
A Genetic Algorithm based Approach to
Maximizing Real-Time System Value under

Resource Constraints
Li Wang, Zheng Li, Miao Song, Shangping Ren

Department of Computer Science
Illinois Institute of Technology

email:{lwang64, zli80, msong8, ren}@iit.edu

Abstract—For many embedded systems, different real-time
applications are consolidated to the same hardware platform
to meet the growing demand for diverse functionalities. Due to
functionality differences, the values that different applications
contribute to the system may not be the same. When system
resources are limited and not all applications can be executed
with guaranteed QoS, decisions have to be made as to which
applications should be selected and how their tasks are deployed
on available processors so that the system value is maximized
and all the selected applications meet their deadlines. However,
making the optimal decision for the application selection and
task deployment (ASTD) problem is NP-hard. In this paper,
we present a genetic algorithm (GA) based approach for the
ASTD problem. We experimentally compare the performance
of GA-based approach with the optimal approach chosen by
enumerating all possible choices on a small scale, and with other
heuristic approaches existed in the literature on a large scale.
The results show that the system value obtained by the GA-
based approach is close to the optimal value and can be twice
as large as the value obtained by other heuristic approaches.

Index Terms—Application Selection, Task Deployment, Genetic
Algorithm, Real-time System, Heterogeneous Processors.

I. INTRODUCTION

For many embedded systems, different applications are con-
solidated to the same hardware platform to meet the growing
demand for diverse functionalities. Although the functionali-
ties of different applications may vary, their composing tasks
can be shared. To illustrate, consider a simplified version of
the example [1] given below.

Example 1: Assume there are two applications in a parking
garage surveillance system. One is to photograph all vehicles
moving faster than 25mph in a specific section, the other
is to collect magnetic field signatures whenever there is
a moving object (human or vehicles) passing through the
same section. To facilitate the first application, we need to
perform the following tasks: (1) signal receiving, (2) signal
pre-processing, (3) vehicle detection, (4) speed checking, and
(3) camera shooting. The second application consists of the
following tasks: (1) signal receiving, (2) signal pre-processing,
(3) moving object detection, (4) magnetic field signatures
saving. The two applications and their composing tasks are
shown in Fig. 1.

From Fig. 1, we can see that although the functionalities of

Fig. 1: Task sharing between two applications [1]

these two applications are different, signal receiving task and
signal pre-processing task are shared by the two applications.
In other words, the signal receiving task and signal pre-
processing task are executed only once and the results are
used by both applications. �

Due to functionality differences, the value that applications
contribute to the system may not be the same [2], [3], [4].
For instance, in above example (Example 1), the application
which photographs speeding vehicle contributes more value
than application which collects magnetic field signatures of
human or vehicles to system value. Hence, when not all appli-
cations can be executed with guaranteed QoS due to resource
constraints, decisions have to be made as to which applications
should be selected for execution so that the system value is
maximized. Making application selection and its associated
task deployment decisions on heterogeneous processors is a
NP-hard problem [5]. Hence, a heuristic approach is needed
when the size of the problem is not sufficiently small and
exhaustive search becomes prohibitively expensive.

For illustrative purpose, consider an example given below.
Example 2: Assume a real-time system consists of two

heterogeneous processors, i.e., π1 and π2. There are three
applications α1, α2, and α3 need to be executed on these
two processors. The value that each application contributes
to system is 40, 50, and 80, respectively.

Furthermore, assume α1 has two tasks, τ1 and τ2; α2 has
task τ2 and τ3; and α3 has task τ1, τ3, and τ4. All these tasks
are periodic and the periods for task τ1, τ2, τ3 and τ4 are 10,

285978-1-4673-4883-6/12/$31.00 ©2012 IEEE

15, 10, and 6, respectively. Their deadlines are at the end of
their periods. The task execution time on different processors
are given in Table I, where +∞ indicates that the tasks can
not be executed on the processor.

TABLE I: Task Execution Time

τ1 τ2 τ3 τ4
π1 8 9 6 3
π2 4 10.5 +∞ 4.2

Given a task’s execution time (e) and its period (p), the
task utilization demand (e/p) on each processor is shown in
Table II.

TABLE II: Task Utilization Demand

τ1 τ2 τ3 τ4
π1 0.8 0.6 0.6 0.5
π2 0.4 0.7 +∞ 0.7

If all three applications are chosen, all tasks have to be
deployed on the given two processors. Based on Table I, task
τ3 can only be executed on the π1. The other three tasks
have options to be either deployed on π1 or π2. Clearly, no
matter which processor task τ1, τ2, and τ4 are assigned to, the
total utilization demand on at least one of π1 and π2 exceeds
its capacity of 1 which indicates that some tasks will miss
their deadlines. Therefore, in order to guarantee all deadlines
are met, only a subset of the competing applications can be
selected. It is not difficult to see that the number of selection
options is combinatorial to the number of applications, tasks,
and processors. �

Genetic Algorithm (GA) is a bio-inspired heuristic search
algorithm which mimics the process of natural evolution [6],
[7]. During the course of evolution, the populations (candidate
solutions) with high fitness are given more chances to sur-
vive and reproduce, and the populations with low fitness are
removed. Therefore, the quality of the populations improves
after every evolution. In this paper, we develop a GA-based
approach to solving the application selection and task deploy-
ment problem, i.e., the ASTD problem.

The rest of this paper is organized as follows. We discuss
related work in Section II. In Section III, we define system
model and formulate the problem. A brief introduction of
genetic algorithm is given in Section IV. In Section V, we
present a GA-based approach for the application selection
and task deployment problem. The experimental results are
discussed in Section VI. Finally, we conclude our work and
point out the future work in Section VII.

II. RELATED WORK

Research regarding task deployment has been intensively
studied from different perspectives. For instance, in [8], [9],
[10], [11], [12], [13], [14], [15], [16], researchers have focused
on how to deploy real-time tasks on a set of homogeneous
processors; while in [17], Anderson et al. take a step further to
partition processors into two categories, i.e, type-1 and type-2

processors, and study the task deployment problem on ‘semi-
hetrogeneous’ processors.

