
Sensor-Based Low Power Management For Mobile
Platforms

Douglas Lautner‡, Scott DeBates†, Jagat Shah†, Miao Song‡, Shangping Ren‡
‡Illinois Institute of Technology, Chicago, IL 60616 USA

† Motorola Mobility LLC., Chicago, IL 60654 USA

Email: dlautner@hawk.iit.edu, {scottdebates, jagat}@motorola.com, msong8@hawk.iit.edu, ren@iit.edu

Abstract— As mobile devices become increasingly more ad-
vanced and essential for everyday life, minimizing power con-
sumption of these devices has also become one of the critical
design concerns, especially for those mobile devices that support
“always-on” applications, such as a driving mode detection
application. In this paper, we present a design, implementation,
and deployment of an energy efficient mobile platform for end-
consumers. Taking the driving mode detection application as an
example, we give the platform design and technical implemen-
tation details. Our solution not only offers a clean and portable
design for all sensor-related applications, it is also proven that it
can significantly reduce power consumption. In fact, based on live
measurements, for driving detection applications, the designed
platform provides up to 73.11% energy consumption reduction,
and up to 18.43 minutes of prolonged battery life. To the best
of our knowledge, the platform is the first solution to provide a
clean, portable, and fundamentally energy efficient architecture
for Andriod sensor related applications. It has been deployed in
Motorola commercial devices.

Index Terms— Android, embedded system, energy efficient,
low power, mobile device, mobile platform, sensor fusion core

I. INTRODUCTION

Advanced mobile devices such as smart phones, tablets, and

wearables are playing a large role in improving the quality

of our daily lives. Humans use such devices to communicate

with the environment and each other through different sensing

capacities. For instance, current sensing capabilities on mobile

phones include WiFi, Bluetooth, GPS, audio, video, light

sensors, accelerometers, etc. In other words, mobile devices

are “no longer only a communication device, but also a

powerful environmental sensing unit that can monitor a user’s

ambient context, both unobtrusively and in real time”[1].

More and more applications are being built on mobile devices

that exploit such sensing services providing context-aware

functionality benefiting end-users in their daily lives. A new

example is drive mode detection. While driving, it is normally

not convenient or even forbidden for users to text back or call

back when a new message or call comes. By detecting whether

the user is in drive mode or not, an application can assistant the

user depending on the contextual situations. For instance, the

application can forward the users call or automatically reply

to the message or voice-play the message for users when they

are in the drive mode.

However, these applications can quickly drain the limited

battery of mobile devices using sensing technologies. Sensors

are famously known as big energy consumption sources, es-

pecially those that are frequently triggered to collect raw data.

By interrupting the application processor in mobile device

to process raw data in a high frequency, these sensors and

the related applications will cost a large amount of current

drain. How to prolong the life of battery, yet achieve the same

functionality and better energy efficiency of these applications,

becomes a big challenge and the focus of this paper.

Oftentimes, for an application to sense and obtain the

information of its surroundings, a direct approach is to employ

and exploit the related sensing capabilities. In the drive mode

detection example, GPS signals are normally continuously

requested by applications to detect the speed/location of a

vehicle. Based on that, the applications can easily calculate

the conclusion. Effective as it may be, this approach is very

energy costing. A careful study indicates that some features

of drive mode can be detected or identified by sensors, such

as the accelerometer, are much more energy efficient. By the

coordination of various sensors data and GPS signals, we have

proven an energy efficient solution without comprising the

functionality of the applications.

In particular, the solution should support: 1) various sensor

data and GPS signals need to be seamlessly and conveniently

coordinated in the mobile device; 2) the use of sensor data

itself should not cost too much current drain; and 3) no

constraints to only support drive mode detection. As a matter

of fact, many applications share the same characteristics with

the drive mode detection. These applications involve multiple

sensors and different sensing technologies. Usually they have

intensive interactions with the users, which make them subject

to significant amount of current drain discharge. Therefore, the

proposed solution should be generic enough to fundamentally

support a category of such applications.

