
1

Design Verifiably Correct Model Patterns to
Facilitate Modeling Medical Best Practice

Guidelines with Statecharts
(Technical Report)

Chunhui Guo1, Zhicheng Fu1, Zhenyu Zhang2, Shangping Ren2,1, Lui Sha3

1Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616, USA
2Department of Computer Science, San Diego State University, San Diego, CA 92182, USA

3Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
{cguo13, zfu11}@hawk.iit.edu, {zzhang4430, sren}@sdsu.edu, lrs@illinois.edu

Abstract—Improving patient care safety is an ultimate objec-
tive for medical cyber-physical systems. A recent study shows
that the patients’ death rate can be significantly reduced by
computerizing medical best practice guidelines. To facilitate the
development of computerized medical best practice guidelines,
statecharts are often used as a modeling tool because of their
high resemblances to disease and treatment models and their ca-
pabilities to provide rapid prototyping and simulation for clinical
validations. However, some implementations of statecharts, such
as Yakindu statecharts, are priority-based and have synchronous
execution semantics which makes it difficult to model certain
functionalities that are essential in modeling medical guidelines,
such as two-way communications and configurable execution
orders. Rather than introducing new statechart elements or
changing the statechart implementation’s underline semantics,
we use existing basic statechart elements to design model patterns
for the commonly occurring issues. In particular, we show
the design of model patterns for two-way communications and
configurable execution orders and formally prove the correctness
of these model patterns. We further use a simplified airway
laser surgery scenario as a case study to demonstrate how the
developed model patterns address the two-way communication
and configurable execution order issues and their impact on
validation and verification of medical safety properties.

Index Terms—Verifiably correct model patterns, medical
guideline modeling, Statechart models.

I. INTRODUCTION AND RELATED WORK

A study shows that the patients’ death rate can be signif-
icantly reduced by computerizing medical best practice

guidelines [1]. Developing computerized disease and treat-
ment models from medical best practice handbooks needs
close interactions with medical professionals. In addition, to
satisfy the safety and correctness requirements, the derived
models also need to be clinically validated and formally
verified. Over past two decades, many computer executable
medical best practice guideline models are developed, such as
Asbru [2], GLIF [3], GLARE [4], EON [5], and PROforma [6].
Rahmaniheris et al. [7] have developed an organ-centric ap-
proach to model medical best practice guidelines with state-
charts, which enable rapid prototyping and allow quick clinical
validations by medical staff through simulations. Tan et al. [8]

proposed a design pattern for wireless medical Cyber-Physical
Systems (CPS). Jiang et al. [9] presented a timed automata
and synchronous dataflow based framework for system design.
Guo et al. [10], [11] proposed approaches to model and
integrate medical resource availability and relationships in
existing medical guideline models. To help improve clinical
validation, Wu et al. have developed a workflow adaptation
protocol [12] to help physicians safely adapt workflows to
react to patient adverse events and a treatment validation
protocol [13] to enforce the correct execution sequence of
performing a treatment based on preconditions validation, side
effects monitoring, and expected responses checking. Both
the workflow adaptation and treatment validation protocol
are based on pathophysiological models. In addition, based
on organ-specific physiology, a system that integrates medi-
cal devices into semi-autonomous clusters in a network-fail-
safe manner has also been developed by Kang et al. [14].
Christov et al. [15] proposed an approach to detect whether
the performed medical procedures have deviated from the
recommended ways to perform the medical procedures, i.e.,
medical best practices. To formally verify safety properties
of medical guideline models, Guo et al. [16] presented an
approach to transform statecharts to timed automata. Runtime
verification techniques [17], [18] were also applied to improve
safety of medical guideline systems at code level.

Most existing medical best practice guidelines in hospital
handbooks are represented by flowcharts [19] which are very
similar to statecharts [20], so are many medical disease models
and treatment models. In addition to the high similarities
between medical models and statecharts, statecharts are ex-
ecutable and have become a widely used model in designing
complex systems, such as avionics [21], air traffic control
systems [22], and medical systems [7], [23], [16]. These
distinguishing features of statecharts have inspired us to use
it as a computerized representation for medical best practice
guidelines. However, there are functionalities that are essential
in medical operations, such as two-way communications and
configurable execution orders, which are not directly supported
by some open source statechart modeling tools, such as

2

Yakindu. We use the following two examples to illustrate the
need of two-way communications and configurable execution
orders in medical domain. By two-way communications we
mean two statecharts can communicate with each other, and
by configurable execution orders we mean the execution orders
can be configured by users without change the model itself.

Example 1. Laser surgery [24] is a surgical procedure that
uses a laser to remove problematic tissues and is widely
used in airway surgery, thoracic surgery, eye surgery, etc. For
airway laser surgery, there are two potential dangers: (1) an
accidental burn if both laser and ventilator are activated; and
(2) a low-oxygen shock if the Saturation of Peripheral Oxygen
(SpO) level of the patient decreases below a given threshold
(assume 95%) [25]. To prevent the potential dangers, the
airway laser and the ventilator must be able to communicate
with each other bidirectionally, i.e., the communication needs
to be two-way. In particular, when the surgery starts, the
airway laser turns on and notifies the ventilator to turn off;
and when the patient’s SpO level becomes below 95%, the
ventilator turns on and notifies the airway laser to turn off.

Example 2. In the chronic cough treatment guideline [26],
chest radiography has to be performed before sputum test
and bronchoscopy, but the guideline does not specify the
order between sputum test and bronchoscopy. The physicians
can choose the medical procedure order chest radiography

≺ sputum test ≺ bronchoscopy or chest radiography

≺ bronchoscopy ≺ sputum test based on their experi-
ences/preferences and medical resource availability.

Without the two-way communication support, the laser
and the ventilator in the airway laser surgery can be both
activated and cause surgery fire. We present more details about
the scenario in the case study, i.e., Section V. Without the
configurable execution order support, if a physician deviate
from the medical procedure execution order specified in a
medical guideline system, the system can not identify whether
or not the deviation is safe. Hence, supporting two-way
communications and configurable execution orders are very
important for modeling medical best practice guidelines.

However, most existing medical guideline modeling lan-
guages, such as Asbru [2], GLIF [3], and PROforma [27], do
not support these essential functionalities. Althouh Simulink
Stateflow [28], a statechart variant from Matlab [29], supports
two-way communications through condition actions and pre-
emptive execution semantics, it does not support execution
order change without modifying existing models.

Open source Yakindu statecharts are priority-based and
have synchronous execution semantics. With such execution
semantics, only higher priority statecharts can send events to
lower priority statecharts, but not the other way around. In
addition, each statechart is pre-assigned an unique priority to
determine its execution order when a model is established.

A naive approach to implement two-way communication
functionality is to use global variables shared among multiple
statecharts. However, using global variables has known dis-
advantages of increased difficulty and complexity to maintain
data consistence. An alternative is to take a similar approach as

in Stateflow [28] by introducing new elements into Yakindu
to interrupt the execution of the event sender statechart and
resume after handling the event. However, such approach
changes Yakindu statecharts’ underline execution semantics
and violates Yakindu statecharts’ original design goal.

To address the configurable execution order issue, a straight
forward approach is to customize medical guideline statechart
models based on execution orders provided by physicians.
However, the approach faces the following challenges: (1) a
medical guideline model requires a variant for every physician
to facilitate different execution orders, which is cumbersome
for practical use; and (2) engineers need to be involved in
clinical care to manually modify medical guideline models
when physicians change execution orders.

The major challenge of implementing the essential func-
tionalities in modeling medical guidelines, such as two-way
communications and configurable execution orders, is that it
has to be effortless for medical professionals to validate its
correctness and formally verifiable at reasonable cost. The
paper presents an approach to apply model patterns to support
these essential functionalities. The model patterns do not intro-
duce new statechart elements nor change statecharts’ underline
execution semantics. Hence, the model patterns do not require
additional effort for medical professionals to validate their
correctness. In addition, our previous work [16] can also be
applied to formally verify medical guideline models that apply
the model patterns.

