, i.e., d, is set as
d = r+D, where D is randomly generated based on
a uniform distribution within [10, 30];

• The gradient of G, i.e., a, is randomly generated
based on a uniform distribution in [4, 10].

7.2 Performance of the Spatial-Temporal Interference
Based Algorithm
7.2.1 Comparison between the STIB and the Optimal So-
lutions
In this set of experiments, we use brute-force search to find
the optimal schedule that results in the maximal system total
accrued utility value in a discrete time domain and use it for
comparison. We then apply the STIB algorithm to the same
application sets and obtain the corresponding system total
accrued utility value. In these experiments, we assume that
there are 12 processing units in the system, i.e., M = 12.
We randomly generate application sets with 10 applications
and repeat for 100 times. The results of the 100 times test are
used in the evaluation.

We use three different ways to vary the system load.
In the first set of experiments, we set application arrival

rate λ = 3 and let maximum application demand density
δmax change from 1/6 to 1 with a step size of 1/6. Fig. 8(a)
shows the system total accrued utility value obtained by the
STIB algorithm normalized to the optimal solution.

For the second set of experiments, we set the maximum
application demand density δmax = 0.5 and let application
arrival rate λ change from 1 to 6 with a step size of
1. Fig. 8(b) shows the system total accrued utility value
obtained by the STIB algorithm normalized to the optimal
solution.

For the third set of experiment, we increase the system
load, i.e., ω, from light load (ω = 0.5) to overload (ω = 3)
with a step size of 0.5. To do so, we randomly generate
maximum application demand density δmax within (0, 1]
and set application arrival rate λ = ω/δmax. Fig. 8(c) shows
the system total accrued utility value normalized to the
optimal solution.

From the three experiments, we have the following
observations: (a) when the system load is low, the system
total accrued utility value obtained by the STIB algorithm
is close to the optimal; (b) although the deviation between
the STIB algorithm and the optimal brute-force solution
increases when the system load increases, it always achieves
above 50% of the optimal solution, which is consistent with
our theoretic conclusion, i.e., the STIB algorithm is a 2-
approximation algorithm; (c) although the STIB algorithm
is a 2-approximation algorithm, on average, the STIB algo-
rithm can obtain over 92.5% of the optimal value.

7.2.2 Performance Comparison with the FCFS with back-
filling, the Gang-EDF, and the 0-1 Knapsack Based Ap-
proaches for Discrete Time Systems
In this experiment, we set M = 40 and randomly generate
application sets with 500 applications and repeat for 100
times. Due to time complexity, for this set of experiments,
we do not compare the results with the optimal solution
found by through brute-force search, instead, we compare
the STIB algorithm with three approaches commonly used
in the literature, i.e., the FCFS with backfilling, the Gang
EDF, and the 0-1 Knapsack based scheduling algorithms.
The average values of the results of the 100 tests are used in
plotting the figures.
System Utility Value Comparison

We vary the value of system workload ω as we did in
the third experiment in Section 7.2.1, and obtain system total
accrued utility values with three different approaches. The
results are normalized to the system’s total accrued utility
value obtained by the FCFS with backfilling approach. They
are depicted in Fig. 9.

As shown in Fig. 9, the STIB algorithm has a clear
advantage over the other three approaches with respect to
the system’s total accrued utility value. More specifically,
it obtains as much as over 6 times accrued utility value
obtained by the FCFS with backfilling approach when the
system workload is overloaded, i.e., the workload is above
one. Fig. 9 also indicates that the performances of the Gang
EDF and the FCFS with backfilling are similar. The system
total accrued utility value obtained by the STIB algorithm
is over 6 times and about 4.5 times as much as the values
obtained by the Gang EDF algorithm and the 0-1 Knapsack
based algorithm, respectively. When the system workload

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2474360, IEEE Transactions on Parallel and Distributed Systems