Driven by these targets, in this paper we propose, im-

plement and deploy to end-consumers an energy efficient

mobile architecture/platform. Our formulation uses an Android

operating system to support the applications with lower energy

cost. We design and implement various software modules

within a sensor fusion core to exploit the low energy cost

capability and provide fundamental support for upper layer

applications in Android’s stack. Our architecture is designed

to be mobile platform agnostic and not built targeting for one

particular application or device. The design of our modules

enables the sensor fusion core to seamlessly communicate with

2015 IEEE 17th International Conference on High Performance Computing and Communications (HPCC), 2015 IEEE 7th

International Symposium on Cyberspace Safety and Security (CSS), and 2015 IEEE 12th International Conf on Embedded Software

and Systems (ICESS)

978-1-4799-8937-9/15 $31.00 © 2015 IEEE

DOI 10.1109/HPCC-CSS-ICESS.2015.281

934

the existing sensors or wireless sensing technologies in the

Android operating system. In fact, most Android sensor-based

applications are able to gain an improved power saving per-

formance without changing the current Android framework or

application itself. Our solution is proven to have significantly

reduced power consumption, i.e., up to 73.11% improvement

in energy consumption improvement using live measurements

and up to 18.43 minutes of prolonged battery life in drive

mode detection. It has been deployed, measured and proven

in commercial devices.

To the best of our knowledge, our platform is the first

solution to provide a clean, portable and fundamental energy

efficient architecture for Android sensor related applications.

We will discuss the related work in Section II, the detailed

design and implementations are discussed in Section III.

We verify the performance of platform implementation in

Section IV. Finally, we conclude in Section V.

II. RELATED WORK

With the big obstacle of energy consumption in sensing

capabilities, much research has been devoted to investigating

the efficient power management design at the application level.

Various strategies are employed to reduce the unnecessary

sensing frequency without compromising the functionality of

the applications. For example, Wang et.al [1] proposes a

framework where energy efficiency is achieved by managing

sensors in a hierarchical way based on the user’s current state.

The core component called “ Energy Efficient Mobile Sens-

ing System (EEMSS)” associates user states with particular

sensors. It contains both the set of necessary sensors needed

to be monitored and the sequence of future sensors to be

turned on to detect state transition. By carefully selecting

a subset of sensors based on the users state, [1] can avoid

unnecessary energy waste without compromising the accuracy

of state detection by multiple sensors. Similarly, Zhuang et.al

[2] utilizes the low accuracy requirement of the application,

such as twitter, to reduce the frequency of GPS sensing. In

addition, [2] uses piggybacking of multiple sensors data to

reduce the total times of collecting data. Abdesslem et.al [3]

comes up with the approach of switching between GPS and

WiFi based location sensing. The authors keep GPS on at

all times to detect if the device is indoors/outdoors; when

a GPS signal is detected, the device is considered outdoors

and location sensing by WiFi is turned off. Pendao et. al [4]

explores periodic sampling of the sensors and the suspension

of the sampling process in the Android operating system

whenever the device is not moving. By balancing between

sensing tasks effectiveness and the energy consumption in

the context of human motion analysis, [4] can save energy

without compromising the collected data through suspending

the sampling process during periods of immobility. Also based

on human activity sensing, Li et. al [5] presents an unobtrusive,

energy-efficient approach through the intelligent scheduling of

built-in sensors on mobile phones and light-weight compressed

sensing. In their approach, an activity pattern matrix was

constructed and adaptively modified to control the scheduling

of active sensing in a Compressed Sensing (CS) mechanism.

CS can effectively reduce the samples required to save energy.

Recently, there is a trend of collective mobile sensing [6]

where a coordinator controls sensing activities of users such

that those mobile phones sense collaboratively to produce

just enough data reports for the application. Sheng et. al

[7] models the energy-efficient collaborative sensing with

mobile phones as the optimization problem. They propose

the practical and effective heuristic algorithms to find energy-

efficient sensing schedules under realistic assumptions. Their

work is acclaimed to be the first to present theoretically well-

founded and practically useful algorithms to show the energy-

saving benefits of using collaborative sensing in mobile phone

sensing applications.