Baruah in [5] proposed a polynomial time algorithm to
decide whether a set of tasks can be deployed to a collection of
heterogeneous processors. The algorithm first transforms the
task deployment problem into an Integer Linear Programming
(ILP) problem, and then applies the Linear Programming (LP)
relaxation technique to solve this problem. The algorithm
works well only when the number of processors is small
as the time complexity of the linear programming relaxation
algorithm is O(mm) where m is the number of processors.
In [18], Gopalakrishnan et al. also addressed the task deploy-
ment problem on heterogeneous multiprocessor systems. In
their work, they proposed a utility balancing (or UB) algorithm
to deploy tasks in a way that the maximum utilization of
all processors is minimized. Armstrong et al. presented a
Minimum Execution Time (MET) algorithm [19] to minimize
the makespan when scheduling a collection of tasks among a
set of heterogeneous processors. Unlike [18], MET algorithm
assigns a task to the processor on which the task’s execution
time is minimized.

The major differences between the work mentioned above
and ours are the objective differences and model differences.
The objective of the work discussed above is to meet all task
deadlines; while ours is to maximize accrued system value
with the constraint that all selected tasks must meet their
deadlines; and the model of the work mentioned above is
based on a set of tasks; while our model is based on a set
of applications which may share tasks.

It is also worth pointing out that although the problem we
are to address in the paper is similar to the multidimensional
knapsack problem (MKP) [20], [21] on surface, the essence
of these two problems are different. In MKP, the amount of
resources required by different items on different knapsacks is
fixed and known a priori. While for the ASTD problem, the
utilization demand of different applications is not known until
the decision is made as to which processors tasks are assigned
to.

In [22], a Utility Accrual (or UA) real-time scheduling
algorithm is proposed to schedule a set of tasks. Each task
is associated with a time-utility function (TUF) and the
scheduling goal is to maximize total accrual utility. Our work
has similar concept in that we also aim to maximize system
value. The differences lie in that the UA model assumes task
values are independent; while in our model, values are applied
to applications and as applications may share tasks, hence,
we cannot use simple value-monotonic approach to choose
applications.

Genetic Algorithm (GA) is a search heuristic which sim-
ulates the process of natural evolution [6], [7]. It has been
widely used to solve problems in various fields, such as
reassembly line balancing problem [23], [24], [25] and time-
table problems [26], etc. In [27], [28], [29], [30], genetic
algorithm is used to solve the task allocation and scheduling
problem on both homogeneous and heterogeneous multipro-
cessor systems with the goal of minimizing makespan when

286

scheduling a set of tasks. In their application of GA-based
approach, the task deadlines are not considered; while we need
to meet all selected tasks’ deadlines when applying GA-based
approach to maximize accrued system value.

III. PROBLEM FORMULATION

We assume that a real-time system consists of a set of het-
erogeneous processors which can support a set of applications.
Each application consists of a set of periodic tasks, and tasks
may be shared among applications [1], [31]. For each task, its
deadline is at the end of its period and it can only be deployed
to at most one processor. For each processor, preemptive rate
monotonic scheduling policy [32] is used when there are
multiple tasks.

Before we formally define the ASTD problem, we first
introduce the following notations and definitions that will be
used throughout the paper.
Processor Set Π: Π = {π1, π2, · · · , πk}, where πi represents
processor i and k is the total number of processors in the
system.

Application Set A: A = {α1, α2, · · · , αm}, where αi repre-
sents application i, and m is the total number of applications
which compete for execution.

Application Value Vector
−→
V m:

−→
V m = [v1, v2, · · · , vm],

where vi represents the value application αi may contribute
to the system. if all of its tasks are completed before their
deadlines.

Task Set Γ: Γ = {τ1, τ2, · · · , τn}, where τi represents real-
time task i, and n is the total number of tasks the application
set α has.

Real-time Task τ : τ = (e, p), where e and p represent the
task execution time and period, respectively. We assume all
tasks are released at the beginning of each period.

Application-Task Matrix Am×n: Am×n = (bi,j)m×n,
where bi,j ∈ {0, 1} and bi,j = 1 indicates that application
αi contains task τj , and task τj does not belong to application
αi if bi,j = 0.

Task-Execution-Time Matrix En×k: En×k = (ei,j)n×k,
where ei,j ∈ <+ ∪{+∞} represents the execution time when
processor πj only executes task τi. We use ei,j = +∞ to
indicate that processor πj cannot perform task τi.

Application Selection Vector
−→
Am:

−→
Am = [a1, a2, · · · , am],

where ai ∈ {0, 1}. Application αi is selected if ai = 1, and
ai = 0, otherwise.

Task-Deployment Matrix Dn×k: Dn×k = (di,j)n×k, where
di,j ∈ {0, 1} and di,j = 1 indicates that task τi is deployed
on processor πj , and di,j = 0 indicates the opposite.

Example 3: Under these notations, Example 2 given in
Section I can be represented as:
• processor set Π = {π1, π2};
• Application set A = {α1, α2, α3};
• Application value vector

−→
V 3 = [40, 50, 80];

• Task set T = {τ1, τ2, τ3, τ4};
• Task periods p = 10, 15, 10, and 6 for task τ1, τ2, τ3,

and τ4, respectively;
• Task-Execution-Time matrix E4×2

E4×2 =

8 4
9 10.5
6 +∞
3 4.2

• Application-Task matrix A3×4

A3×4 =

1 1 0 0
0 1 1 0
1 0 1 1

�

For a given task-deployment matrix Dn×k, as each task
can only be deployed to at most one processor, and tasks that
belong to selected applications must be deployed, hence we
have the following constraints.

k∑
j=1

di,j ≤ 1 i = 1, 2, . . . , n (1)

ai × bi,j ≤
k∑
l=1

dj,l j = 1, 2, . . . , n; i = 1, 2, . . . ,m (2)

where (1) ensures that each task can only be deployed to
at most one processor (uni-deployment constraint), and con-
straint (2) guarantees that each task of the selected application
is deployed to a processor (completeness constraint).