The rest of the paper is organized as follows. Section II
briefly introduce the preliminary work on developing verifi-
ably safe medical best practice guidelines with statecharts.
We design the two-way communication model pattern and
configurable execution order model pattern in Section III and
formally prove the model patterns’ correctness in Section IV.
A case study of a simplified airway laser surgery scenario
is performed in Section V. We present some discussions in
Section VI and conclude in Section VII.

II. PRELIMINARY WORK

Our previous work [16] presents an approach to build verifi-
ably safe executable medical guideline models in two steps: (1)
use statecharts [20] to model medical guidelines and interact
with medical professionals to validate the correctness of the
medical guideline models; and (2) automatically transform
medical guideline statecharts to timed automata [30] by the
developed Y2U tool [16] to formally verify safety properties.
In this section, we use the simplified airway laser surgery
scenario in Example 1 as an example to briefly summarize
the process of building verifiably safe executable medical
guideline models.

A. Model Medical Guidelines with Statecharts

We use Yakindu statecharts to model the simplified airway
laser surgery, as shown in Fig. 1. Both laser and ventilator
are modeled as a statechart with three states (On, Off, and
Syn) to represent the devices’ operation status. To prevent
the accidental burn danger caused by laser and ventilator
are both activated, we add the Syn state to ensure that the

3

laser/ventilator’s activation procedure is delayed one step after
the ventilator/laser’s deactivation procedure. The initial state
of the airway laser surgery system is: the laser is off and the
ventilator is on to supply oxygen to the patient. When the
ventilator is turned off, we assume that the patient’s SpO level
decreases by 1 every second.

Fig. 1. Simplified Airway Laser Surgery Statechart Model

In the statechart shown in Fig. 1, when an operating surgeon
sends the startLaser event to the laser to operate the
surgery, the laser sends the deactivateVen event to stop
oxygen supply. If the patient’s SpO level reduces below 95%,
the ventilator turns on to supply oxygen and sends the
deactivateLaser event to stop the laser.

B. Verifiably Safe Statecharts

Statecharts contain basic elements, such as states and tran-
sitions, and advanced elements, such as composite states.
Although these advanced elements provide modeling conve-
nience, they increase the difficulty of both clinical validation
and formal verification. As stated in the literature, one of the
keys to achieving system safety at reasonable cost is a serious
and sustained commitment to simplicity [31], [32]. To reduce
the difficulty in both clinical validation and formal verification,
our previous work [33] proposes a pattern-based statechart
modeling approach to model medical guidelines with basic
statechart elements and model patterns which are built upon
these basic elements to implement advanced statechart ele-
ments.

To formally verify medical guideline statechart models,
our previous work [16] presents an approach to transform
statechart models to timed automata. There are three key
differences between Yakindu statecharts and UPPAAL timed
automata: (1) syntactic difference: Yakindu statecharts have
some elements that are not directly supported by UPPAAL
timed automata, such as event and timing trigger; (2) execution
semantics difference: Yakindu model is deterministic and
has synchronous execution semantics while the execution of
UPPAAL model is non-deterministic and asynchronous; and
(3) simultaneous events difference: Yakindu supports simulta-
neous events while UPPAAL does not.

Our transformation handles above three key differences
by following approaches: (1) syntactic difference: define 5
transformation rules for basic Yakindu statecharts elements,
i.e., state, transition, state action, event, and timing trigger; (2)
execution semantics difference: design 2 transformation rules

to implement transition trigger determinism and statechart
execution determinism, and use the lockstep method [34]
to force synchronous execution; and (3) simultaneous events
difference: design an event stack to simulate simultaneous
event mechanism in UPPAAL timed automata.

To ensure that the formal verification results in timed
automata is consistent with the statecharts, we prove the
transformation correctness. The approach also provides the
capability to trace back paths that fail safety properties from
timed automata to statecharts. Although our approach only
transforms basic Yakindu statechart elements, it is sufficient to
provide formal verification functionality for medical guideline
statecharts because the advanced statechart elements can be
represented by basic elements [33].

III. MODEL PATTERN DESIGN

Some statecharts have priority-based, deterministic, and
synchronous execution semantics, such as Yakindu statecharts.
The execution semantics make it difficult to model certain
features that are essential in modeling medical guidelines,
such as two-way communications and configurable execution
orders. In this section, we design model patterns to support
two-way communications and configurable execution orders
without changing statecharts’ underline execution semantics
nor introducing new statechart elements.

A. Design Model Pattern for Two-Way Communication

In statechart models with multiple statecharts, two-way
communications are essential. For instance, the laser stat-
echart and ventilator statechart in Fig. 1 require two-way
communications. We represent the two-way communication
requirement by the statechart model shown in Fig. 2. The
two-way communication feature means that statechart S1 can
receive event EB raised by S2 and statechart S2 can receive
event EA raised by S1. However, if statechart S1 has higher
priority than statechart S2, the event EB can not be passed
from S2 to S1 due to priority-based and synchronous execution
semantics.

Fig. 2. Two-Way Communication Feature

In this section, we design a model pattern to support two-
way communication in statecharts. The model pattern design
needs to satisfy the following two criteria: (1) it does not
changing statecharts’ underline execution semantics; and (2)
it does not introduce new statechart elements. The reason of
these two criteria is that new statechart elements and new
execution semantic rules increase the difficulty for medical
professionals to validate medical guideline models. Based on
the model pattern design criteria, our strategy to support two-
way communication is to queue all raised events, add logic

4

execution cycles, and re-raise the queued events in the added
logic cycles. Note that each added logic execution cycle takes
one CPU time unit which is negligible compared to clock
time. Under the two-way communication model pattern, the
statechart S2 in Fig. 2 can send event EB to statechart S1.

We take Yakindu statecharts as an example to implement
the two-way communication model pattern. In particular, for
each execution cycle (we call it normal cycle), we queue
all raised events. After each normal execution cycle, we add
n − 1 logic cycles to re-raise queued events, where n is the
number of statecharts. In each logic cycle, each queued event is
only visible to statecharts whose priorities are higher than the
event raiser, as lower priority statecharts have already received
the queued event in the normal cycle. Furthermore, at each
logic cycle, only those transitions that are triggered by queued
events are executed. This constraint is to ensure that the logic
cycle does not change the model behavior other than facilitate
higher priority statecharts to receive events from lower priority
statecharts.

The two-way communication model pattern contains a
Manager statechart and a interface TWC, as shown in Fig. 3. In
particular, the Manager statechart has the highest priority in
the model and initializes the event queues. The interface TWC

declares four functions: initEventQueue(), push(), pop(),
and isNormalExe().

Fig. 3. Two-Way Communication Model Pattern

We define a Java class TWC shown in Fig. 4 to implement
the TWC interface. The event queue is implemented by two
arrays queuedEvents and queuedEventsSender to store
raised events and their corresponding senders. The TWC class
also includes a boolean variable normalExe that indicates if
the current execution cycle is a normal cycle or an logic cycle
and an integer variable queuedEventNum indicating the size
of the event queue. The four functions declared in the TWC

interface are implemented as follows:

1) long initEventQueue(long stNum, long cycleNum)
assigns the value of normalExe based on current
execution cycle number cycleNum, increases the
execution cycle number by 1, and clears the event queue
when the execution enters normal cycles.

2) void push(long event, long sender) pushes a raised
event and the event raiser into the event queue.

3) boolean pop(long event, long receiver) checks if
the input event is valid. In normal cycles, events raised
by higher priority stetecharts are valid; while in logic

cycles, events raised by lower priority stetecharts are
valid.

4) boolean isNormalExe() checks if the current execution
cycle is a normal cycle.

The TWC class only uses basic Java data types, such as integer,
boolean, and integer array, and basic Java statements, such as
assignment, if statement, and while statement. The implemen-
tation principle of only using basic elements decreases the
difficulty of correctness proof in Section IV-A.

Fig. 4. Two-Way Communication Interface Implementation

We define Procedure 1 to apply the two-way communication
model pattern in existing statechart models.

