
Automatic Cloud Bursting under FermiCloud

Hao Wu∗§, Shangping Ren∗, Gabriele Garzoglio†, Steven Timm†, Gerard Bernabeu†,
Hyun Woo Kim†, Keith Chadwick†,Haengjin Jang‡, Seo-Young Noh‡

Abstract—Cloud computing is changing the infrastructure
upon which scientific computing depends from supercomputers
and distributed computing clusters to a more elastic cloud-based
structure. The service-oriented focus and elasticity of clouds
can not only facilitate technology needs of emerging business
but also shorten response time and reduce operational costs
of traditional scientific applications. Fermi National Accelerator
Laboratory (Fermilab) is currently in the process of building
its own private cloud, FermiCloud, which allows the existing
grid infrastructure to use dynamically provisioned resources on
FermiCloud to accommodate increased but dynamic computation
demand from scientists in the domains of High Energy Physics
(HEP) and other research areas. Cloud infrastructure also allows
to increase a private cloud’s resource capacity through “burst-
ing” by borrowing or renting resources from other community
or commercial clouds when needed. This paper introduces a
joint project on building a cloud federation to support HEP
applications between Fermi National Accelerator Laboratory and
Korea Institution of Science and Technology Information, with
technical contributions from the Illinois Institute of Technology.
In particular, this paper presents two recent accomplishments
of the joint project: (a) cloud bursting automation and (b) load
balancer. Automatic cloud bursting allows computer resources
to be dynamically reconfigured to meet users’ demands. The
load balance algorithm which the cloud bursting depends on
decides when and where new resources need to be allocated. Our
preliminary prototyping and experiments have shown promising
success, yet, they also have opened new challenges to be studied.

I. INTRODUCTION

Cloud computing is changing the infrastructure upon which
scientific computing depends from supercomputers and dis-
tributed computing clusters to a more elastic cloud-based
structure. Many research institutions and industrial companies
are looking into merging or migrating their computer infras-
tructures to computer cloud where “unlimited” resources are
available if needed. For instance, high energy physics (HEP)
is one of the research areas that needs large computation
infrastructure support. Experiments of HEP need large amount
of computational resources for modeling and data analysis.
Furthermore, data preservation in HEP becomes more and
more critical since all those experiments need big data for
the long term analysis [16], [17].

∗Illinois Institute of Technology,10 W 31st street, 013, Chicago, IL, USA,
{hwu28, ren}@iit.edu. The research is supported in part by NSF under grant
number CAREER 0746643 and CNS 1018731.
†Fermi National Accelerator Laboratory, Batavia, IL, USA,
{garzogli,timm,gerard1,hyunwoo,chadwick}@fnal.gov
‡National Institute of Supercomputing and Networking, Korea

Institute of Science and Technology Information, Daejeon, Korea,
{hjjang,rsyoung}@kisti.re.kr
§Hao Wu works as an intern in Fermi National Accelerator Laboratory,

Batavia, IL, USA

Fig. 1: High-level Architecture

Fermi National Accelerator Laboratory (Fermilab), as a
leading research institution in the HEP filed, built a private
computer cloud, the FermiCloud, in 2010. The FermiCloud
is not only targeted for providing “infrastructure as a service
(IaaS)” but also to provide higher-level cloud-hosted data
movement and data processing services for scientific stake-
holders as part of the longer-term strategic goal of providing
“data processing as a service (DPaaS)” and other services to
support the experiments in HEP. Since the establishment of the
FermiCloud, the Fermilab Grid and Cloud Services department
has smoothly integrated its grid computing infrastructure with
the FermiCloud.

However, as the demands for computational resources from
scientific applications keep increasing, the existing private
FermiCloud infrastructure does not always meet the needs.
Hence, Fermilab and Korea Institute of Science Technology
and Information (KISTI) global science experimental data
hub center started a joint project to build a cloud federation
among the FermiCloud, KISTI’s private cloud “GCloud”, and
commercial clouds, such as EC2 [1] and Microsoft Windows
Azure [4], for scientific applications. Fig. 1 illustrates the
high level architecture for the proposed cloud federation. The
proposed cloud federation aims to enable scientific workflows
of stakeholders operating on multiple cloud resources through
(a) virtual infrastructure automation and provisioning, (b)
interoperability and federation of cloud resources, and (c) high-
throughput fabric virtualization.

The project has made significant progress through the
collaboration between Fermilab and KISTI. In particular, we
have successfully implemented cloud bursting which allows
grid worker virtual machines to run on the cloud in re-
sponse to demand for grid jobs. We have also implemented
X.509 authentication [6] tool. This paper presents two recent
accomplishments for the cloud bursting: (a) cloud bursting
automation and (b) a load balancer. With the implementa-
tion of cloud bursting automation, virtual machines can be
automatically launched according to batch job running status.