Furthermore, as preemptive rate-monotonic scheduling pol-
icy is used on all processors in the system. Therefore, in order
to guarantee all deployed tasks meeting their deadlines, we
have to ensure that the utilization demand on each processor
is within the bound given by Liu et al. [32], i.e., processor
utilization bound constraint given by (3)

β∑
i=1

ei
pi
≤ β(21/β − 1) (3)

where ei and pi are task τi’s execution time and period,
respectively, and β is the total number of tasks deployed on a
processor.

Given the above assumptions, the ASTD problem can be
mathematically defined below.

Problem 1 (The ASTD Problem): Given k heterogeneous
processors, m applications with the value vector (

−→
V m), an

Application-Task matrix (Am×n = (bi,j)m×n), and a Task-
Execution-time matrix (En×k = (ei,j)n×k), decide the appli-
cation selection vector

−→
Am and the Task-Deployment matrix

Dn×k = (di,j)n×k, with

Objective:

maximize ν =
−→
Am × (

−→
V m)T (4)

287

Subject to:
k∑
j=1

di,j ≤ 1 i = 1, 2, . . . , n (5)

ai × bi,j ≤
k∑
l=1

dj,l j = 1, 2, . . . , n; i = 1, 2, . . . ,m (6)

n∑
i=1

ei,j
pi
× di,j ≤ βj(21/βj − 1) j = 1, 2, . . . , k. (7)

where ai, di,j , bi,j ∈ {0, 1}. βj is number of tasks deployed
on processor j, i.e., βj =

∑n
i=1 di,j .

�
Clearly, optimization problem defined above falls into the

category of nonlinear integer programming (NIP) problem
which has been proved to be NP-hard [33]. Next section, we
present a GA-based heuristic approach to find a near optimal
solution to the problem.

IV. BRIEF INTRODUCTION TO GENETIC ALGORITHM

Genetic Algorithm (GA) is a search heuristic which sim-
ulates the process of natural evolution [6], [7]. It starts
with an initial population of chromosomes which represent
candidate solutions to a problem. Chromosomes, or solutions,
are evaluated with respect to their fitness. For example, in our
work, the fitness of a solution is defined as the total accrued
value of supported applications.

After the initial population of chromosomes are generated
and evaluated, the next step of GA is to select the parent
chromosomes for reproduction. Chromosomes with higher fit-
ness value are often given more opportunities to be selected as
parents. When the parent chromosomes are selected, crossover
operator is applied to the parent chromosomes to generate
new offsprings. This is done by exchanging certain parts
of the parent chromosomes. Mutation operator transforms a
chromosome into another by altering some pieces of genes, it
often takes place after crossover operation.

After crossover and mutation, we evaluate the fitness of
the new offsprings. The new offspring will either be used
to replace an existing chromosome if it has higher fitness
value than the existing chromosomes, or be simply removed.
Therefore, the size of the populations remains unchanged. The
evaluation-selection-reproduction procedure is repeated until
predefined stopping conditions are met. The steps of the GA
are shown in Algorithm 1.

V. A GA-BASED APPROACH TO MAXIMIZING ACCRUED
SYSTEM VALUE

In this section, we give the detailed design of a GA-based
approach for solving the problem defined in Section III.

A. Chromosome Representation

In order to maximize system value from supported appli-
cations, we need to select applications and deploy associated
tasks to processors. Therefore, we use a pair of vectors to rep-
resent a candidate solution to the problem, i.e, S = (

−→
T n,
−→
N n),

Algorithm 1 GENETIC ALGORITHM

1: Generate an initial population of chromosomes
2: Evaluate the fitness of the chromosomes
3: while stopping conditions not met do
4: Select parent chromosomes from the population.
5: Generate children chromosomes by applying crossover

operator.
6: Mutate the children chromosomes.
7: Evaluate the fitness of children chromosomes.
8: Replace the exiting chromosomes with the children

chromosomes if the offsprings have larger fitness val-
ues.

9: end while
10: return the chromosome with highest fitness value

where the 0-1 binary vector
−→
T n = [t1, t2, · · · , tn] represents

the selection of tasks, and vector
−→
N n = [d1, d2, · · · , dn]

denotes the processor index where the tasks are deployed.
To better illustrate the chromosome representation, consider

the following example.
Example 4: Assume a real-time system consists of three

processors Π = {π1, π2, π3}. There are three applicationsA =
{α1, α2, α3}, and the value that each application contributes
to the system is 20, 50, and 60, respectively.

Each application consists of multiple periodic tasks, and the
task set of the these three applications is Γ = {τ1, τ2, · · · , τ7}.
The relationship between applications and their composing
tasks is specified in Application-Task matrix A3×7.

A3×7 =

1 1 1 1 0 0 0
0 1 1 1 1 0 0
0 0 0 0 0 1 1

Fig. 2 gives a candidate solution to the problem. The

solution representation provides the following information: all
tasks except τ6 are deployed. In addition, task τ1, τ3, and τ5
are deployed to processor π1, task τ2 and τ4 to processor π3,
and task τ7 to processor π2.

Fig. 2: Representation of candidate solution

Based on the deployed tasks and Application-Task matrix
A3×7, we know application α1 and α2 are selected. �

B. Initial Population Generation

In order to create the initial population, we generate the
candidate solutions randomly, i.e., the value of ti in

−→
T n is

uniformly selected from 0 and 1, and the value of di in−→
N n is uniformly selected from 1 to k, where k refers to the
total number of processors. Clearly, such randomly generated
solution may not meet all the constraints and hence may not
be valid. To illustrate this, consider the following example.