Procedure 1.
• Step 1: add the interface TWC and the Manager state-

chart;
• Step 2: replace each event raise action by
TWC.push(TWC.eventID, TWC.senderID);

• Step 3: modify each transition’s guard G as follows:
– if G does not contain any event, replace G with

G && TWC.isNormalExe();
– if G contains events, replace each event

part in G with corresponding expression
TWC.pop(TWC.eventID, TWC.receiverID).

B. Design Model Pattern for Configurable Execution Order

In statechart models with multiple statecharts, end users
may want to configure statechart execution orders based on
their experiences and preferences. We represent configurable
execution order requirement by the statechart model shown
in Fig. 5. If the execution order is S1 ≺ S2, the action
x = x + 1 is executed first. While if the execution order
is S2 ≺ S1, the action y = y + 1 is executed first. However,

5

the statechart execution orders (represented by priorities) are
pre-assigned when building statechart models and can not be
changed without modifying existing statecharts.

Fig. 5. Configurable Execution Order Feature

In this section, we design a model pattern to allow end users
to configure statechart execution orders without modifying
existing statechart models. The design criteria is the same
with the two-way communication model pattern presented in
Section III-A. Based on the model pattern design criteria, our
strategy to support configurable execution order is to represent
user specified execution order in configure files, add logic
execution cycles, and apply token-based ordering to achieve
desired execution orders.

We also take Yakindu statecharts as an example to imple-
ment the configurable execution order model pattern. In par-
ticular, the model pattern generates a token for each Yakindu
execution cycle based on a specified order. For each normal
execution cycle, we add n − 1 logic cycles, where n is the
number of statecharts. During an execution cycle, only the
statechart whose priority matches the generated token will
execute one step.

Similar to the two-way communication model pattern in
Section III-A, the configurable execution order model pattern
contains a Manager statechart and a interface CEO, as shown
in Fig. 6. In particular, the Manager statechart has the highest
priority in the model and updates the execution token in each
execution cycle. The interface CEO declares two functions:
updateExeInfo() and run().

Fig. 6. Configurable Execution Order Model Pattern

We define a Java class CEO shown in Fig. 7 to imple-
ment the CEO interface. The CEO class includes an integer
variable exeIndex to represent the execution token and an
array exeOrders to store user specified execution orders,
respectively. The two functions declared in the CEO interface
are implemented as follows:

1) long updateExeInfo(long stNum) updates the execu-
tion token, if the token is equal to the statechart number
stNum, the token is reset to be 1, otherwise the token is

increased by 1;
2) boolean run(long st) checks if the input statechart st

matches the current execution token.

The CEO class also only uses basic Java data types and basic
Java statements, which decreases the difficulty of correctness
proof in Section IV-B.

Fig. 7. Configurable Execution Order Interface Implementation

We define Procedure 2 to apply the configurable execution
order model pattern in existing statechart models.

Procedure 2.

• Step 1: add the interface CEO and the Manager state-
chart;

• Step 2: replace each transition’s guard G by
G && CEO.run(CEO.statechartID).

In summary, we design two model patterns to support
two-way communication and configurable execution order in
statecharts. Both model patterns are implemented with basic
statechart elements and external Java codes. The approach
has three advantages: (1) it does not change statechart syntax
and its underline execution semantics, hence the two model
patterns can be applied to all statechart models; (2) it does
not increase the difficulty of clinical validation and formal
verification; (3) existing work on modeling, validating, and
verifying medical guidelines with statecharts can be applied.
For safety-critical medical systems, the correctness of the
designed model patterns is crucial. We formally prove the two
model patterns’ correctness in Section IV.

IV. MODEL PATTERN CORRECTNESS PROOF

The model patterns designed in Section III are implemented
with basic statechart elements and external Java code. Our
previous work [16] have proved that the transformation of
basic statechart elements to timed automata is correct. In
this section, we prove the correctness of designed model
patterns in two steps: (1) prove that the Java implementation is
correct; and (2) transform model patterns to timed autoamta
to formally verify that desired properties hold. The strategy
to prove the Java implementation is as follows: (1) represent
each Java function by a WHILE program [35]; (2) construct
a Hoare triple [35] for each WHILE program; and (3) prove
the correctness of the Hoare triples.

6

A. Two-Way Communication Model Pattern

We represent the Java functions initEventQueue(),
push(), pop(), and isNormalExe() by WHILE programs Pro-
gram 1, Program 2, Program 3, and Program 4, respectively.
The variables used to implement the two-way communication
model pattern are listed in Table I. We construct Hoare triples
and prove their correctness in Lemma 1-4. The precondition
and postcondition of each Hoare triple are the input and
output of the corresponding WHILE program based on the
functionality.

Program 1.

initEventQueue ≡
if c = 0 then exe := true; n := 0;

else exe := false; fi ;

a := c;

if c = stNum− 1 then c := 0;

else c := a+ 1; fi ;

x := c

The input of the initEventQueue program is the state-
chart number and cycle number. The two-way communication
requires as least two statecharts, hence stNum > 1. As the
two-way communication model pattern adds stNum− 1 logic
cycle and treats the normal cycle as 0, hence c < stNum.
Therefore, the precondition of the initEventQueue program
is c < stNum ∧ stNum > 1. According to the functionality,
the initEventQueue program has two possible outputs: (1)
if the current execution cycle is a normal cycle, then program
assigns the number of next cycle to be 1 and clears the event
queue, i.e., x = 1∧exe = true∧n = 0; and (2) if the current
execution cycle is a logic cycle, then program increases the
number of next cycle by 1; if the current execution cycle is the
last logic cycle, then program assigns the number of next cycle
to be 0, i.e., (x = 0∨ x = a+ 1)∧ exe = false. Hence, the
the postcondition of the initEventQueue program is (x =
1∧exe = true∧n = 0)∨((x = 0∨x = a+1)∧exe = false).
We prove the correctness of the initEventQueue program in
Lemma 1.

Lemma 1. {c < stNum∧stNum > 1}initEventQueue{(x =
1 ∧ exe = true ∧ n = 0) ∨ ((x = 0 ∨ x = a + 1) ∧ exe =
false)}

Proof. According to the composition rule [35], the proof of
the lemma is equivalent to prove the following two triples:

{P}S1; a := c{R} (1)

{R}S2;x := c{Q} (2)

where P ≡ c < stNum ∧ stNum > 1, Q ≡ (x = 1 ∧ exe =
true ∧ n = 0) ∨ ((x = 0 ∨ x = c + 1) ∧ exe = false),
R ≡ (a = c ∧ a = 0 ∧ exe = true ∧ n = 0 ∧ stNum >
1) ∨ (a = c ∧ a < stNum ∧ exe = false ∧ stNum > 1),

S1 ≡ if c = 0 then exe := true; n := 0;

else exe := false; fi

and

S2 ≡ if c = stNum− 1 then c := 0;

else c := a+ 1; fi

The detailed proof of triple (1) and triple (2) is given in
Appendix A-A.

Program 2.

push ≡ E[n] := e; S[n] := s; n := n+ 1

The input of the push program is an event e, its sender
s, the event array E[], and the sender array S[]. Suppose the
number of raised events before pushing event e is N , then
n = N ∧N ≥ 0. The event e and its sender s are represented
with positive integers, hence e > 0 ∧ s > 0. The precondition
of the push program is n = N ∧ N ≥ 0 ∧ e > 0 ∧ s > 0.
The push program pushes an event and its sender into the
queues and increase the number of raised events by 1. The
event array E[] and the sender array S[] have the same size
n, i.e., the number of raised events. As the index number of
arrays implementing queues starts from 0, the postcondition of
the push program is E[n−1] = e∧S[n−1] = s∧n = N+1.
We prove the correctness of the push program in Lemma 2.

Lemma 2. {n = N∧N ≥ 0∧e > 0∧s > 0}push{E[n−1] =
e ∧ S[n− 1] = s ∧ n = N + 1}

Proof.

E[n− 1] = e ∧ S[n− 1] = s ∧
n = N + 1[n := n+ 1][S[n] := s][E[n] := e]

≡ E[n] = e ∧ S[n] = s ∧ n = N [S[n] := s][E[n] := e]

≡ E[n] = e ∧ n = N [E[n] := e]

≡ n = N

As n = N ∧N ≥ 0 ∧ e > 0 ∧ s > 0→ n = N , hence the
lemma is correct.