12

1/6 1/3 1/2 2/3 5/6 1

60%

70%

80%

90%

100%

N
o

rm
a

liz
e

d
 t

o
 O

p
tim

a
l S

ys
te

m
A

cc
ru

e
d

 U
til

ity
 V

a
lu

e

δ
max

(a) Under different δmax

1 2 3 4 5 6

60%

70%

80%

90%

100%

N
o

rm
a

liz
e

d
 t

o
 O

p
tim

a
l S

ys
te

m
A

cc
ru

e
d

 U
til

ity
 V

a
lu

e

λ

(b) Under different λ

0.5 1 1.5 2 2.5 3

60%

70%

80%

90%

100%

N
o

rm
a

liz
e

d
 t

o
 O

p
tim

a
l S

ys
te

m
A

cc
ru

e
d

 U
til

ity
 V

a
lu

e

ω

(c) Under different ω

Fig. 8: STIB’s comparison with the optimal solution

0.5 1 1.5 2 2.5 3
1
2
3
4
5
6
7

ω

N
o

rm
a

li
z
e

d
 t
o

 b
F

C
F

S

S
y
s
te

m
 T

o
ta

l
A

c
c
ru

e
d

U

ti
li
ty

 V
a

lu
e

STIB
Knapsack
G−EDF

Fig. 9: System accrued utility
value comparison

0.5 1 1.5 2 2.5 3

2

3

4

ω

N
o

rm
a

li
z
e

d
 t
o

 b
F

C
F

S

P
ro

fi
ta

b
le

 A
p

p
li
c
a

ti
o

n
 R

a
ti
o

STIB
Knapsack
G−EDF

1

Fig. 10: Profitable applica-
tion ratio comparison

0.5 1 1.5 2 2.5 3

90%

95%

100%

ω

N
o

rm
a

li
z
e

d
 t

o
 n

=
8

S
y
s
te

m
 T

o
ta

l
A

c
c
ru

e
d

U
ti
li
ty

 V
a

lu
e

n=6
n=4
n=2
n=085%

Fig. 11: Impact of smaller n
on the system total accrued
utility value

0.5 1 1.5 2 2.5 3

96%

98%

100%

ω

N
o

rm
a

li
z
e

d
 t

o
 n

=
8

P
ro

fi
ta

b
le

 A
p

p
li
c
a

ti
o

n
 R

a
ti
o

n=6
n=4
n=2
n=094%

Fig. 12: Impact of smaller n
on the profitable application
ratio

0.5 1 1.5 2 2.5 3

90%

95%

100%

ω

N
o

rm
a

li
z
e

d
 t

o
 n

=
4

0

S
y
s
te

m
 T

o
ta

l
A

c
c
ru

e
d

U
ti
li
ty

 V
a

lu
e

n=30
n=20
n=10
n=085%

Fig. 13: Impact of larger n
on the system total accrued
utility value

0.5 1 1.5 2 2.5 3

96%

98%

100%

ω

N
o

rm
a

li
z
e

d
 t

o
 n

=
4

0

P
ro

fi
ta

b
le

 A
p

p
li
c
a

ti
o

n
 R

a
ti
o

n=30
n=20
n=10
n=094%

Fig. 14: Impact of larger n
on the profitable application
ratio

0.5 1 1.5 2 2.5 3
1
2
3
4
5
6
7

ω

N
o

rm
a

li
z
e

d
 t
o

 b
F

C
F

S

S
y
s
te

m
 T

o
ta

l
A

c
c
ru

e
d

U
ti
li
ty

 V
a

lu
e

STIB−C
Knapsack
G−EDF

Fig. 15: System accrued util-
ity value comparison

0.5 1 1.5 2 2.5 3

1

2

3

4

ω

N
o

rm
a

li
z
e

d
 t
o

 b
F

C
F

S

P
ro

fi
ta

b
le

 A
p

p
li
c
a

ti
o

n
 R

a
ti
o

STIB−C
Knapsack
G−EDF

Fig. 16: Profitable applica-
tion ratio comparison

is 0.5, the STIB algorithm can achieve the system’s total
accrued utility value 4.5 times as much for both the FCFS
with backfilling and the Gang EDF algorithms, and 1.2 times
as much for the 0-1 Knapsack based scheduling algorithm.
Profitable Application Ratio

Fig. 10 shows the profitable application ratio, which is
normalized to the FCFS with backfilling approach, under
different algorithms with different system loads ω.