288

Example 5: Assume the number of processors, applica-
tions, tasks, and the relationship between applications and
tasks are the same as given in Example 4. The execution time
of each task τi (1 ≤ i ≤ 7) on processor πj (1 ≤ j ≤ 3) is
shown in Task-Execution-Time matrix E7×3.

E7×3 =

2 5 4
3 2 4
1 +∞ +∞

1.8 +∞ 1.8
+∞ 3 4

8 3 +∞
+∞ 10.5 +∞

Clearly, a randomly generated candidate solution as shown

in Fig. 2 is not valid. It is because based on the solution, task
τ5 is deployed to processor π1 on which the task execution
time is +∞, which indicates that processor π1 cannot execute
task τ5. �

In the literature, there are many approaches which can be
applied to deal with the infeasible solutions, i.e., separate the
evaluation of fitness and infeasibility [34], apply a penalty
function to penalise the fitness of any infeasible solution [35],
or design a heuristic repair operator to transform the infeasible
solution into feasible solution [36]. In this paper, we design a
heuristic repair operator to deal with infeasible solutions. The
detailed description of our heuristics for the repair operator in
given in Section V-F.

C. Fitness Evaluation

As our goal is to maximize system value from supported
applications, we hence define the fitness of a solution as
the total accrued value provided by the solution. We use
vector

−→
A i
m:
−→
A i
m = [a1, · · · , aj , · · · , am] to denote whether

the applications are supported or not with solution Si, where
aj ∈ {0, 1}. This can be achieved by checking whether each
task that belongs to application αi (1 ≤ i ≤ m) exists in the
vector

−→
T n of solution Si. Algorithm 2 below gives the details.

A brief explanation of Algorithm 2 is as follows: In Line 1,
we initialize the supported application vector

−→
A i
m, and set the

value of each element to 0. Line 4 to Line 8 check whether
all the tasks of each application αi are selected.

For a given application selection vector
−→
A i
m =

[a1, a2, · · · , am] and value vector
−→
V m = [v1, v2, · · · , vm], the

fitness value of solution Si can be calculated as

ν(Si) =
−→
A i
m × (

−→
V m)T (8)

Example 6 (Example 5 Revisited): Assume the execution
time of task τi ∈ Γ is the same as given in Example 5,
and the period pi of task τi ∈ Γ is given in vector

−→
P 7 =

[p1, p2, · · · , p7] = [10, 20, 4, 6, 10, 15, 15].
Based on the Task-Execution-Time matrix E7×3 and the

period vector
−→
P 7, the utilization demand ui,j = ei,j/pi of

task τi on processor πj is shown in the Task-Utilization matrix

Algorithm 2 OBTAIN SUPPORTED APPLICATIONS

Input: A candidate solution Si = (
−→
T n,
−→
N n); Application-

Task matrix Am×n = (bi,j)m×n.
Output: Application Selection Vector

−→
A i
m given by candidate

solution Si.
1: Initialize

−→
A i
m = [a1, a2, · · · , am], and set the value of all

the elements to 0.
2: for i← 1 to m do
3: all selected← true
4: for j ← 1 to n do
5: if bi,j > tj then
6: all selected← false
7: end if
8: end for
9: if all selected is true then

10: ai ← 1
11: end if
12: end for

U7×3 = (ui,j)7×3 as below.

U7×3 =

0.2 0.5 0.4
0.15 0.1 0.2
0.25 +∞ +∞
0.3 +∞ 0.3
+∞ 0.3 0.4
0.6 0.2 +∞
+∞ 0.7 +∞

Consider a candidate solution shown in Fig. 3, according to

this solution, the utilization demands on processor π1, π2, and
π3 are 0.8, 0.7, and 0.5, respectively. Clearly, all processors
satisfy the utilization constraint (3). In addition, based on the
Application-Task matrix A3×7 and vector Tn shown in Fig. 3,
we know application α1 and α2 are not supported because task
τ3 is not selected in the candidate solution. For application α3,
as all its tasks, i.e., task τ6 and τ7, are deployed, and hence,
α3 is selected. Therefore, the supported application vector is−→
A 3 = [0, 0, 1].

Fig. 3: A candidate solution

According to the supported application vector
−→
A 3 = [0, 0, 1]

and application value vector
−→
V 3 = [v1, v2, v3] = [20, 50, 60],

the fitness value of the candidate solution is ν(S) =
−→
A 3 ×

(
−→
V 3)T = [0, 0, 1]× [20, 50, 60]T = 60. �

D. Parent Selection

Traditionally, parent solution is either decided by a rank-
based roulette wheel selection scheme [37] or a value-based
roulette wheel selection scheme [7]. In the rank-based roulette

289

wheel selection scheme, the probability of a solution being se-
lected is decided by its rank. While, in the value-based roulette
wheel selection scheme, the angle of the sector is proportional
to the fitness of the solution. In our implementation, we choose
neither of the approaches but follow the way given in [23], [24]
to randomly select the parents from the populations without
any preference. The reason for randomly selecting the parents
is to decrease the similarity of candidate solutions in the
population and prevent solutions from converging too early
and resulting in suboptimal [26]. Therefore, the probability
that optimal solution to be found increases.

E. Crossover and Mutation

Different crossover operators are available to guide the
generation of the offsprings, such as one-point crossover [7],
two-point crossover [7], and uniform crossover [34], etc.
Starkweather et al. [38] also suggest that it is better to
have two parent solutions in the crossover process. In our
implementation, we adopt single point crossover approach
on two parent solutions. In particular, we randomly select a
mating position for a pair of parent solutions, and exchange
their right parts to produce two new offspring solutions.

Fig. 4 gives an example regarding how crossover operator
works: we randomly select a mating position for parent
solutions S1 and S2. Assume the random selection is 3, new
solutions S3 and S4 are produced by exchanging the right
part of the parent solutions S1 and S2. For child solution
S3, the left part comes from parent solution S1, and the right
part is from parent solution S2. Child solution S4 is obtained
similarly.