The virtual work machines can not only be launched on
private cloud (FermiCloud, and GCloud), they can also be
launched on public commercial clouds such as Amazon EC2
and Windows Azure when all the resources in the private
clouds are consumed. The load balancer is the core component
of the cloud bursting automation, it decides when and where
a virtual work machine should be launched to.

The rest of the paper is organized as follows: Section II dis-
cusses related work. In Section III, we introduce the automatic
cloud bursting architecture and its implementation details.
Section IV presents a load balancing algorithm. Section V
discusses the experimental results and points out our findings.
We conclude and point out future work in Section VI.

II. RELATED WORK

Cloud services are currently among the top-ranked high
growth areas in computer services and seeing an acceleration
in enterprise adoption with the worldwide market predicted to
reach more than $140b in 2014 [14], [3]. The “pay-as-you-go”
business model and the service oriented models allow the user
to have “unlimited” resources if needed and free from infras-
tructure maintenance and software upgrades. Researchers from
different areas have already started integrating and migrating
their applications from computer grids to computer clouds,
such research areas include life science [12], astronomy [15]
and earthquake research [10], to name a few.

However, private clouds often have limited resources and
may not always be able to meet the demand of increasingly
large scientific applications. Juve et al. have shown the perfor-
mance and operation costs of executing scientific applications
on commercial clouds. The data have indicated that both
performance and the costs are all in an acceptable range [10],
[15]. In other words, using commercial clouds as external
resources and build hybrid cloud to support the execution of
resource demanding applications is a viable solution.

One successful example is the STAR project at the
Brookhaven National Laboratory’s Relativistic Heavy-Ion Col-
lider [2] [5]. The STAR experiment studies fundamental prop-
erties of nuclear matter as it exists in a high-density state called
a Quark Gluon Plasma. Because of the resource shortage from
the local grid service, the STAR team started to collaborate
with the Nimbus team at Argonne National Laboratory to
migrate its experiment to a computer cloud. The Nimbus tools
enable virtual machines in private cloud to be deployed on
Amazon EC2.

Many researchers have made significant contributions on
building the cloud federation. Celesti et al. proposed a three
phase (discovery, match-making, and authentication) model
and described an architectural solution called Cross-Cloud
Federation Manager (CCFM) for cloud federation in [8].
Sotomayor et al. introduced their work for virtual infrastructure
management in private and hybrid clouds [13]. In particular,
they use OpenNebula as their cloud platform and combine
with Haizea, a resource lease manager that act as a back-
end scheduler for OpenNebula, to deploy virtualized services
on both a local pool of resources and on external clouds.
Cloud Scheduler [7], [9], a valuable cloud federation solution
for the virtual batch job system designed for high energy
physics, was presented by Armstrong et al. in 2010. They

Fig. 2: Cloud Burster Architecture

use HTCondor to build a virtual batch system. The whole
virtual batch system is built above four different IaaS clouds,
i.e. Nimbus, OpenNebula, Eucalyptus and Amazon EC2. The
cloud scheduler launches predefined virtual machines on the
four different clouds based on current status of Condor jobs.

Different from existing work in the literature, the major
goals of automatic cloud bursting under the FermiCloud are
to (1) provide an elastic cloud service for a variety of dynamic
scientific applications, including computation intensive and
interaction intensive applications, (2) make the cloud locations
where applications are deployed to transparent to application
users, and (3) improve application performance while reducing
total operational cost. In the next section, we discuss the
architecture of the cloud burster, a middleware that bridges the
IaaS cloud providers and users, for automatic cloud bursting.

III. CLOUD BURSTING ARCHITECTURE

In this section, we discuss the detailed design of the
cloud burster middleware and the implementation of automatic
cloud bursting. One of the goals of the joint project is to
provide users an elastic virtual cluster to execute scientific
applications with good performance. In order to achieve this
goal, we have developed the cloud burster, a middleware
that bridges multi-cloud IaaS providers and users. The cloud
burster shields the cloud locations sources where different
resources are provided from and provides upper level users
one seemingly large resource pool. The cloud burster contains
three main components: vcluster, idle machine detector and
load balancer. Fig. 2 shows the the cloud burster architecture.

A. The vcluster

The functionality of the vcluster is to negotiate among
different cloud providers. The vcluster also supports different
types of batch systems, i.e. HTCondor, Torque, Sun Grid
Engine (SGE) and other batch systems. For each of them,
vcluster provides an “unlimited” resource pool through the
underlying cloud federation. For the users, they can choose
any of the batch systems with which they are familiar with and
deploy their scientific applications on the batch job system.