The profitable application ratio is related to the system
accrued utility value. The more applications that finish be-
fore their non-profit-bearing point, the higher the profitable
application ratio. The STIB and 0-1 Knapsack based algo-
rithms try to maximize the application utility value so both
algorithms have higher application profitable ratios than
the FCFS with backfilling and the Gang EDF scheduling
algorithms.

In Fig. 10, when the system load is low, i.e., the resource
competition among applications is low, the 0-1 Knapsack
based algorithm has a higher profitable application ratio
than the STIB algorithm (about 10% higher). As the system
load increases, the potential interference among applications
increases. The STIB algorithm, which takes into consid-
eration possible interference, once again outperforms the
other three scheduling approaches. The profitable applica-
tion ratio obtained by the STIB algorithm is about four

times as much as what can be achieved by the FCFS with
backfilling algorithm when the system load is larger than
one. Furthermore, the performance of the Gang EDF and the
FCFS with backfilling with respect to profitable application
ratio is similar, and the STIB algorithm achieves over four
and close to two times as much as the profitable application
ratios achieved by the Gang EDF and the 0-1 Knapsack
based algorithms, respectively.

7.3 Performance of the Continuous Spatial-Temporal
Interference Based Algorithm
7.3.1 Impact of the Number of Intermediate Time Points
In this experiment, we examine the impact of the number
of intermediate points on the performance of the STIB-C al-
gorithm. In the experiment, we set M = 40. We randomly
generate application sets with 100 applications and repeat
that 100 times. The average values of the results of the 100
times test are used in the evaluation.
Small Number of Intermediate Points

We increase the system load ω and the number of in-
termediate points n, and obtain the system’s total accrued
utility value and the profitable application ratio. Fig. 11
shows the result of the system’s total accrued utility value
normalized to the value obtained with n = 8, i.e, the largest

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2474360, IEEE Transactions on Parallel and Distributed Systems

13

number of intermediate points in the experiment. Fig. 12
depicts the impact of the number of intermediate points on
the profitable application ratio, which is normalized to the
profitable application ratio obtained with n = 8.

From Fig. 11, we observe that the larger the number of
intermediate points (n), the higher the system total accrued
utility value. The system’s total accrued utility value differ-
ence between n = 0 and n = 2 is up to 9%. However, when
n increases from 2 to 8, the utility value increase is only
about 2.4%.

This result is consistent with the observation in Sec-
tion 5.3 for discrete time domain, i.e., the larger the po-
tential starting time point set, the higher the system total
accrued utility value. However the difference among them
is limited. That is because for the same application set,
the time interval [r, d − e] for each application is fixed. As
the number of intermediate points becomes larger, the time
difference between every two successive potential starting
time points becomes smaller. Hence, the accrued utility
value differences between two consecutive potential starting
time points become smaller. Therefore, the variation of the
system total accrued utility value with a different number
of intermediate points selected becomes smaller.

From Fig. 12, it can be seen that the profitable application
ratio is not sensitive to the number of intermediate points
either, except for the case when n = 0. When n increases
from 2 to 8, the variation of the profitable application ratio
is less than 0.5%.
Large Number of Intermediate Points

We further extend the range of the number of inter-
mediate points n and set n = 0, 10, 20, 30 and 40. The
normalized system total accrued utility value and the nor-
malized profitable application ratio are depicted in Fig. 13
and Fig. 14, respectively. Both figures are normalized to the
results obtained with n = 40.

Fig. 13 shows that, as the number of intermediate points
n increases from 10 to 40, the system’s total accrued utility
value change is less than 1%. Similar property can be
observed on the profitable application ratio as shown in
Fig. 14. Hence, in our next experiment study, we set the
number of intermediate points n of the STIB-C algorithm to
2, i.e., n = 2.

7.3.2 Performance Comparison with the FCFS with back-
filling, the Gang-EDF, and the 0-1 Knapsack Based Ap-
proaches for Continuous Time Systems

This set of experiments is to compare the STIB-C algorithm
with three existing scheduling approaches for parallel ap-
plications, i.e., the FCFS with backfilling, the Gang EDF,
and the 0-1 Knapsack based approach, for systems operating
in a continuous time domain. In these experiments, we set
M = 40. We randomly generate an application set with 500
applications and repeat that 100 times. The average values
of the results of the 100 times test are used in plotting the
figures.
System Utility Value Comparison

Fig. 15 depicts the result of the system total accrued
utility value of different approaches, which are normalized
to the system total accrued utility value obtained by the
FCFS with backfilling approach.