Meanwhile, some researchers have started to look into the

low level design: they focus on the low power embedded

mobile platform design for energy saving purposes. In the

Viredaz et. al’s work [8] , the system hardware is suggested to

be designed as a collection of inter-connected building blocks

that could function independently to enable independent power

management. Pillai et. al [9] introduces the dynamic frequen-

cy/voltage scaling to reduce power consumption by configur-

ing the processor based on the requirements of the executing

applications. However, these approaches do not provide a

direct solution to sensing related processing. Priyantha et. al

[10] presents a sensing architecture to include a dedicated low-

power sensing processor for sampling and low-level processing

of sensor data. However, an application using this architecture

must itself decide how to partition an application across main

processor and sensing processor.

In this paper, we exploit the characteristics of the sensor

fusion core and present a power efficient mobile platform

based on Android system especially targeting sensor-related

processing. In particular, we use in-car driving mode detection

application as an example to illustrate our design. However,

it is worth noting that any sensor-based Android application

that fits the abstraction of our design model can benefit from

our software infrastructure [11], [12].

III. ENERGY-EFFICIENT PLATFORM DESIGN AND

IMPLEMENTATION FOR MOBILE DEVICES

A. Approach Evolution

We take an in-car driving mode detection as an example. For

a drive mode application, GPS signal is normally the intuitive

and direct approach to resort to. Usually, the application

continuously uses GPS scanning at the application processor

to keep tracking the current location of cars, which will help

to detect if the car is in the drive mode or not. Fig. 1 depicts

the approach that obtains the required accuracy and detection

of in-car state, however is highly energy consuming.

Our research shows that GPS scanning is not always neces-

sary during the drive mode. For example, if the car is stopped

at traffic jam or red light, the continuous GPS scanning will

be a wasted energy cost as it will not provide any updated

location/speed information. Under such scenarios, the GPS

scanning can be turned off at the application processor.

935

Fig. 1. The Continuous GPS Scanning Approach

Fig. 2. The Sensors+ Sensor Fusion Core Approach

With the help of sensors, we are able to employ the move-

ment and non-movement detection which provides information

to the application processor to start and stop GPS scanning

based on movement of a device. As sensors could also be the

source of high current drain at the application processor, the

movement and non-movement detection algorithm needs to be

refactored at the sensor fusion core level to fully exploit its

energy saving features. Fig. 2 depicts the architecture of using

sensor fusion core and detection refactorization.

Architecting sensor-related movement detection in the sen-

sor fusion core and being able to communicate and coordinate

with the application processor seamlessly at the same time

in the Android system is a novel approach. In order to

fundamentally support this feature, we provide and implement

the mobile platform to fully exploit the sensor fusion core.

The specific hardware configuration of our platform is

shown in Fig. 3, and we will extend the discussions of our

platform in following sections.

Fig. 3. Hardware Configuration of Energy-efficient Mobile Platform

B. Design of Energy-efficient Mobile Platform

Our mobile platform is designed to exploit the energy-

saving feature of a sensor fusion core. How to customize the

usage of a sensor fusion core is a key design of our platform.

We first briefly introduce sensor fusion core’s related features.
1) Sensor Fusion Core: Sensor fusion core is a flash

programmable microcontroller and integrated sensors tightly

coupled in the SoC (System on Chip) architecture specially

designed for sensor data processing. It contains precisely

defined processing power and memory to gather and process

data from various sensor types. For example, our trial uses

an 8KB RAM, 128 KB Flash and maximum clock speed of

25MHz. The processing capacity of the sensor fusion core

makes itself a perfect solution to offload the sensor processing

work from a highly power intensive processing unit, i.e.,

application processor.
On the other hand, the sensor fusion core can also deliver the

results with low power consumption due to its special design.

A sensor fusion core has three configurable power modes:

active mode, standby mode, and off mode. When it is in active
mode, the CPU and all clocks are turned on. When the sensor

fusion core enters off mode, the CPU is disabled, clocks are

stopped, and data is in retention status. The lowest power mode

available that still supports timers is standby mode.
Because of its outstanding energy efficiency performance,

our platform is built upon a sensor fusion core. We will discuss

our architecture design within a sensor fusion core in the

following sections.
2) Software Architecture within Sensor Fusion Core: In

particular, the software architecture of our platform is shown

in Fig. 4:

Fig. 4. Sensor Fusion Core Software Architecture

There are four key modules in the design. In particular,

• Power Manager: manages the power mode votes from

different tasks and configures the sensor fusion core’s

power mode based on these votes.