Program 3.

pop ≡ x := false; i := 0; v := 0;

while i < n do

if E[i] = e ∧ ((exe = true ∧ r > S[i]) ∨
(exe = false ∧ r < S[i])) then

v := i; x := true; fi ;

i := i+ 1;

od

The input of the pop program is an event and its receiver,
hence, the precondition of the pop program is e > 0 ∧ r > 0.
The pop program checks if an event is valid to a receiver
during current execution cycle. In a normal cycle, events raised
by higher priority stetecharts are valid, i.e., x = true∧E[v] =
e ∧ 0 ≤ i ≤ n ∧ exe = true ∧ r > S[v], where v is event
e’s index in event array E. Note that a event e and its sender
s have the same index in the event array E[] and the sender
array S[], respectively. While in an logic cycle, events raised by
lower priority stetecharts are valid, i.e., x = true ∧ E[v] =
e ∧ 0 ≤ i ≤ n ∧ exe = false ∧ r < S[v]. Note that the

7

TABLE I
VARIABLES IN TWO-WAY COMMUNICATION MODEL PATTERN IMPLEMENTATION

Variable in Yakindu Java Code Variable in WHILE Program Variable Type Variable Meaning
queuedEvents[] E[] int array raised events
queuedEventsSender[] S[] int array the event senders of corresponding element in

queuedEvents[]
queuedEventNum n int number of raised event, i.e., size of E[] and S[]
normalExe exe bool a variable indicates if the current execution cycle is a normal

cycle or an additional cycle
stNum stNum int statechart number of the given model
cycleNum c int the number of execution cycle
event e int event identity
sender s int event sender
receiver r int event receiver
v v int event e’s index in E[] and S[]
i i int iterator of integer arrays E[] and S[]
a a int temporary variable
x x int/bool the return of functions

higher priority a statechart has, the lower its identity is. If the
input event is not raised, the pop program returns false, i.e.,
x = false. Therefore, the postcondition of the pop program
is x = false ∨ (x = true ∧E[v] = e ∧ ((exe = true ∧ r >
S[v])∨(exe = false∧r < S[v]))). We prove the correctness
of the pop program in Lemma 3.

Lemma 3. {e > 0 ∧ r > 0}pop{x = false ∨ (x = true ∧
E[v] = e ∧ ((exe = true ∧ r > S[v]) ∨ (exe = false ∧ r <
S[v])))}

Proof. The loop invariant and bound function of the while
loop in the pop program are inv ≡ 0 ≤ i ≤ n∧ (x = false∨
(x = true ∧E[v] = e ∧ ((exe = true ∧ r > S[v]) ∨ (exe =
false ∧ r < S[v])))) and bd ≡ n− i, respectively.

We use P and Q to denote the precondition and post-
condition of the triple, i.e., P ≡ e > 0 ∧ r > 0 and
Q ≡ x = false∨(x = true∧E[v] = e∧((exe = true∧r >
S[v]) ∨ (exe = false ∧ r < S[v]))). We prove the lemma in
the following five steps.

Step 1: prove that the initialization establishes the loop
invariant, i.e., {P}x := false; i := 0; v := 0{inv}.

Step 2: prove that the loop body does not change the loop
invariant, i.e., {inv ∧ i < n}S{inv}, where

S ≡ if E[i] = e ∧ (exe = true ∧ r > S[i]) ∨
(exe = false ∧ r < S[i]) then

v := i; x := true; fi ;

i := i+ 1

Step 3: prove that the bound function decreases after each
iteration, i.e., {inv ∧ i < n ∧ bd = z}S{bd < z}, where z is
an integer.

Step 4: prove that the loop invariant implies the bound
function is non-negative, i.e., inv→ bd ≥ 0.

Step 5: prove that the postcondition holds when the while
loop terminates, i.e., inv ∧ ¬(i < n)→ Q.

The detailed proof of each step is given in Appendix A-B.

Program 4.

isNormalExe ≡ x := exe

The isNormalExe program does not have input, hence, the
precondition is true. As the isNormalExe program checks if
the current execution cycle is a normal cycle, the postcondition
is x = exe. We prove the correctness of the isNormalExe

program in Lemma 4.

Lemma 4. {true}isNormalExe{x = exe}

Proof.

x = exe[x := exe]

≡ exe = exe

≡ true

After proving that the Java implementation is correct, we
prove the correctness of the two-way communication model
pattern in Theorem 1.

Theorem 1. The two-way communication model pattern is
correct, i.e., two statecharts can send events to each other.

Proof. For the statechart model shown in Fig. 2, the com-
munication from statechart S1 to S2 means that statechart S2
can receive event EA sent by statechart S1 and reach state B2.
Similarly, the communication from statechart S2 to S1 is that
statechart S1 can receive event EB sent by statechart S2 and
reach state C1. Hence, to prove the correctness of the two-way
communication model pattern is equivalent to prove that both
state C1 and state B2 are reachable.

We have prove the correctness of transformation of state-
chart elements in [16] and correctness of the Java implemen-
tation in Lemma 1-4. Hence, we can transform the statechart
model in Fig. 2 with two-way communication model pattern
to timed automata to verify the properties. The two state
reachability properties can be formally verified with TCTL
(timed computation tree logic) [30] formulas E <> S1.C1

8

and E <> S2.B2, respectively. The verification results
show that both properties are satisfied. Therefore, the two-way
communication model pattern is correct.

B. Configurable Execution Order Model Pattern

We represent the Java functions updateExeInfo(), and
run() by WHILE programs Program 5 and Program 6, re-
spectively. The variables used to implement the configurable
execution order model pattern are listed in Table II. We con-
struct Hoare triples and prove their correctness in Lemma 5-6.

Program 5.

updateExeInfo ≡ if t = stNum then a := 1;

else a := t+ 1; fi ;

x := a

The input of the updateExeInfo program is the statechart
number and the execution token, hence, the precondition
of the updateExeInfo program is t > 0 ∧ stNum > 0.
The updateExeInfo program updates the execution token.
If the current execution token is equal to the statechart
number, then the program assigns the token to be 1, i.e.,
t = stNum∧x = 1; otherwise, the program increases the token
by 1, i.e., t 6= stNum ∧ x = t + 1. Hence, the postcondition
of the updateExeInfo program is (t = stNum ∧ x =
1) ∨ (t 6= stNum ∧ x = t + 1). We prove the correctness
of the updateExeInfo program in Lemma 5.

Lemma 5. {t > 0 ∧ stNum > 0}updateExeInfo{(t =
stNum ∧ x = 1) ∨ (t 6= stNum ∧ x = t+ 1)}

Proof. According to the composition rule [35], the proof of
the lemma is equivalent to prove the following two triples:

{P}S{R} (3)

{R}x := a{Q} (4)

where P ≡ t > 0 ∧ stNum > 0, Q ≡ (t = stNum ∧ x =
1) ∨ (t 6= stNum ∧ x = t + 1), R ≡ (t = stNum ∧ a =
1) ∨ (t 6= stNum ∧ a = t+ 1), and

S ≡ if t = stNum then a := 1;

else a := t+ 1; fi

The detailed proof of triple (3) and triple (4) is given in
Appendix A-C.

Program 6.

run ≡ if O[t− 1] = st then x := true;

else x := false; fi

The input of the run program is a statechart’s identity and
an execution token. As we define that the minimal statechart
identity and minimal generated execution token are both 1,
hence the precondition of the run program is t > 0∧ st > 0.
The run program checks if a statechart is valid to execute,
i.e., the statechart’s identity matches the current execution
token. The array O[] stores statechart identities sorted in
their execution orders. The index number of the array O[]

starts from 0. Hence, the postcondition of the run program is
(x = true ∧O[t− 1] = st) ∨ (x = false ∧O[t− 1] 6= st).
We prove the correctness of the run program in Lemma 6.