(a) Before exchange

(b) After exchange

Fig. 4: Crossover operator

As our solution consists of two parts: the task selection and
the task deployment, therefore, the mutation operator will be
applied on both task’s selection vector and task deployment
vector of each chosen solution. In particular, to mutate the task
selection vector, we first randomly select a position, i.e., i (1 ≤
i ≤ n), then the operator flips the value of ti in vector

−→
T n.

When mutating the task deployment vector, we also randomly
select a position j (1 ≤ j ≤ n) and randomly choose a value

between 1 to k, i.e., y, then the operator sets the value of dj
to y, i.e., the the jth task is deployed to processor πy .

For each new offspring solution, we evaluate its fitness
value and use it to replace a solution in the population which
has the least fitness. However, if the new offspring solution
has the least fitness value, it is removed. Hence, the solution
population remains the same among generations.

F. Repair Operator

Based on the discussion in Section V-B, the initial randomly
generated solutions may not be valid. Furthermore, even if the
initial solutions are valid, after performing the crossover and
mutation operations, the offsprings may not be valid either.
To guarantee the validity of solution population, we define a
heuristic repair operator.

The repair operator consists of steps: task transfer and task
removal. In the task transfer step, we move tasks from the pro-
cessor whose utilization demand exceeds its utilization bound
to an available processor. By processor πi being available
to task τj , we mean that after accepting task τj , the total
utilization demand on processor πi is still below its bound.

Algorithm 3 shows the detailed procedure of task transfer.

Algorithm 3 TASK TRANSFER

Input: The number of processors k, invalid solution Si, Task-
Utilization matrix Un×k.

Output: Solution S′i obtained after task transfer operation is
finished.

1: for i← 1 to k do
2: if the utilization demand on processor πi is above the

bound then
3: for each τj deployed on πi do
4: if there exists an available processor πmin on

which the utilization demand of τj is minimized
then

5: move task τj from πi to πmin.
6: end if
7: if the utilization demand on πi is below the bound

then
8: break
9: end if

10: end for
11: end if
12: end for

A brief of explanation of Algorithm 3 is as follows: we
first check whether processor πi (1 ≤ i ≤ k) violates the
utilization constraint (3) (Line 2). If yes, for each task τj that
is assigned to πi, we move it to an available processor πmin
on which the utilization demand of τi is minimized. If there is
no processor which can accept τj , we continue with the next
task in processor πi (from Line 4 to Line 6). If the utilization
demand on πi is below the bound, we stop the task transfer
operation for πi and check the next processor (from Line 7
and Line 9).

290

It is worth pointing out that after performing the task
transfer operation, the accrued system values of the feasible
solutions increase. In other words, the task transfer operation
accelerates the convergence of the GA to the optimal solution.

After task transfer step, if there still exist processors whose
utilization exceed their utilization bounds, we perform the
second step, i.e., remove tasks from processors to meet the
constraints. The heuristic is to remove task that contributes
the least value to system peformance, but consumes most
computation resources, i.e., has the least value-resource ratio
ρj

ρj =

∑m
i=0 bi,j × vi
avg(uj)

(9)

where
∑m
i=0 bi,j×vi is the total value of the applications that

consist of task τj , and ave(uj) = (
∑
ei,j 6=+∞

ei,j
pj

)/η is the
average resource task τj needs on a processor, and η is the
total number of processors on which the execution time of
task τj is not equal to +∞.

To illustrate how the repair operator works, we revisit
Example 6 given below.

Example 7 (Example 6 Revisited): Consider a candidate
solution given in Fig. 5. From Fig. 5, we know that task τ1
and τ3 are deployed to processor π1, task τ2, τ6, and τ7 to
processor π2, and task τ4 and τ5 to processor π3. According
to the Task-Utilization matrix U7×3 shown in Example 6,
the utilization of each processor is 0.45, 1.0, and 0.7, and
the utilization demand bound for processor π1, π2, and π3 is
0.8284, 0.7798, and 0.8284, respectively. Clearly, processor π2
violates the utilization constraint (3).

Fig. 5: A candidate solution before repair operation

In order to transform the invalid solution, we apply the
first step of the repair operator. As processor π1 is the only
available processor to task τ2, we move task τ2 from processor
π2 to processor π1. After moving task τ2, the utilization
of processor π1, π2, and π3 becomes 0.6, 0.9, and 0.7,
respectively. Right now, neither processor π1 nor π3 can accept
tasks from processor π2.

As processor π2 still violates the utilization constraint (3),
which is 0.8284, hence we take the second step of the repair
process, i.e., remove tasks from processor to guarantee the
satisfaction of the utilization bound constraints.

As both task τ6 and τ7 only belong to application A3.
Hence, based on the Task-Utilization matrix U7×3, the value-
resource ratio for task τ6 and τ7 are ρ6 = 60

(0.2+0.6)/2 = 150

and ρ7 = 60
0.7 = 85.71. As task τ7 has the least value-resource

ratio, it is removed from processor π2, and the utilization
demand on processor π2 becomes 0.2, which is below the
utilization bound. Fig. 6 shows the solution after the repair
operation. �

Fig. 6: A candidate solution after repair operation

G. Termination

In our implementation, the GA stops after performing a
pre-defined I number of iterations. For each iteration, the
crossover operator is performed C times, and on average the
mutation operator on each offspring solution is performed U
times. We will discuss the selection of these parameters in
Section VI.