• Sensor Manager: configures the sensors and manages the

raw sensor data obtained from the sensors.

• Algorithm Manager: configures, schedules, and provides

the raw sensor data for all algorithms.

• Application Processor Interface: responsible for all com-

munications between the sensor fusion core and applica-

936

tion processor. Its tasks include managing features turned

on/off by the application processor, and interrupting the

application processor when sensor data is available to be

processed.

The four modules serve different functionalities and interact

with each other. Algorithm Manager manages all algorithms

that are currently needed and it relies on Sensor Manager

to turn on and turn off different sensors or run them at

different speeds. Sensor fusion can be achieved by running

multiple algorithms at the same time with various sensor data

(accelerometer data only vs. accelerometer and magnetometer

data) provided at different speed (50Hz vs. 100 Hz). Power

Manager provides interfaces to voting mechanism that is used

by all other components.

3) Interaction with Android Operating System: Our mobile

platform is not built targeting for one particular application or

device. Sensor fusion core itself should be able to seamlessly

communicate with the other existing sensors or sensing tech-

nologies in the Android system. In other words, sensor fusion

core should be treated as a part of the Android system, and

the sensor related applications are abstracted and not aware of

the existence of sensor fusion core with our configuration.

In our platform, sensor fusion core is treated as an individual

virtual sensor to the Android system. We add three modules,

i.e., sensor fusion core driver, virtual sensor Hardware Abstrac-

tion Layer (HAL) , and sensor/virtual sensor service, to bridge

the sensor fusion core with the Sensor Manager in Android

framework.

In particular, virtual sensors are part of the Android system

that allow mobile device manufacturers the ability to create

new sensors that Android has not defined. The virtual sensors

normally provide Android applications the calculated sensor

fusion, or contextual data. In the drive mode detection exam-

ple, contextual data is provided through virtual sensor to let

the application know when the users are or are not driving.

All virtual sensors a manufacture supports on a device are

managed by the virtual sensor HAL.

It is worth mentioning that our modules do not affect

the functions of the existing Android modules, and can be

removed and changed per the users needs. The position of our

platform in Android system is shown in Fig. 5.

C. Key Implementations of Energy-efficient Mobile Platform

In terms of our platform implementation, there are several

key implementations that are tailored to be energy-efficient

and platform portable.

1) Sensor Data Interruption Mechanism: Within the sensor

fusion core, the normal interruption mechanism, i.e., timers,

will require the sensor fusion core to run a clock all the time.

Therefore, the sensor fusion core will keep awake without a

chance to enter into the off mode. To save 1uA under the off
mode, we need to change the design of sensor data interruption

in sensor fusion core. In particular, we do not use a timer

to interrupt sensor fusion core whenever raw sensor data is

available. Instead, an external GPIO interrupt is employed to

wake sensor fusion core. By architecting the software system

Fig. 5. The Position of Energy-efficient Mobile Platform in Android Stack

to not use timers to wake up and read sensor data, we are able

to save an additional 1uA.

Our choice of external GPIO interrupt comes from the

accelerometer sensor. Accelerometer sensor has its own clock

and is always turned on monitoring accelerations. By ex-

ploiting the characteristics of acceleration, we use the ac-

celerometer IC as the driving force to wake the sensor fusion

core from OFF mode. Meanwhile, the ODR (Output Data

Rate: the rate at which the sensor will interrupt with data

ready) synchronization of other sensors with accelerometer are

carefully designed so that we can perform the tasks the same

as we configure a timer to wake up the lower power sensor

fusion core.

Using this mechanism, we also benefit from the fact that

the accelerometer IC already has the latest measurements that

are ready to be retrieved loaded into the registers, whenever

accelerometer sensor is triggered to function as a clock. The

detailed synchronization procedure is shown in Fig. 6, and the

key module is described in Algorithm 1.