Lemma 6. {t > 0 ∧ st > 0}run{(x = true ∧ O[t − 1] =
st) ∨ (x = false ∧O[t− 1] 6= st)}

Proof. The proof of the lemma is equivalent to prove the
following two triples:

{P ∧O[t− 1] = st}x := true{Q} (5)

{P ∧O[t− 1] 6= st}x := false{Q} (6)

where P ≡ t > 0 ∧ st > 0 and Q ≡ (x = true ∧O[t− 1] =
st) ∨ (x = false ∧O[t− 1] 6= st).

The detailed proof of triple (5) and triple (6) is given in
Appendix A-D.

After proving that the Java implementation is correct, we
prove the correctness of the configurable execution order
model pattern in Theorem 2.

Theorem 2. The configurable execution order model pattern
is correct, i.e., the statechart execution order is the same with
the configuration.

Proof. For the statechart model shown in Fig. 5, if the
execution order is S1 ≺ S2, the action x = x+ 1 is executed
before y = y+1, i.e., x ≥ y. If the execution order is S2 ≺ S1,
the action y = y+1 is executed before x = x+1, i.e., y ≥ x.
Hence, to prove the correctness of the configurable execution
order model pattern is equivalent to prove the above two
properties under corresponding execution order configurations.

We have prove the correctness of transformation of state-
chart elements in [16] and correctness of the Java implementa-
tion in Lemma 5 and Lemma 6. Hence, we can transform the
statechart model in Fig. 5 with configurable execution order
model pattern to timed automata to verify the properties. The
two properties can be formally verified with TCTL (timed
computation tree logic) [30] formulas A[] x ≥ y and
A[] y ≥ x, respectively. We specify statechart execution orders
to be S1 ≺ S2 and S2 ≺ S1. The verification results show
that the properties hold under corresponding execution order
configurations. Therefore, the configurable execution order
model pattern is correct.

V. CASE STUDY

In this section, we use the simplified airway laser surgery
scenario presented in Example 1 to demonstrate how the
designed model patterns can facilitate developing executable
medical guideline models and their impact on validation and
verification of medical safety properties.

The simplified airway laser surgery scenario has two safety
properties, i.e., P1: the laser and the ventilator can not be
activated at the same time; and P2: the patient’s SpO level
can not be smaller than 95%. We run simulation of the
simplified airway laser surgery statechart model in Fig. 1
through Yakindu. The simulation results show that the model
reaches an unsafe state that both Laser and Ventilator are
on. In addition, we use the Y2U tool [16] to automatically

9

TABLE II
VARIABLES IN CONFIGURABLE EXECUTION ORDER MODEL PATTERN IMPLEMENTATION

Variable in Yakindu Java Code Variable in WHILE Program Variable Type Variable Meaning
exeOrders[] O[] int array statechart execution orders
exeIndex t int execution token
stNum stNum int statechart number of the given model
st st int statechart identity
a a int temporary variable
x x int/bool the return of functions

transform the statechart model in Fig. 1 to timed automata to
formally verify the two safety properties. The safety properties
P1 and P2 are verified in UPPAAL by TCTL [30] formulas
A[] !(Laser.On && Ventilator.On) and A[] SpO >= 95,
respectively. The verification results show that the safety prop-
erty P1 indeed fails. We trace back the execution path that fails
P1 to the statechart model and find that the deactivateLaser
event sent by ventilator can not be received by the laser.
The reason is that Yakindu statecharts’ priority-based execu-
tion semantics cause that lower priority statecharts can not
send events to higher priority statecharts.

We use Procedure 1 and Procedure 2 to apply the two-way
communication model pattern and the configurable execution
order model pattern to the statechart model in Fig. 1. The
simplified airway laser surgery statechart with model patterns
is shown in Fig. 8. We run simulation of the statechart model
in Fig. 8 through Yakindu. The simulation results show that
the model does not reach any unsafe states. We also transform
the statechart model in Fig. 8 to timed automata, as shown
in Fig. 9. The verification results also indicate that both safe
properties P1 and P2 are satisfied.

Fig. 8. Simplified Airway Laser Surgery Statecharts with Model Patterns

The default statechart execution order of the statechart
model in Fig. 8 is Laser ≺ Ventilator. Some medical pro-
fessionals may prefer the execution order to be Ventilator

≺ Laser. We specify the statechart execution order to be
Ventilator ≺ Laser and validate/verify the two safety
properties. Both simulation and verification results show that
P1 and P2 are still satisfied.

We also use the simplified airway laser surgery to illustrate
the correctness of designed model patterns when they are
accompanied by medical guideline models. The correctness
of the two-way communication model pattern is that two
statecharts can send events to each other. For the simplified air-
way laser surgery model shown in Fig. 8, the communication
from statechart Laser to Ventilator means that statechart

Fig. 9. Simplified Airway Laser Surgery Timed Automata Model with Model
Patterns

Ventilator can receive event deactivateVen sent by stat-
echart Laser and reach state Ventilator.Off. Similarly, the
communication from statechart Ventilator to Laser is that
statechart Laser can receive event deactivateLaser sent
by statechart Ventilator and reach state Laser.Off. Hence,
the correctness of two-way communication model pattern is
that both state Ventilator.Off and state Laser.Off are
reachable. We verify the two state reachability properties
in the timed automata model shown in Fig. 9 with TCTL
formulas E <> Ventilator.Off and E <> Laser.Off,
respectively. The verification results show that both properties
are satisfied, i.e., the two-way communication model pattern
is correct in the simplified airway laser surgery model.

The correctness of the configurable execution order model
pattern is that the statechart execution order is the same
with the configuration. For the simplified airway laser surgery
model shown in Fig. 8, if the execution order is Laser

≺ Ventilator, the initial state Laser.Off is reached be-
fore the initial state Ventilator.On, which is represented
by TCTL formula A[] Ventilator.On imply Laser.Off.
If the execution order is Ventilator ≺ Laser, the ini-
tial state Ventilator.On is reached before the initial
state Laser.Off, which is represented by TCTL formula
A[] Laser.Off imply Ventilator.On. We specify stat-
echart execution orders to be Laser ≺ Ventilator and
Ventilator ≺ Laser and verify corresponding properties in
the timed automata model shown in Fig. 9, respectively. The
verification results show that the properties hold under corre-

10

sponding execution order configurations, i.e., the configurable
execution order model pattern is correct in the simplified
airway laser surgery model.

The case study demonstrates that (1) the two-way commu-
nication and configurable execution order functionalities are
crucial in modeling medical guidelines; and (2) the designed
model patterns can address the two-way communication and
configurable execution order issues.

VI. DISCUSSION

The designed model patterns support important functional-
ities in modeling systems with statecharts, i.e., the two-way
communication functionality and the configurable execution
order functionality. They can be directly applied to any ap-
plication scenario that requires two-way communication or
configurable execution order. If a statechart model needs to
apply multiple model patterns, we can just apply these model
patterns one by one. For example, the airway laser surgery
statechart model shown in Fig. 8 first applies the two-way
communication model pattern and then applies the config-
urable execution order model pattern according to Procedure 1
and Procedure 2, respectively. Given a statechart model with N
transitions, the time complexity of applying the model patterns
is O(N).

The model patterns contain two major parts: a Manager

statechart and a interface. If we want to implement the model
patterns in other statechart-based modeling platforms such as
Stateflow [28], we only need to re-implement the interface
based on corresponding modeling platforms’ features. The
Manager statechart does not need to be re-designed, as it only
contains basic statechart elements, i.e., state, transition, guard,
and action. The proposed model pattern design approach is
generalized and can be applied to facilitate other function-
alities that are not directly supported by statecharts, such as
exception handling.

The correctness of the model patterns is proved in Theo-
rem 1 and Theorem 2. We also use the simplified airway laser
surgery case study to illustrate the correctness of the model
patterns when they are accompanied by medical guideline
models. To ensure the completeness of the model patterns’
correctness proof, we need to verify below properties when
the model patterns are applied in a statechart model. For the
two-way communication model pattern, we need to verify that
every event sent by a statechart can be received by all other
statecharts in the model. Regarding the configurable execution
order model pattern, for all possible statechart execution order
configurations, we need to verify that every statechart’s initial
state is reached in sequence as configured.