VI. EXPERIMENTAL RESULTS

In this section, we describe two sets of experiments. The
purpose of the first set of experiments is to investigate the
performance of our GA-based approach by comparing it
with the optimal value obtained through exhaustive searching
of all possible solutions. Due to the exponentiality of the
solution space, this set of experiments has to be on small
scale, i.e., with few processors, tasks, and applications. The
second set of experiments is to investigate how the GA-
based approach performs when the scale of the problem
becomes large. We compare it with two other commonly
used heuristic approaches, i.e., UB [18] based approach, and
Minimum Execution Time (MET) [19] based approach. The
UB based approach selects the application with the largest
value, and deploys tasks in such a way that the maximum
utilization among all processors is minimized; while the MET
based approach selects applications with the largest value and
deploys tasks to the processor on which the task’s execution
time is minimized.

A. Experiment Settings

When the system size is decided, i.e., the number of
processors, tasks, and applications is fixed, based on the
utilization constraint (3), the feasibility that a set of tasks
can be scheduled on the processors is affected by the total
utilization demand of the task set. Therefore, in order to
compare the performance of different approaches, we run the
test cases with different utilization demand of the task set. The
accrued value is normalized to the total application value.

In our implementation, we use UUnifast algorithm [39] to
generate the utilization demand for each task. To be more
specific, assume the total utilization demand of n tasks is U ,
the UUnifast algorithm uniformly distributes the U to task τi
with 0 < udi < U (1 ≤ i ≤ n). The algorithm guarantees
U =

∑n
i=1 udi.

The step above only considers the case in which there is
only one processor. When there are k processors, we first
obtain the utilization demand udi for task τi(1 ≤ i ≤ n).
We then apply the UUnifast algorithm again to choose the
utilization demand of task τi on processor πj , i.e., ui,j .
Because of processor heterogeneity, some tasks may not be

291

able to be executed on certain processors. To reflect this, for
each task τi, we first generate a random number k0 in the
range of [0, dk×ϕe], where k is the number of processors in
the system, and ϕ is a floating point value which is used to
adjust the maximum number of unfeasible processors for the
tasks, and 0 ≤ ϕ ≤ 1. In our experiment, we set ϕ = 0.3.
When k0 is determined, we randomly select k0 processors
N∞ and set their utilization for task τi to be +∞. For the
rest (k − k0) processors, we apply the UUnifast algorithm to
decide the utilization demand of task τi on processor j where
Nj /∈ N∞ within the range of (0, udi× (k−k0)). In this way,
the average utilization demand of task τi on a single processor
remains the same, i.e., udi.

Algorithm 4 gives the detail for Task-Utilization matrix
Un×k generation.

Algorithm 4 GENERATE TASK-UTILIZATION MATRIX

Input: Total utilization demand of task set U , number of tasks
n, number of processor k, a floating point value ϕ.

Output: Task-Utilization matrix Un×k = (ui,j)n×k.
1: Create vector

−−→
UD = [ud1, ud2, · · · , udn].

2:
−−→
UD ← UUnifast(TU, n).

3: for i← 1 to n do
4: randomly select a number k0 ∈ [0, dk × ϕe]
5: randomly select k0 processors j1, · · · , jk0
6: u(i, jl)←∞, l = 1, · · · , k0
7: u(i, jp) ← UUnifast(udi × (k − k0), k − k0), p =

1, · · · , k and jp 6∈ {j1, · · · , jk0}.
8: end for

For both sets of experiments, the value of applications is
uniformly distributed from 1 to 100, the number of tasks that
each application has is uniformly chosen from 1 to n (i.e., the
number of tasks), and the tasks for each application are also
randomly selected.

B. Deciding the Parameters for the GA-based Approach

In order to apply the GA-based approach, we have to first
decide the following parameters: initial population size (P),
number of iterations (I), number of crossover operations per-
formed in each iteration (C), and average number of mutations
performed on each offspring solution (U). As pointed out
in [23], these values may be different under different scenarios.

For small scale of the ASTD problem, i.e., k = 3, n =
12, and m = 20, we set the parameters as P = 150, I =
150, C = 150, and U = 1.5; while for larger size of the
problem, such as k = 10, n = 80, and m = 120, the parameter
values are set as P = 600, I = 550, C = 400, and U =
0.6. The parameter values are obtained through experiments.
The detailed procedure for obtaining the values is given in
Appendix section.

C. Comparison

We first compare the performance of the GA-based approach
with the exhaustive search, UB and MET based approaches

when the system size is small, i.e., k = 3, n = 12, and
m = 20. The performance of different approaches is evaluated
based on the accrued value normalized to total application
value and the results are shown in Fig. 7. As we can see from
the figure that the system’s accrued value obtained by the GA-
based approach is close to the optimal result and is larger than
the value obtained by the UB and MET based approaches.
This is because in our GA-based approach, whether the task
is kept or removed is decided by the value-resource ratio (9).
In other words, the task which contributes the least value to the
system (i.e., it is shared by few applications), but consumes
most computation resources will be removed if the resource
is not enough. While the traditional heuristics do not consider
task sharing among the applications.

From Fig. 7, we can also see that when the average
utilization demand of the applications’ task set increases,
the system accrued value decreases for all four approaches.
For instance, the accrued value of the GA-based approach
decreases from 100% to 17.03% when the average utilization
demand increases from 0.5 to 2.5. The reason for this change
is that when the average utilization demand increases, on aver-
age, each task requires more computation resources, therefore,
fewer tasks can be executed due to the resource constraint,
and hence fewer applications are supported, resulting lower
accrued value.

Fig. 7: Performance comparison between GA-based approach,
UB based approach, MET based approach, and Exhaustive
Search approach (k = 3, n = 12,m = 20)

In the second set of the experiments, we investigate the
performance of the GA-based approach when the problem size
increases. In particular, we set the number of processors to 10,
the number of tasks to 80, and number of applications to 120.
The results are depicted in Fig. 8 which clearly shows that
the GA-based approach outperforms both UB and MET based
approaches. Furthermore, we have similar observation that
when the average utilization demand increases, the system’s
normalized accrued value decreases. However, the decreasing
rate is faster than the case when the system size is smaller.