Algorithm 1: ODR-SYN(ACCEL INTERRUPTS)

1 if Accelerometer interrupts with data ready then
2 SensorManager retrieves the Accelerometer data;
3 end
4 if Other sensors registered for data then
5 if Data requested as the same rate as Accelerometer then
6 SensorManager retrieves sensor data;
7 end
8 else
9 Delay data retrieval till the next Accelerometer interrupt;

10 end
11 end

937

Fig. 6. Sensor ODR synchronization with Accelerometer

2) Power Voting Procedure: When designing the software

architecture for the sensor fusion core, we need to ensure all

software modules complete their tasks before the sensor fusion

core could go into low power mode. Placing the system into

low power mode before a task completes can cause data not

to be reported, or corrupted. We design a module called the

Power Manager that manages the power modes of software

architectures. The Power Manager module uses a power-voting

procedure shown in Fig. 7 and Algorithm 2 to determine when

it is safe to place the sensor fusion core into off mode (LPM4).

Once the sensor fusion core is woken from the hardware

interrupt (BUS interrupts, accelerometer interrupts), the power

voting procedure starts. Our architecture system stays awake

by allowing the first function call of all software modules

to be voting for power state. Upon a software module com-

pleting its task, it will vote to enter low power. Our Power

Manager monitors the votes from all the software modules to

determine if it can place the system into low power mode.

Take Algorithm Manager and Sensor Manager for example,

for the movement algorithm, Algorithm Manager is voting to

keep the system awake and then asks for sensor data from

Sensor Manager. During this time, Sensor Manager will vote

to keep the system awake for the retrieval of sensor data. As

soon as sensor data is retrieved and delivered to Algorithm

Manager, Sensor Manager will vote for going to low power

mode. Once Algorithm Manager processes data, it will send

data to Application Processor Interface and then will vote

for low power mode. Algorithm Manager can also vote for

low power mode in between requesting sensor and sensor

data being delivered to Algorithm Manager to achieve the

maximum reduction in energy consumption.

It is possible that one module can request low power mode

and just in jiffies, the same module will vote for normal mode

to perform that task. During the jitter period, if there is no

other module requested for normal mode, then the system will

go into low power mode just for jiffies. However, if there is

another module requested for normal mode, then the vote from

the first module will be overwritten.

Fig. 7. The Power Voting Procedure

Algorithm 2: POWER-VOTING(REGISTERED MODULE

LIST Γ)

1 int Counter = 0; Counter records the number of votes for low power
mode

2 foreach module τ ∈ Γ do
3 if τ votes to run at normal CPU speed then
4 PowerManager configures sensor fusion core to run at the

system normal CPU speed
5 end
6 else
7 if τ votes to go into lower power mode then
8 PowerManager stores the vote for τ of low power mode;
9 Counter = Counter + 1;

10 end
11 end
12 end
13 if Counter == |Γ| then
14 PowerManager configures sensor fusion core to go into low power

mode;
15 Counter = 0;
16 end
17 else
18 PowerManager keeps sensor fusion core to run at the system

normal CPU speed;
19 end

3) Virtual Sensor: Virtual sensors are sensors that can pro-

vide calculated context output instead of raw sensor data. They

can remove heavy calculations done usually at application

processor using raw sensor data and then just provide the

calculated output to application processor.

Virtual sensor itself can run on the application processor.

However, algorithms running on external processors, such as

sensor fusion core, can also be treated as a new virtual sensor

that Android applications can register to obtain results. By

doing the same calculations at the sensor fusion core, same

algorithmic output can be achieved at a much lower power. In

our design, we created a virtual sensor for drive mode. The

virtual sensor registers for drive mode algorithm running in

the sensor fusion core and accepts the result back from the

algorithms.

938

IV. IMPLEMENTATION RESULT

In this section, we discuss how our measurements of mobile

platforms are designed and benchmarked based on a real

implementation. For consistency, our measurement will be

based on the drive mode detection example, although it is

open to any sensor-related Android application.

A. Measurement Comparisons

For drive mode detection, we measure our data based on

two comparative approaches discussed in Section III-A:

1) All location information was derived using a GPS sensor

connected to the application processor.

2) Minor movement and non-movement algorithms were

deployed to our energy efficient platform (sensor fusion

core) to supplement GPS for location tracking in drive

mode detection.

B. Measurement Methods

To be statistically accurate, we created a common method

to measure energy consumption. An Android test application

that contains the two comparative approaches for drive mode

detection was created. Users can install the test application

on their mobile devices and easily switch between the two

approaches for testing under the same user-case scenario.