VII. CONCLUSION

Some essential functionalities in medical operations, such
as two-way communication and configurable execution order,
are not directly supported by some open source statechart
modeling tools. The paper presents an approach to apply
model patterns to support these essential functionalities and
formally prove the correctness of designed model patterns.
The approach can be applied to facilitate other functionalities

that are not directly supported by statecharts, such as exception
handling. The designed model patterns can be directly applied
in many application domains in which these functionalities are
needed.

APPENDIX A
PROOF OF THE LEMMAS

A. Proof of Lemma 1
Proof. The proof of triple (2) is as follows.

Q[x := c]

≡ (x = 1 ∧ exe = true ∧ n = 0) ∨
((x = 0 ∨ x = c+ 1) ∧ exe = false)[x := c]

≡ (c = 1 ∧ exe = true ∧ n = 0) ∨
((c = 0 ∨ c = c+ 1) ∧ exe = false)

≡ (c = 1 ∧ exe = true ∧ n = 0) ∨
(c = 0 ∧ exe = false)

≡ Q1

To prove {R}S2{Q1} is equivalent to prove the following two
triples:

{R ∧ c = stNum− 1}c := 0{Q1} (7)

{R ∧ c 6= stNum− 1}c := a+ 1{Q1} (8)

The proof of triple (7) is as follows.

Q1[c := 0]

≡ (c = 1 ∧ exe = true ∧ n = 0) ∨
(c = 0 ∧ exe = false)[c := 0]

≡ (0 = 1 ∧ exe = true ∧ n = 0) ∨
(0 = 0 ∧ exe = false)

≡ exe = false

≡ Q2

R ∧ c = stNum− 1

≡ ((a = c ∧ a = 0 ∧ exe = true ∧ n = 0 ∧ stNum > 1) ∨
(a = c ∧ a < stNum ∧ exe = false) ∧ stNum > 1) ∧
c = stNum− 1

≡ false ∨ (a = c ∧ c = stNum− 1 ∧ exe = false ∧
stNum > 1)

≡ a = c ∧ c = stNum− 1 ∧ exe = false ∧ stNum > 1

As R ∧ c = stNum− 1→ Q2, hence the triple (7) is correct.
The proof of triple (8) is as follows.

Q1[c := a+ 1]

≡ (c = 1 ∧ exe = true ∧ n = 0) ∨
(c = 0 ∧ exe = false)[c := a+ 1]

≡ (a+ 1 = 1 ∧ exe = true ∧ n = 0) ∨
(a+ 1 = 0 ∧ exe = false)

≡ (a = 0 ∧ exe = true ∧ n = 0) ∨
(a = −1 ∧ exe = false)

≡ Q3

11

R ∧ c 6= stNum− 1

≡ ((a = c ∧ a = 0 ∧ exe = true ∧ n = 0 ∧ stNum > 1) ∨
(a = c ∧ a < stNum ∧ exe = false ∧ stNum > 1)) ∧
c 6= stNum− 1

≡ (a = c ∧ a = 0 ∧ exe = true ∧ n = 0 ∧ stNum > 1) ∨
(a = c ∧ a < stNum− 1 ∧ exe = false ∧ stNum > 1)

As R ∧ c 6= stNum− 1→ Q3, hence the triple (8) is correct.
Therefore, the triple (2) is correct.

Similarly, the proof of triple (1) is as follows.

R[a := c]

≡ (a = c ∧ a = 0 ∧ exe = true ∧ n = 0 ∧ stNum > 1) ∨
(a = c ∧ a < stNum ∧ exe = false ∧ stNum > 1)[a := c]

≡ (c = 0 ∧ exe = true ∧ n = 0 ∧ stNum > 1) ∨
(c < stNum ∧ exe = false ∧ stNum > 1)

≡ R1

To prove {P}S1{R1} is equivalent to prove the following two
triples:

{P ∧ c = 0}exe := true;n := 0{R1} (9)

{P ∧ c 6= 0}exe := false{R1} (10)

The proof of triple (9) is as follows.

R1[n := 0][exe := true]

≡ (c = 0 ∧ exe = true ∧ n = 0 ∧ stNum > 1) ∨ (c < stNum

∧ exe = false ∧ stNum > 1)[n := 0][exe := true]

≡ (c = 0 ∧ exe = true ∧ stNum > 1) ∨
(c < stNum ∧ exe = false ∧ stNum > 1)[exe := true]

≡ c = 0 ∧ stNum > 1

≡ R2

P ∧ c = 0

≡ c < stNum ∧ stNum > 1 ∧ c = 0

≡ c = 0 ∧ stNum > 1

As P ∧ c = 0 ≡ R2, hence the triple (9) is correct.
The proof of triple (10) is as follows.

R1[exe := false]

≡ (c = 0 ∧ exe = true ∧ n = 0 ∧ stNum > 1) ∨
(c < stNum ∧ exe = false ∧ stNum > 1)[exe := false]

≡ c < stNum ∧ stNum > 1

≡ R3

P ∧ c 6= 0

≡ c < stNum ∧ stNum > 1 ∧ c 6= 0

As P∧c 6= 0→ R3, hence the triple (10) is correct. Therefore,
the triple (1) is correct.

Therefore, the lemma is correct.

B. Proof of Lemma 3
Proof.
Step 1: prove that the initialization establishes the loop
invariant, i.e., {P}x := false; i := 0; v := 0{inv}.

The proof of triple {P}x := false; i := 0; v := 0{inv} is
as follows.

inv[v := 0][i := 0][x := false]

≡ 0 ≤ i ≤ n ∧ (x = false ∨ (x = true ∧
E[v] = e ∧ ((exe = true ∧ r > S[v]) ∨
(exe = false ∧ r < S[v]))))[v := 0][i := 0][x := false]

≡ 0 ≤ i ≤ n ∧ (x = false ∨ (x = true ∧
E[0] = e ∧ ((exe = true ∧ r > S[0]) ∨
(exe = false ∧ r < S[0]))))[i := 0][x := false]

≡ true ∧ (x = false ∨ (x = true ∧
E[0] = e ∧ ((exe = true ∧ r > S[0]) ∨
(exe = false ∧ r < S[0]))))[x := false]

≡ true ∧ (true ∨ (false ∧
E[0] = e ∧ ((exe = true ∧ r > S[0]) ∨
(exe = false ∧ r < S[0]))))

≡ true

As P → true, hence the triple {P}x := false; i := 0; v :=
0{inv} is correct.

Step 2: prove that the loop body does not change the loop
invariant, i.e., {inv ∧ i < n}S{inv}, where

S ≡ if E[i] = e ∧ (exe = true ∧ r > S[i]) ∨
(exe = false ∧ r < S[i]) then

v := i; x := true; fi ;

i := i+ 1

According to the composition rule [35], the proof of {inv∧
i < n}S{inv} is equivalent to prove the following two triples:

{inv ∧ i < n}S1{R} (11)

{R}i := i+ 1{inv} (12)

where R ≡ −1 ≤ i ≤ n−1∧(x = false∨(x = true∧E[v] =
e∧ ((exe = true∧r > S[v])∨ (exe = false∧r < S[v])))),

S1 ≡ if B then v := i; x := true; fi

and B ≡ E[i] = e ∧ ((exe = true ∧ r > S[i]) ∨ (exe =
false ∧ r < S[i])).

The proof of triple (12) is as follows.

inv[i := i+ 1]

≡ 0 ≤ i ≤ n ∧ (x = false ∨ (x = true ∧
E[v] = e ∧ ((exe = true ∧ r > S[v]) ∨
(exe = false ∧ r < S[v]))))[i := i+ 1]

≡ −1 ≤ i ≤ n− 1 ∧ (x = false ∨ (x = true ∧
E[v] = e ∧ ((exe = true ∧ r > S[v]) ∨
(exe = false ∧ r < S[v]))))

≡ R

12

Hence, the triple (12) is correct.
The proof of triple (11) is equivalent to prove the following

two triples:

{inv ∧ i < n ∧B}v := i;x := true{R} (13)

{inv ∧ i < n ∧ ¬B}skip {R} (14)

The proof of triple (13) is as follows.