Another observation from Fig. 7 and Fig. 8 is that when
the average utilization demand on a single processor is either
under utilized (such as < 0.75) or overloaded (such as >
1.75), the performance difference among these approaches is
small. This is because when the average utilization demand
is high, only few applications can be supported, the accrued
value difference between different selections is small. When

292

Fig. 8: Performance comparison between GA-based approach,
UB based approach, and MET based approach (k = 10, n =
80,m = 120)

the average utilization demand is low, all the applications can
be supported, therefore, the accrued values obtained by all
converge to their maximal value of 1.

VII. CONCLUSION

In this paper, we have presented a GA-based approach to
maximizing real-time system’s value when applications are
executed on heterogeneous processing units with resource
constraints. The uniqueness of the problem this paper ad-
dresses is that different applications may share tasks; while
most research in the literature assumes that applications are
independent. Furthermore, the experimental results clearly
show the superiority of GA-based approach over traditional
heuristics.

It is worth pointing out that comparing to the simple
heuristic UB based and MET based approaches, the time cost
for executing our GA-based approach is significantly large.
For instance, in the second set of experiment, it takes only
0.0243 seconds and 0.0227 seconds to obtain a solution by
using UB based and MET based approach, respectively, while
it takes 18.06 seconds with the proposed GA-based approach.
Our next step is to investigate how to reduce the time cost
without sacrificing the performance goal.

ACKNOWLEDGEMENT

The work is supported in part by NSF CAREER CNS-
0746643, NSF CNS-1018731, and NSF CNS-1035894.

VIII. APPENDIX

We first consider the GA parameter selection under the
experimental setting with three processors, twelve tasks, and
twenty applications, i.e., k = 3, n = 12, and m = 20,
respectively, and investigate the GA performance under the
following choices given by Table III.

TABLE III: Possible Parameter Values

Parameter Values
P 100 150 200 250
I 50 100 150 200
C 50 100 150 200
U 1 1.25 1.5 1.75

We follow the procedure proposed in [23] to decide the
value of each parameter. The idea of the procedure is that we
first calculate the value of the GA-based approach under all
combinations of parameter values, then for each parameter, we
choose the value under which the the value of the GA-based
approach is the best.

To better explain the procedure, we use the selection of U
value as an example. According to Table III, in addition to
U , there are three parameters and each parameter has four
candidate values. Therefore, the total number of combinations
for each candidate value of U is 4 × 4 × 4 = 64. For each
combination, we run the test for 10 times. Therefore, for each
candidate value of U , it has 64 × 10 = 640 test results. We
compare the ratio between the accrued value obtained by the
GA-based approach over total application value among these
test cases and choose the value for U that has the largest
accrued value ratio. Fig. 9a depicts relationship between U and
the ratio. As we can see that the average accrued value ratios
under four different U values are 52.65%, 52.69%, 52.81%,
and 52.80%, respectively. Therefore, we choose U = 1.5
because the average ratio of GA-based approach is the largest
under U = 1.5.

For GA-based approach, the more iterations we perform, the
better solution we can obtain. This is also true for population
size and the number of crossover. However, the running
time will increase accordingly. Therefore, a tradeoff between
performance and running time should be considered. In our
implementation, we set the number of iteration to I = 150
because when I becomes 200, the performance of the GA-
based approach is not significantly increased, but the running
time increases by 1/3 (see Fig. 9b). Similarly, we set both the
population size and number of crossover to 150. In summary,
the parameters for the GA-based approach are set as P = 150,
I = 150, C = 150, and U = 1.5.

We use the same way to decide the parameter values for
GA-based approach when the system size becomes larger, i.e.,
k = 10, n = 80, and m = 120. Under this scenario, the
parameter values for GA-based approach are set as P = 600,
I = 550, C = 400, and U = 0.6.

REFERENCES

[1] J. Liu, E. Cheong, and F. Zhao, “Semantics-based optimization across
uncoordinated tasks in networked embedded systems,” in Proceedings
of the conference on Embedded software, 2005, pp. 273–281.

[2] C. Shelton, P. Koopman, and W. Nace, “A framework for scalable
analysis and design of system-wide graceful degradation in distributed
embedded systems,” in Proceedings of the Eighth International Work-
shop on Object-Oriented Real-Time Dependable Systems, Jan. 2003, pp.
156–163.

[3] W. Nace and P. Koopman, “A graceful degradation framework for
distributed embedded systems,” in Workshop on Reliability in Embedded
Systems, 2001.

[4] ——, “A product family approach to graceful degradation,” in Interna-
tional Workshop on Distributed and Parallel Embedded Systems, 2001,
pp. 131–140.

[5] S. Baruah, “Task partitioning upon heterogeneous multiprocessor plat-
forms,” in IEEE Real-Time and Embedded Technology and Applications
Symposium, may 2004, pp. 536 – 543.

[6] J. H. Holland, Adaptation in natural and artificial systems. Cambridge,
MA, USA: MIT Press, 1992.

293

(a) Average number of mutation (U)

(b) Number of iteration (I)

(c) Population size (P)

(d) Number of crossover (C)

Fig. 9: Normalized accrued value for different parameter
values

[7] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning, 1st ed. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1989.

[8] H. Cho, B. Ravindran, and E. D. Jensen, “An optimal real-time schedul-
ing algorithm for multiprocessors,” in 27th IEEE International Real-
Time Systems Symposium, Dec. 2006, pp. 101 –110.

[9] R. Davis and A. Burns, “Improved priority assignment for global fixed
priority pre-emptive scheduling in multiprocessor real-time systems,”
Real-Time Systems, vol. 47, pp. 1–40, 2011.

[10] S. Baruah, “The non-preemptive scheduling of periodic tasks upon
multiprocessors,” Real-Time Systems, vol. 32, pp. 9–20, 2006.

[11] S. Baruah and N. Fisher, “The partitioned multiprocessor scheduling of
sporadic task systems,” in Real-Time Systems Symposium, 2005. RTSS
2005. 26th IEEE International, dec. 2005, pp. 9 pp. –329.