From Fig. 15, it can be seen that, on average, the STIB-
C algorithm outperforms the other three algorithms. It
obtains as much as over 6 times system utility than the
FCFS with backfilling when the work load is above one.
Fig. 15 also shows that the performances of the Gang EDF
and the FCFS with backfilling are similar, and the system
total accrued utility value obtained by the STIB-C algorithm
is over 6 times and over 4.5 times as much as the values
obtained by the Gang EDF algorithm and the 0-1 Knapsack
based algorithm, respectively. When the system load is 0.5,
the STIB-C algorithm can achieve the system’s total accrued
utility value as much as 4.5 times for both the FCFS with
backfilling and the Gang EDF algorithms, and 1.2 times
as much for the 0-1 Knapsack based scheduling algorithm.
These results are similar to the result of the STIB algorithm
for a discrete time system.
Profitable Application Ratio Comparison

Fig. 16 shows the profitable application ratio under
different algorithms with different system loads ω.

It is consistent with the result for a discrete time domain,
both the STIB-C and the 0-1 Knapsack based algorithms
have higher application profitable ratios than the FCFS with
backfilling and the Gang EDF scheduling algorithms. Under
overload situations, the STIB-C algorithm outperforms the
other three scheduling approaches.

The STIB-C algorithm can obtain about four times as
much as the profitable application ratio of the FCFS with
backfilling algorithm when the system load is larger than
one. Moreover, the performance of the Gang EDF and the
FCFS with backfilling in terms of the profitable application
ratio is similar, and the STIB-C algorithm achieves about
four and close to two times as much as the profitable
application ratios achieved by the Gang EDF and the 0-1
Knapsack based algorithms, respectively.

8 CONCLUSION

This paper presents two Spatial-Temporal Interference
Based scheduling algorithms for parallel and time-sensitive
applications, i.e., the STIB and the STIB-C algorithms, with
the optimization goal to maximize the system’s total accrued
utility value when the system operates in a discrete or con-
tinuous time domain, respectively. We have formally proved
that the STIB algorithm is a 2-approximation algorithm.

Our simulation results have not only confirmed that the
STIB algorithm is indeed a 2-approximation algorithm, but
also shows that the accrued utility values obtained through
the STIB algorithm is very close to the optimal accrued
utility value. In fact, on average, the value obtained by
the STIB is over 92.5% of the optimal value. In addition,
compared with other approaches in the literature, on aver-
age, both the STIB and the STIB-C algorithms have clear
advantages in terms of the system’s total accrued utility
values and the profitable application ratio. However, as the
time complexity of the STIB algorithm is in terms of valid
time points within a given application set which may be
larger than the number of applications, hence, it is possible
that the STIB algorithm has a higher time complexity than
the Gang EDF and the FCFS with backfilling algorithms.
One of our future works is to reduce the number of checking
points needed for the STIB algorithm.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2474360, IEEE Transactions on Parallel and Distributed Systems

14

It is worth pointing out that in this work the accrued
utility value is associated with a parallel application, not
with an individual task or a subset of parallel tasks within
a parallel application. We believe such association is more
general as if we need to optimize accrued utility value
based on individual task(s) within a parallel application,
we can treat such task(s) themselves as parallel applications
and schedule them with the STIB or the STIB-C algorithms
depending on if the time domain is discrete or continuous.

However, this current work is based on the assumption
that all applications are narrow applications, i.e., the num-
ber of concurrent tasks within an application is no more than
half the number of processing units existed in the system.
For our future work, we will study the case when the
assumption is relaxed, i.e., when there are both narrow and
wide applications in the application set. For a continuous
time system, we currently decide on finite starting time
points with uniform distribution. How to decide a finite
set of potential starting time points to improve the system’s
total accrued utility value is another study in our future
work. Currently, we do not know the sufficient condition
for the proposed methodology and we will study it in our
future work. We will also extend our experimental study on
the robustness of both the STIB and the STIB-C algorithms,
such as the application execution time diversion.