We had approximately 250 users install the test application

on different devices. We covered multiple physical distances

ranging from 1 mile to 100 miles while tracking location.

We also covered various scenarios like mild traffic to heavy

traffic, multiple routes with few signal lights (like highways),

and with many signal lights (like city). The test results will

be shown in Table III. To perform the energy consumption

measurements, we ran the same test application using our

measurement platform and device discussed in the following

section.

C. Measurement Platform and Device

Average energy consumption measurements were performed

on the hardware that was modified by carefully removing the

back housing and replacing the internal battery with soldered

lines to battery “+” and “−” PCB connectors. As shown in

Fig. 8, the battery lines of a modified mobile device were

connected to an Agilent 66309D DC power supply. Once the

system was wired up properly, we used an Agilent 1456B

device characterization software on a personal computer to

characterize energy consumptions for the experiments.

D. Measurement Results

On a general user case scenario, we measured the average

energy consumption of drive mode detection using continuous

GPS scanning vs. using the combination of GPS and sensor

fusion core in our platform. The results are shown in Fig. 9

and Fig. 10, respectively. The vertical lines x1 and x2 in Fig. 9

and Fig. 10 capture the current drain for 20 milliseconds. In

Fig. 9, the application processor wakes up every 1 millisecond

for GPS tracking (seen as ≥ 100mA spikes in the current

measurement plots), while Fig. 10 shows that the application

Fig. 8. Measurement Platform

Fig. 9. Continuous GPS Tracking Measured at The Battery Terminal

processor wakes up every 5 millisecond for GPS fixes after

the sensor fusion core detected the non-movement status of

the mobile device. If the mobile device has not moved, the

application processor will continue reading GPS fixes every 5

milliseconds till the sensor fusion core has detected the mobile

device has moved. As soon as the mobile device moves, the

sensor fusion core will notify the application processor to enter

back into continuous GPS tracking mode. The average energy

consumption in the diagram is the reported number between

x1 and x2. It is clear that by significantly reducing the wake

up frequencies of the application processor when the device

in the non-movement status, our approach/design saves large

amounts of current drain shown in Table I.

As the pattern of energy consumption in both of the ap-

proaches are repetitive, it is safe to say that the average total

Fig. 10. Sensor Fusion Core Running Drive Mode Measured at The Battery
Terminal

939

TABLE I
AVERAGE ENERGY CONSUMPTION MEASURED OF TWO DRIVE MODE

DETECTION APPROACHES EVERY 20 MSECS IN NON-MOVEMENT STATUS

Drive Mode Approach Average Energy Consumption Measured (mA)
Continuous GPS Track-
ing At Application Pro-
cessor

61.600

Sensors At Energy Effi-
cient Platform And GPS
Tracking At Application
Processor

16.561

Total Savings 45.039

saving of the energy consumption while in the non-movement

status throughout the battery life would be 45.039 mA as

well. Considering the battery in our test has 3.6 volts with

2200 mAh of capacity, the average battery life hours are 15

hours. By saving a total of 45.039 mA in the non-movement

status, we can equally save 2.047% of battery capacity, which

is prolonging 18.425 minutes of battery life hours shown in

Table II.
TABLE II

ADDITIONAL BATTERY SAVINGS AND LIFE HOURS

Drive Mode Approach Battery Capacity
Used (%)

Battery usuage
(mins)

Continuous GPS Tracking
At Application Processor

2.800 25.200

Sensors At Energy Effi-
cient Platform And GP-
S Tracking At Application
Processor

0.753 6.775

Battery Capacity Savings
(%)

2.047

Battery Life Savings (min-
utes)

18.425

In reasserting and amplifying the empirical conclusions

of our energy efficient platform, we conducted various user

case scenarios under different driving conditions. The data in

Table III reveals that our platform indeed reduces the energy

consumption in the numerous user-case studies.

V. CONCLUSION

In this paper, we take the drive mode detection sensor-based

application as an example and present an implementation of

an energy efficient mobile platform. Fundamentally, our archi-

tecture supports any motion detection applications involving

multiple sensors. The platform is portable and open to a

large set of Android sensor-based applications and can easily

port to IOS or Windows based devices. Proven in millions

of consumer devices, our implementation is robust and data

shows that the platform can save up to 73.11% of current drain

and prolong battery life up to 18.43 minutes.