The design of vcluster consists of four different compo-
nents: batch system plugin interface, cloud plugin interface,
monitor and manager.

Batch System Plugin Interface: The batch job system plu-
gin interface is the module responsible for the communication
between vcluster and batch job system. It retrieves work load
information from batch job system, hence the cloud burster can
do the resource provisioning accordingly. Since the interface
is plugin based, different types of batch job systems can easily
joint the vcluster at run time. However, each batch system is
independent and does not communicate with each other.

Cloud Plugin Interface: The cloud plugin interface has
similar design as the batch system plugin interface. It allows
different IaaS clouds to join vcluster dynamically. The inter-
face is responsible for the communication between the vcluster
and different clouds. Unlike the independent batch system, all
the cloud connected to vcluster are inter-connected. Currently,
the FermiCloud and GCloud are both using OpenNebula as the
IaaS platform. The cloud plugin interface has strong support
to the OpenNebula. For the commercial cloud, the vcluster
currently uses Amazon EC2 as its main external resource
pool and uses REST API to communicate with Amazon EC2.
However, it provides interfaces to other IaaS clouds, i.e.
OpenStack, Nimbus etc. Many institutes and research facilities
have expressed interest to collaborate in vcluster.

Monitor: The monitor module is used to collect infor-
mation from both batch systems and clouds. Through the
batch system plugin interface, it collects the job execution
and waiting status on the batch systems. From the cloud
plugin interface, it collects virtual machine operation status on
different clouds. It also collects the physical machine status
on different private clouds, i.e. utilization, virtual machine
deployment etc.

Manager: The manager module is used to manage the
plugins, batch systems, virtual machines and clouds. For new
plugins of both batch system and cloud, the manager module
registers them in the vcluster so that other modules can
use the plugins and communicate with new registered batch
system or cloud. The manager module controls each batch
system and their under-layer resources from different cloud.
The manager ensures that no resources are shared by different
batch systems. Addition to the batch system and cloud plugin,
vcluster also provides other plugins supports, such as load
balancer and idle machine detector. And all those additional
plugins are managed by the manager module. The manager
module launches virtual machines, stops virtual machines and
suspends virtual machines on different clouds according to the
load balance decision made by load balancer module. A more
detailed conceptual design of vcluster can be found in [11].

B. Idle Machine Detector

The idle machine detector component is used to detect
idle virtual machines instantiated on a cloud and associated
with one of the batch systems. The idle machine detection is
a critical task in the cloud bursting. The system cannot always
burst its resources, when there are idle virtual machines in the
resource pool, we want to release those resources. However,
accurate detection of idle virtual machine is challenging. When
all the virtual machines are only used as work machines in
one of the batch system, idle virtual machine detection can by
achieved by retrieving the batch system status. However, such
information given by batch system is not always reliable. For

instance, as one batch system only monitors its own daemon
that running on the virtual machine. The idle status does
not mean the virtual machine is actually idle. The accurate
idle virtual machine detection should consider CPU, disk IO,
network IO etc. and need further study.

C. Load Balancer

Load balancer is the core component in the cloud burster, it
determines when to start or terminate a virtual machine for the
batch systems. With the load balancer, cloud burster frees users
from resource provisioning and batch system maintenance, as it
automatically allocates new resources for the batch systems if
needed by scientific applications. On the other hand, if just few
scientific applications are running on the batch job system, the
load balancer has the capability to make decision of releasing
the idle resources. The load balancer receives information from
the monitor module. Combining both batch job status and
cloud pool status, the load balancer performs a load balancing
algorithm to decide if more resources are needed to accomplish
the jobs in a batch system.

D. Cloud Bursting Automation

With the support of the vcluster, the load balancer and the
idle machine detector, we are able to automatize the process of
cloud bursting. Fig. 3 illustrates the workflow of cloud bursting
automation process. The cloud burster first retrieves batch job
status from the batch system plugin interface. If there is no job
in the job queue, the cloud burster will determine whether there
exits idle virtual machine. If there are idle virtual machine
exist, the cloud burster will terminate those virtual machines
and release the corresponding resources. The cloud burster
repeats the procedure periodically with a fixed period.

If the batch system job queue is not empty, the cloud
burster decides whether a new virtual machine is needed to
execute waiting jobs. The cloud burster also collects the current
virtual machine status from both private and commercial cloud
and physical machines from the private cloud. Combining
with the job status and virtual machine, physical machine
status, the load balancer will decide whether new virtual
machines are needed. If new virtual machines are needed,
the manager module will launch new virtual machines on the
corresponding IaaS clouds. The cloud burster will then wait
and repeat the whole procedure until the new virtual machines
are launched and ready to execute jobs. The detailed load
balancing algorithm will introduced in the following section.