ACKNOWLEDGMENT

This research is supported in part by NSF under awards
CNS-1018731, CNS-0746643(CAREER).

REFERENCES

[1] L. R. Welch and S. Brandt, “Toward a realization of the value of
benefit in real-time systems,” in Parallel and Distributed Processing
Symposium., Proceedings 15th International, April 2001, pp. 962–969.

[2] J. Valenzuela, J. Wang, and N. Bissinger, “Real-time intrusion
detection in power system operations,” Power Systems, IEEE Trans-
actions on, vol. 28, no. 2, pp. 1052–1062, 2013.

[3] Y. Chen, S. Nyemba, and B. Malin, “Detecting anomalous insid-
ers in collaborative information systems,” Dependable and Secure
Computing, IEEE Transactions on, vol. 9, no. 3, pp. 332–344, 2012.

[4] D. Ferry, J. Li, M. Mahadevan, K. Agrawal, C. Gill, and C. Lu,
“A real-time scheduling service for parallel tasks,” in Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2013
IEEE 19th, April 2013, pp. 261–272.

[5] A. Saifullah, J. Li, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-
time scheduling for generalized parallel task models,” Real-Time
Systems, vol. 49, no. 4, pp. 404–435, 2013.

[6] L. Su, Q. Li, S. Hu, S. Wang, J. Gao, H. Liu, T. Abdelzaher, J. Han,
X. Liu, Y. Gao, and L. Kaplan, “Generalized decision aggregation
in distributed sensing systems,” in Real-time Systems Symposium.
RTSS 2014., 2014, pp. 1–10.

[7] C. F. Mass and Y.-H. Kuo, “Regional real-time numerical weather
prediction: Current status and future potential,” Bulletin of the
American Meteorological Society, vol. 79, no. 2, pp. 253–263, 1998.

[8] W. L. D. Leung, R. Vanijjirattikhan, Z. Li, L. Xu, T. Richards,
B. Ayhan, and M. Y. Chow, “Intelligent space with time sensi-
tive applications,” in Advanced Intelligent Mechatronics. Proceedings,
2005 IEEE/ASME International Conference on, 2005, pp. 1413–1418.

[9] T. Henderson and S. Bhatti, “Networked games: a qos-sensitive
application for qos-insensitive users,” Proceedings of the Acm Sig-
comm Revisiting Ip Qos Workshop, pp. 141–147, 2003.

[10] C. D. Locke, “Best-effort decision making for real-time schedul-
ing,” Ph.D. dissertation, Carnegie-Mellon University, 1987.

[11] E. D. Jensen, C. D. Locke, and H. Tokuda, “A time-driven schedul-
ing model for real-time operating systems,” in Real-time Systems
Symposium. RTSS 1985. 6th IEEE International, 1985, pp. 112–122.

[12] G. C. Buttazzo, G. Lipari, L. Abeni, and M. Caccamo, Soft real-time
systems: Predictability vs. Efficiency. Springer, 2006.

[13] M. Bertogna, M. Cirinei, and G. Lipari, “Improved schedulability
analysis of edf on multiprocessor platforms,” in Real-Time Systems,
2005. (ECRTS 2005). Proceedings. 17th Euromicro Conference on, July
2005, pp. 209–218.

[14] S. Baruah, “Techniques for multiprocessor global schedulability
analysis,” in Real-Time Systems Symposium. RTSS 2007. 28th IEEE
International, Dec 2007, pp. 119–128.

[15] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller,
“Improved multiprocessor global schedulability analysis,” Real-
Time Systems, vol. 46, no. 1, pp. 3–24, 2010.

[16] R. I. Davis and A. Burns, “A survey of hard real-time scheduling
for multiprocessor systems,” ACM Computing Surveys, vol. 43,
no. 4, pp. 1–44, Oct 2011.

[17] S. Li, M. Song, P. jun Wan, and S. Ren, “Maximizing system’s total
accrued utility value for parallel and time-sensitive applications,”
in Performance Computing and Communications Conference (IPCCC),
2014 IEEE International, Dec 2014, pp. 1–8.