[12] W. Liu, Z. Gu, J. Xu, X. Wu, and Y. Ye, “Satisfiability modulo graph
theory for task mapping and scheduling on multiprocessor systems,”
Parallel and Distributed Systems, IEEE Transactions on, vol. 22, no. 8,
pp. 1382 –1389, Aug. 2011.

[13] J. Lopez, M. Garcia, J. Diaz, and D. Garcia, “Worst-case utilization
bound for edf scheduling on real-time multiprocessor systems,” in 12th
Euromicro Conference on Real-Time Systems, 2000, pp. 25 –33.

[14] S. Baruah and J. Goossens, “The edf scheduling of sporadic task systems
on uniform multiprocessors,” in Real-Time Systems Symposium, 2008,
Dec. 2008, pp. 367 –374.

[15] T. Gonzalez and S. Sahni, “Preemptive scheduling of uniform processor
systems,” J. ACM, vol. 25, pp. 92–101, January 1978.

[16] S. Funk, J. Goossens, and S. Baruah, “On-line scheduling on uniform
multiprocessors,” in Real-Time Systems Symposium, Dec. 2001, pp. 183
– 192.

[17] B. Andersson, G. Raravi, and K. Bletsas, “Assigning real-time tasks on
heterogeneous multiprocessors with two unrelated types of processors,”
in IEEE Real-Time Systems Symposium, Dec. 2010, pp. 239 –248.

[18] S. Gopalakrishnan and M. Caccamo, “Task partitioning with replication
upon heterogeneous multiprocessor systems,” in Real-Time and Embed-
ded Technology and Applications Symposium, 2006. Proceedings of the
12th IEEE, April 2006, pp. 199 – 207.

[19] R. Armstrong, D. Hensgen, and T. Kidd, “The relative performance of
various mapping algorithms is independent of sizable variances in run-
time predictions,” in Heterogeneous Computing Workshop. Proceedings
of Seventh, March 1998, pp. 79 – 87.

[20] J. Puchinger, G. R. Raidl, and U. Pferschy, “The multidimensional knap-
sack problem: Structure and algorithms,” INFORMS J. on Computing,
vol. 22, no. 2, pp. 250–265, Apr. 2010.

[21] A. Freville, “The multidimensional 0-1 knapsack problem: An
overview,” European Journal of Operational Research, vol. 155, no. 1,
pp. 1 – 21, 2004.

[22] H. Cho, B. Ravindran, and E. D. Jensen, “Utility accrual real-time
scheduling for multiprocessor embedded systems,” J. Parallel Distrib.
Comput., vol. 70, pp. 101–110, February 2010.

[23] G. Levitin, J. Rubinovitz, and B. Shnits, “A genetic algorithm for robotic
assembly line balancing,” European Journal of Operational Research,
vol. 168, no. 3, pp. 811 – 825, 2006.

[24] J. Rubinovitz and G. Levitin, “Genetic algorithm for assembly line
balancing,” International Journal of Production Economics, vol. 41, no.
1-3, pp. 343–354, October 1995.

[25] S. Ponnambalam, P. Aravindan, and G. Naidu, “A multi-objective genetic
algorithm for solving assembly line balancing problem,” Journal of
Advanced Manufacturing Technology, vol. 16, pp. 341– 352, 2000.

[26] Z. Michalewicz, Genetic algorithms + data structures = evolution
programs (3rd ed.). London, UK: Springer-Verlag, 1996.

[27] L. Wang, H. J. Siegel, V. R. Roychowdhury, and A. A. Maciejewski,
“Task matching and scheduling in heterogeneous computing environ-
ments using a genetic-algorithm-based approach,” J. Parallel Distrib.
Comput., vol. 47, pp. 8–22, November 1997.

[28] A. J. Page, T. M. Keane, and T. J. Naughton, “Multi-heuristic dynamic
task allocation using genetic algorithms in a heterogeneous distributed
system,” J. Parallel Distrib. Comput., vol. 70, pp. 758–766, July 2010.

[29] A. Y. Zomaya and Y.-H. Teh, “Observations on using genetic algorithms
for dynamic load-balancing,” IEEE Trans. Parallel Distrib. Syst., vol. 12,
no. 9, pp. 899–911, Sep. 2001.

[30] R. Hwang, M. Gen, and H. Katayama, “A comparison of multiprocessor
task scheduling algorithms with communication costs,” Computers &
Operations Research, vol. 35, no. 3, pp. 976 – 993, 2008.

[31] J. Liu and F. Zhao, “Composing semantic services in open sensor-rich
environments,” Network, IEEE, vol. 22, no. 4, pp. 44 – 49, july 2008.

[32] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, vol. 20, pp. 46–61,
January 1973.

[33] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.

[34] P. C. Chu and J. E. Beasley, “Constraint handling in genetic algorithms:
The set partitioning problem,” J. Heuristics, vol. 4, pp. 323–357, 1998.

[35] D. Powell and M. M. Skolnick, “Using genetic algorithms in engineering
design optimization with non-linear constraints,” in Proceedings of the
Conference on Genetic Algorithms, 1993, pp. 424–431.

[36] P. C. Chu and J. E. Beasley, “A genetic algorithm for the multidimen-
sional knapsack problem,” J. Heuristics, vol. 4, pp. 63–86, June 1998.

[37] M. Srinivas and L. M. Patnaik, “Genetic algorithms: A survey,” Com-
puter, vol. 27, pp. 17–26, June 1994.

[38] T. Starkweather, S. Mcdaniel, D. Whitley, K. Mathias, and D. Whitley,
“A comparison of genetic sequencing operators,” in Proceedings of the
Conference on Genetic Algorithms, 1991, pp. 69–76.

[39] E. Bini and G. C. Buttazzo, “Biasing effects in schedulability measures,”
in Proceedings of the Conference on Real-Time Systems, 2004, pp. 196–
203.

294