R[x := true][v := i]

≡ −1 ≤ i ≤ n− 1 ∧ (x = false ∨ (x = true∧
E[v] = e ∧ ((exe = true ∧ r > S[v]) ∨
(exe = false ∧ r < S[v]))))[x := true][v := i]

≡ −1 ≤ i ≤ n− 1 ∧ (E[v] = e ∧ ((exe = true ∧ r > S[v])

∨ (exe = false ∧ r < S[v])))[v := i]

≡ −1 ≤ i ≤ n− 1 ∧ (E[i] = e ∧ ((exe = true ∧ r > S[i])

∨ (exe = false ∧ r < S[i])))

≡ R1

inv ∧ i < n ∧B

≡ 0 ≤ i ≤ n ∧ (x = false ∨ (x = true ∧
E[v] = e ∧ ((exe = true ∧ r > S[v]) ∨
(exe = false ∧ r < S[v])))) ∧ i < n ∧
E[i] = e ∧ (exe = true ∧ r > S[i]) ∨
(exe = false ∧ r < S[i])

≡ 0 ≤ i < n ∧ (x = false ∨ (x = true ∧
E[v] = e ∧ ((exe = true ∧ r > S[v]) ∨
(exe = false ∧ r < S[v])))) ∧
E[i] = e ∧ (exe = true ∧ r > S[i]) ∨
(exe = false ∧ r < S[i])

As i is an integer, hence 0 ≤ i < n → −1 ≤ i ≤ n − 1. As
inv ∧ i < n ∧B → R1, hence the triple (13) is correct.

Similarly, we prove the triple (14) as follows.

inv ∧ i < n ∧ ¬B
≡ 0 ≤ i ≤ n ∧ (x = false ∨ (x = true ∧

E[v] = e ∧ ((exe = true ∧ r > S[v]) ∨
(exe = false ∧ r < S[v])))) ∧ i < n ∧ ¬B

≡ 0 ≤ i < n ∧ (x = false ∨ (x = true ∧
E[v] = e ∧ ((exe = true ∧ r > S[v]) ∨
(exe = false ∧ r < S[v])))) ∧ i < n ∧ ¬B

As inv ∧ i < n ∧ ¬B → R, hence the triple (14) is correct.
Therefore, the triple (11) and triple {inv∧ i < n}S{inv} are
correct.

Step 3: prove that the bound function decreases after each
iteration, i.e., {inv ∧ i < n ∧ bd = z}S{bd < z}, where z is
an integer.

According to the composition rule [35], the proof of {inv∧
i < n∧bd = z}S{bd < z} is equivalent to prove the following
two triples:

{inv ∧ i < n ∧ bd = z}S1{n− i < z + 1} (15)

{n− i < z + 1}i := i+ 1{bd < z} (16)

The proof of triple (16) is as follows.

bd < z[i := i+ 1]

≡ n− i < z[i := i+ 1]

≡ n− i < z + 1

Hence, the triple (16) is correct.
The proof of triple (15) is equivalent to prove the following

two triples:

{inv ∧ i < n ∧ bd = z ∧B}v := i;x := true{n− i < z + 1}
(17)

{inv ∧ i < n ∧ bd = z ∧ ¬B}skip {n− i < z + 1} (18)

The proof of triple (17) is as follows.

n− i < z + 1[x := true][v := i]

≡ n− i < z + 1

inv ∧ i < n ∧ bd = z ∧B

≡ n− i = z ∧ inv ∧ i < n ∧B

As inv ∧ i < n ∧ bd = z ∧ B → n − i < z + 1, hence the
triple (17) is correct.

Similarly, as inv∧ i < n∧ bd = z ∧¬B → n− i < z + 1,
hence the triple (18) is correct. Therefore, the triple (15) and
triple {inv ∧ i < n ∧ bd = z}S{bd < z} are correct.

Step 4: prove that the loop invariant implies the bound
function is non-negative, i.e., inv→ bd ≥ 0.

As bd ≥ 0 ≡ n ≥ i, hence inv→ bd ≥ 0.

Step 5: prove that the postcondition holds when the while
loop terminates, i.e., inv ∧ ¬(i < n)→ Q.

inv ∧ ¬(i < n)

≡ 0 ≤ i ≤ n ∧ (x = false ∨ (x = true∧
E[v] = e ∧ ((exe = true ∧ r > S[v]) ∨
(exe = false ∧ r < S[v])))) ∧ i ≥ n

≡ i = n ∧ (x = false ∨ (x = true ∧ E[v] = e∧
((exe = true ∧ r > S[v]) ∨ (exe = false ∧ r < S[v]))))

→ Q

C. Proof of Lemma 5

Proof. The proof of triple (4) is as follows.

Q[x := a]

≡ (t = stNum ∧ x = 1) ∨ (t 6= stNum ∧ x = t+ 1)[x := a]

≡ (t = stNum ∧ a = 1) ∨ (t 6= stNum ∧ a = t+ 1)

≡ R

Hence, the triple (4) is correct.

13

The proof of triple (3) is equivalent to prove the following
two triples:

{P ∧ t = stNum}a := 1{R} (19)

{P ∧ t 6= stNum}a := t+ 1{R} (20)

The proof of triple (19) is as follows.

R[a := 1]

≡ (t = stNum ∧ a = 1) ∨ (t 6= stNum ∧ a = t+ 1)[a := 1]

≡ t = stNum ∨ (t 6= stNum ∧ t = 0)

≡ R1

As P ∧ t = stNum→ R1, hence the triple (19) is correct.
The proof of triple (20) is as follows.

R[a := t+ 1]

≡ (t = stNum ∧ a = 1) ∨ (t 6= stNum ∧ a = t+ 1)[a := t+ 1]

≡ (t = stNum ∧ t = 0) ∨ t 6= stNum

≡ R2

As P ∧ t 6= stNum → R2, hence the triple (20) is correct.
Therefore, the triple (3) is correct.

Therefore, the lemma is correct.

D. Proof of Lemma 6

Proof. The proof of triple (5) is as follows.

Q[x := true]

≡ (x = true ∧O[t− 1] = st) ∨
(x = false ∧O[t− 1] 6= st)[x := true]

≡ (true = true ∧O[t− 1] = st) ∨
(true = false ∧O[t− 1] 6= st)

≡ O[t− 1] = st

As P ∧ O[t− 1] = st→ O[t− 1] = st, hence the triple (5)
is correct.

Similarly, the proof of triple (6) is as follows.

Q[x := false]

≡ (x = true ∧O[t− 1] = st) ∨
(x = false ∧O[t− 1] 6= st)[x := false]

≡ (false = true ∧O[t− 1] = st) ∨
(false = false ∧O[t− 1] 6= st)

≡ O[t− 1] 6= st

As P ∧ O[t− 1] 6= st→ O[t− 1] 6= st, hence the triple (6)
is correct.

Therefore, the lemma is correct.

ACKNOWLEDGMENT

This work is supported in part by NSF CNS 1545008, NSF
CNS 1842710, and NSF CNS 1545002.

REFERENCES

[1] B. A. McKinley, L. J. Moore, J. F. Sucher, et al., “Computer protocol
facilitates evidence-based care of sepsis in the surgical intensive care
unit,” Journal of Trauma and Acute Care Surgery, vol. 70, no. 5,
pp. 1153–1167, 2011.

[2] M. Balser, C. Duelli, and W. Reif, “Formal semantics of asbru an
overview,” Proc. of the 6th Biennial World Conference on Integrated
Design and Process Technology, vol. 5, no. 5, pp. 1–8, 2002.

[3] V. L. Patel, V. G. Allen, J. F. Arocha, and E. H. Shortliffe, “Representing
clinical guidelines in glif,” Journal of the American Medical Informatics
Association, vol. 5, no. 5, pp. 467–483, 1998.

[4] P. Terenziani, S. Montani, A. Bottrighi, M. Torchio, G. Molino, and
G. Correndo, “The glare approach to clinical guidelines: main features,”
Stud. Health Technol. Inform., pp. 162–166, 2004.

[5] S. W. Tu and M. A. Musen, “Modeling data and knowledge in the eon
guideline architecture,” Medinfo, pp. 280–284, 2001.