[18] R. K. Clark, “Scheduling dependent real-time activities,” Ph.D.
dissertation, Carnegie Mellon University, 1990.

[19] G. Koren and D. Shasha, “Dover: an optimal on-line scheduling
algorithm for overloaded real-time systems,” in Real-time Systems
Symposium. RTSS 1992. 13th IEEE International, 1992, pp. 290–299.

[20] D. Mosse, M. Pollack, and Y. Ronen, “Value-density algorithms to
handle transient overloads in scheduling,” in Real-Time Systems,
Proceedings of the 11th Euromicro Conference on, 1999, pp. 278–286.

[21] K. Chen and P. Muhlethaler, “A scheduling algorithm for tasks
described by time value function,” Real-Time Systems, vol. 10, no. 3,
pp. 293–312, 1996.

[22] P. Li, H. Wu, B. Ravindran, and E. Jensen, “A utility accrual
scheduling algorithm for real-time activities with mutual exclu-
sion resource constraints,” Computers, IEEE Transactions on, vol. 55,
no. 4, pp. 454–469, April 2006.

[23] P. Li, “Utility accrual real-time scheduling: Models and algo-
rithms,” Ph.D. dissertation, Virginia Polytechnic Institute and
State University, 2004.

[24] A. Burns, D. Prasad, A. Bondavalli, F. Di Giandomenico, K. Ra-
mamritham, J. Stankovic, and L. Strigini, “The meaning and role of
value in scheduling flexible real-time systems,” Journal of Systems
Architecture, vol. 46, no. 4, pp. 305–325, 2000.

[25] D. G. Feitelson and A. M. Weil, “Utilization and predictability
in scheduling the ibm sp2 with backfilling,” in Parallel Processing
Symposium, 1998. IPPS/SPDP 1998. Proceedings of the First Merged
International ... and Symposium on Parallel and Distributed Processing
1998. IEEE, Mar 1998, pp. 542–546.

[26] S. Kato and Y. Ishikawa, “Gang edf scheduling of parallel task
systems,” in Real-Time Systems Symposium, RTSS 2009. 30th IEEE,
Dec 2009, pp. 459–468.

[27] K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel
real-time tasks on multi-core processors,” in Real-Time Systems
Symposium, RTSS 2010. 31st IEEE, Nov 2010, pp. 259–268.

[28] O.-H. Kwon and K.-Y. Chwa, “Scheduling parallel tasks with
individual deadlines,” Theoretical Computer Science, vol. 215, no. 1,
pp. 209–223, 1999.

[29] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein et al., Introduc-
tion to algorithms. MIT press Cambridge, 2001, vol. 2.

[30] M. Grenier and N. Navet, “Fine-tuning mac-level protocols for
optimized real-time qos,” Industrial Informatics, IEEE Transactions
on, vol. 4, no. 1, pp. 6–15, 2008.

[31] C.-G. Lee, J. Hahn, Y.-M. Seo, S.-L. Min, R. Ha, S. Hong, C. Y. Park,
M. Lee, and C.-S. Kim, “Analysis of cache-related preemption
delay in fixed-priority preemptive scheduling,” Computers, IEEE
Transactions on, vol. 47, no. 6, pp. 700–713, 1998.

[32] H. Ramaprasad and F. Mueller, “Tightening the bounds on feasible
preemptions,” ACM Trans. Embed. Comput. Syst., vol. 10, no. 2, pp.
27:1–27:34, Jan. 2011.

[33] G. Buttazzo, M. Bertogna, and G. Yao, “Limited preemptive
scheduling for real-time systems a survey,” Industrial Informatics,
IEEE Transactions on, vol. 9, no. 1, pp. 3–15, Feb. 2012.

[34] S. Li, S. Ren, Y. Yu, X. Wang, L. Wang, and G. Quan, “Profit and
penalty aware scheduling for real-time online services,” Industrial
Informatics, IEEE Transactions on, vol. 8, no. 1, pp. 78–89, Feb. 2012.

[35] S. Li, M. Song, Z. Li, S. Ren, and G. Quan, “Maximizing online ser-
vice profit for time-dependent applications,” in Proceedings of the
19th International Conference on Embedded and Real-Time Computing
Systems and Applications, 2013, pp. 342–345.