Our future work concentrates on the creation of a tightly

coupled sensor subsystem that operates itself independently

and remains loosely coupled to the main application processor.

We will add low power GPS, WiFi and Bluetooth capabilities

into the sensor fusion core. With minimal current drain, our

subsystem will have complete awareness of its surroundings

alerting the main processor only when substantial contextual

TABLE III
ENERGY CONSUMPTION FOR DIFFERENT USER CASES

User Case Avg User
Driving
Time
(mins)

Avg Energy Con-
sumption Using
GPS Continuous-
ly (mA)

Avg Energy
Consumption
Using GPS +
Sensor Fusion
Core (mA)

Location Tracking
For 0-25 Miles Range
Of Driving

27 27.62 20.25

Location Tracking
For 26-50 Miles
Range Of Driving

45 46.20 34.12

Location Tracking
For 51-100 Miles
Range Of Driving

79 81.11 63.33

0-50 Miles Range
Of Highway Driving
Without Traffic

47 48.25 38.10

0-50 Miles Range
Of Highway Driving
With Moderate To
Heavy Traffic

69 70.84 36.78

events take place. Such a system has many applications from

security, to alerting the user of points of interest, to the even

more difficult problem of precise indoor navigation.

REFERENCES

[1] Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong, B. Krish-
namachari, and N. Sadeh, “A framework of energy efficient mobile
sensing for automatic user state recognition,” in Proceedings of the 7th
international conference on Mobile systems, applications, and services.
ACM, 2009, pp. 179–192.

[2] Z. Zhuang, K.-H. Kim, and J. P. Singh, “Improving energy efficiency of
location sensing on smartphones,” in Proceedings of the 8th international
conference on Mobile systems, applications, and services. ACM, 2010,
pp. 315–330.

[3] F. Ben Abdesslem, A. Phillips, and T. Henderson, “Less is more: energy-
efficient mobile sensing with senseless,” in Proceedings of the 1st
ACM workshop on Networking, systems, and applications for mobile
handhelds. ACM, 2009, pp. 61–62.

[4] C. G. Pendão, A. C. Moreira, and H. Rodrigues, “Energy consumption
in personal mobile devices sensing applications,” in Wireless and Mobile
Networking Conference (WMNC), 2014 7th IFIP. IEEE, 2014, pp. 1–8.

[5] S. Li and H. Qi, “Pattern-based compressed phone sensing,” in Global
Conference on Signal and Information Processing (GlobalSIP), 2013
IEEE. IEEE, Dec 2013, pp. 169–172.

[6] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and
A. T. Campbell, “A survey of mobile phone sensing,” Communications
Magazine, IEEE, vol. 48, no. 9, pp. 140–150, 2010.

[7] X. Sheng, J. Tang, and W. Zhang, “Energy-efficient collaborative sensing
with mobile phones,” in INFOCOM, 2012 Proceedings IEEE. IEEE,
2012, pp. 1916–1924.

[8] M. A. Viredaz, L. S. Brakmo, and W. R. Hamburgen, “Energy manage-
ment on handheld devices,” Queue, vol. 1, no. 7, p. 44, 2003.

[9] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for
low-power embedded operating systems,” in ACM SIGOPS Operating
Systems Review, vol. 35, no. 5. ACM, 2001, pp. 89–102.

[10] B. Priyantha, D. Lymberopoulos, and J. Liu, “Littlerock: Enabling
energy-efficient continuous sensing on mobile phones,” Pervasive Com-
puting, IEEE, vol. 10, no. 2, pp. 12–15, 2011.

[11] D. Yee, R. Bickley, P. Zucarelli, and T. Keller, “Method and apparatus for
control of an electronic system using intelligent movement detection,”
Mar. 14 2000, uS Patent 6037748 A.

[12] N. Patwari, R. O’Dea, V. Allen, M. Perkins, and M. Bourgeois,
“Method and apparatus for location estimation,” Sep. 5 2002, uS Patent
20020122003 A1.

940