[6] J. Fox, N. Johns, and A. Rahmanzadeh, “Disseminating medical
knowledge: the proforma approach,” Artificial Intelligence in Medicine,
vol. 14, no. 1-2, pp. 157 – 182, 1998.

[7] M. Rahmaniheris, P. Wu, L. Sha, and R. R. Berlin, “An organ-centric best
practice assist system for acute care,” in 2016 IEEE 29th International
Symposium on Computer-Based Medical Systems (CBMS), pp. 100–105,
June 2016.

[8] F. Tan, Y. Wang, Q. Wang, L. Bu, R. Zheng, and N. Suri, “Guaranteeing
proper-temporal-embedding safety rules in wireless cps: A hybrid formal
modeling approach,” in 2013 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pp. 1–12, June
2013.

[9] Y. Jiang, H. Zhang, Z. Li, Y. Deng, X. Song, M. Gu, and J. Sun,
“Design and optimization of multiclocked embedded systems using
formal techniques,” IEEE Transactions on Industrial Electronics, vol. 62,
pp. 1270–1278, Feb 2015.

[10] C. Guo, Z. Fu, Z. Zhang, S. Ren, and L. Sha, “Model and integrate
medical resource availability into verifiably correct executable medical
guidelines,” in 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pp. 964–969, Nov 2017.

[11] C. Guo, Z. Fu, Z. Zhang, S. Ren, and L. Sha, “Model and inte-
grate medical resource available times and relationships in verifiably
correct executable medical best practice guideline models,” in 2018
ACM/IEEE 9th International Conference on Cyber-Physical Systems
(ICCPS), pp. 253–262, April 2018.

[12] P. Wu, L. Sha, R. B. B. Jr., and J. M. Goldman, “Safe workflow
adaptation and validation protocol for medical cyber-physical systems,”
in To apper in 2015 EUROMICRO Conference on Software Engineering
and Advanced Applications, 2015.

[13] P. Wu, D. Raguraman, L. Sha, R. Berlin, and J. Goldman, “A treat-
ment validation protocol for cyber-physical-human medical systems,” in
Software Engineering and Advanced Applications (SEAA), 2014 40th
EUROMICRO Conference on, pp. 183–190, Aug 2014.

[14] W. Kang, P. Wu, M. Rahmaniheris, L. Sha, R. B. Berlin, and J. M.
Goldman, “Towards organ-centric compositional development of safe
networked supervisory medical systems,” in Proceedings of the 26th
IEEE International Symposium on Computer-Based Medical Systems,
pp. 143–148, June 2013.

[15] S. C. Christov, G. S. Avrunin, and L. A. Clarke, “Considerations for on-
line deviation detection in medical processes,” in 2013 5th International
Workshop on Software Engineering in Health Care (SEHC), pp. 50–56,
May 2013.

[16] C. Guo, S. Ren, Y. Jiang, P.-L. Wu, L. Sha, and R. Berlin, “Transforming
medical best practice guidelines to executable and verifiable statechart
models,” in 2016 ACM/IEEE 7th International Conference on Cyber-
Physical Systems (ICCPS), pp. 1–10, April 2016.

[17] Y. Jiang, H. Song, R. Wang, M. Gu, J. Sun, and L. Sha, “Data-centered
runtime verification of wireless medical cyber-physical system,” IEEE
Transactions on Industrial Informatics, vol. PP, no. 99, pp. 1–1, 2016.

[18] C. Guo, Z. Fu, S. Ren, Y. Jiang, and L. Sha, “Towards verifiable safe
and correct medical best practice guideline systems,” in 2017 IEEE 41st
Annual Computer Software and Applications Conference (COMPSAC),
vol. 1, pp. 760–765, July 2017.

[19] M. F. Hazinski, M. Shuster, M. W. Donnino, R. A. Samson, S. M.
Schexnayder, E. H. Sinz, A. H. Travers, L. M. Gent, J. M. E. Ferrer,
S. M. Mitakidis, A. J. Rodriguez, N. Arain, D. Barnes, M. L. Cootes,
J. Denton, R. E. Griffin, J. Hundley, J. Loftin, A. G. Pederson, and
K. Robinson, “2015 american heart association guidelines update for
cardiopulmonary resuscitation and emergency cardiovascular care,” Cir-
culation, vol. 132, pp. S315–S573, Nov. 2015.

14

[20] D. Harel, “Statecharts: A visual formalism for complex systems,”
Science of computer programming, vol. 8, no. 3, pp. 231–274, 1987.

[21] M. Romdhani, A. Jeffroy, P. de Chazelles, A. E. K. Sahraoui, and A. A.
Jerraya, “Modeling and rapid prototyping of avionics using statemate,” in
Rapid System Prototyping, 1995. Proceedings., Sixth IEEE International
Workshop on, pp. 62–67, Jun 1995.

[22] J. Whittle, R. Kwan, and J. Saboo, “From scenarios to code: An air
traffic control case study,” Software & Systems Modeling, vol. 4, no. 1,
pp. 71–93, 2005.

[23] M. Rahmaniheris, Y. Jiang, and L. Sha, “Model-driven design of clinical
guidance systems,” ArXiv e-prints, Oct. 2016.

[24] Wikipedia, “Laser surgery.” https://en.wikipedia.org/wiki/Laser surgery,
2016.

[25] C. Kim, M. Sun, S. Mohan, H. Yun, L. Sha, and T. F. Abdelzaher,
“A framework for the safe interoperability of medical devices in the
presence of network failures,” in Proceedings of the 1st ACM/IEEE
International Conference on Cyber-Physical Systems, ICCPS ’10, (New
York, NY, USA), pp. 149–158, ACM, 2010.

[26] J. J. Benich and P. J. Carek, “Evaluation of the patient with chronic
cough,” American Family Physician, vol. 84, pp. 887–892, Oct. 2011.

[27] J. Fox, N. Johns, and A. Rahmanzadeh, “Disseminating medical
knowledge: the proforma approach,” Artificial Intelligence in Medicine,
vol. 14, no. 12, pp. 157 – 182, 1998.

[28] MathWorks, “Stateflow.” https://www.mathworks.com/products/
stateflow.html.

[29] MathWorks, “Matlab.” https://www.mathworks.com/products/matlab.
html.

[30] G. Behrmann, A. David, and K. Larsen, “A tutorial on uppaal,” in Formal
Methods for the Design of Real-Time Systems, pp. 200–236, Springer,
2004.

[31] D. Jackson, M. Thomas, and L. I. Millett, Software for Dependable
Systems: Sufficient Evidence? National Academies Press, 2007.

[32] P. Carayon, Handbook of Human Factors and Ergonomics in Health
Care and Patient Safety. CRC Press, 2011.

[33] C. Guo, Z. Fu, S. Ren, Y. Jiang, M. Rahmaniheris, and L. Sha, “Pattern-
based statechart modeling approach for medical best practice guidelines -
a case study,” in 2017 IEEE 30th International Symposium on Computer-
Based Medical Systems (CBMS), June 2017.

[34] J. Smed and H. Hakonen, Algorithms and Networking for Computer
Games. Wiley, 2006.

[35] K. R. Apt, F. de Boer, and E.-R. Olderog, Verification of Sequential
and Concurrent Programs. Springer Publishing Company, Incorporated,
3rd ed., 2009.

https://en.wikipedia.org/wiki/Laser_surgery
https://www.mathworks.com/products/stateflow.html
https://www.mathworks.com/products/stateflow.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html

	Introduction and Related Work
	Preliminary Work
	Model Medical Guidelines with Statecharts
	Verifiably Safe Statecharts

	Model Pattern Design
	Design Model Pattern for Two-Way Communication
	Design Model Pattern for Configurable Execution Order

	Model Pattern Correctness Proof
	Two-Way Communication Model Pattern
	Configurable Execution Order Model Pattern

	Case Study
	Discussion
	Conclusion
	Appendix A: Proof of the Lemmas
	Proof of Lemma 1
	Proof of Lemma 3
	Proof of Lemma 5
	Proof of Lemma 6

	References