IV. LOAD BALANCER

In this section, we first discuss some of the challenges of
designing the load balancing algorithm. Then we introduce a
load balancing algorithm for the cloud bursting automation.

A. Design Challenges

As mentioned in previous sections, load balancing is the
most important component in the cloud bursting automation
process. The design of the load balancing algorithm will
directly impact the performance, energy consumption and
operational cost of the whole system. There are three main
challenges of designing an efficient load balancing algorithm.

Fig. 3: Cloud Bursting Automation Process

Virtual machine launching overhead: Virtual machine
launching overhead is the time it takes to launch a virtual
machine and prepare the virtual machine for executing batch
jobs. Such overhead can cause serious problems if it is not
considered by the load balancing algorithm. For instance, if a
new virtual machine is launched for executing jobs in the job
queue, but some of the running jobs are completed during the
time when a new virtual machine is launching. When the new
virtual machine is ready to execute jobs, there is no jobs in the
queue to be executed. Hence, the new virtual machine become
a idle resource, which not only consumes power and other
operational costs, but also increases the workload for both
monitor module and idle machine detector model to reclaim
back the resources allocated to the idle virtual machine.

Predicted batch job complete time : Predicted batch
job complete time is the time predicted by a mechanism for
when a batch job will complete its execution. Whether a new
virtual machine needs to be launched depends on job predicted
completion time. However, due to the dynamic nature of the
scientific jobs and under layer resources, it is difficult to give
an accurate prediction about the completion time of current
jobs. Such inaccuracy can cause resource waste and increased
operational costs if the completion time is overestimated.

Resource allocation strategy: A strategy that decides
the physical devices where a virtual machine is allocated.
In private clouds, such as OpenNebula, the default resource
allocation strategy is to allocate new virtual machine on the
least utilized physical machine. We denote this strategy as
horizontal deployment. The horizontal deployment takes the
virtual machine’s performance as the priority. However, this
strategy may lead to a low system utilization and consume
more energy. On the contrary to horizontal deployment, there is
another way to deploy virtual machines - vertical deployment.
This method tries to deploy virtual machines on the same
physical machine. By using the least physical machines, the
system energy consumption can be reduced. However, with the
vertical deployment strategy, the virtual machine performance
may reduced since all virtual machines are squeezed together.
Furthermore, when the virtual machines are being deployed
on to commercial cloud, the cost also need to be considered.
Hence, how to balance the system energy consumption, virtual
machine performance and operational cost become a critical
problem when design load balancing algorithm.

B. Load Balancing Algorithm

Taking all three challenges into consideration, we propose
the load balancing algorithm. The first critical factor that con-
sidered in our load balancing algorithm design is the resource
allocation strategy. Instead of the horizontal allocation method
that OpenNebula provides by default, we use vertical allocation
strategy. In other words, we always dispatch virtual machines
on the physical machine that has the highest utilization but still
has enough resources for the requested virtual machine. Doing
so can reduced the total physical machines used for the cloud
burster and hence reduce system total energy consumption and
operational cost. On the other hand, we consider commercial
cloud, i.e. Amazon EC2 as a large physical cluster with infinite
capacity. Hence, Amazon EC2 always has the lowest priority
when load balancer chooses physical machines. Only when all
the resources in private cloud are consumed, virtual machines
are deployed on Amazon EC2.

It is possible that some jobs are completed when the
virtual machine is booting. Hence we consider the virtual
machine launching overhead as another major factor in the
algorithm. Currently, we only use a simple job complete
time prediction strategy which is taking average job execution
time as the reference to predict the job complete time. By
comparing job average execution time and virtual machine
launching overhead, the load balancer decide whether extra
virtual machines are needed. In particular, if a running job’s
current execution time is smaller than the average job execution
time and the gap is larger than the virtual machine launching
overhead, we consider such a running job will not finish even
if a new virtual machine is launched and ready to execute batch
jobs. If a running job’s current execution time is smaller than
the average job execution time but the gap is smaller than the
virtual machine launch overhead, or the job’s current execution
time is larger than the average job execution time, we consider
such job will finish before a new virtual machine is ready to
use. Then we count the number of running jobs that will finish
soon. Comparing the number of waiting jobs, we estimate how
many more virtual machines we needed to execute the jobs.

Algorithm 1 gives the detailed design of load balancing
algorithm. Line 1 indicates that only when there are jobs in the
job queue, the load balancing algorithm will decide whether
extra virtual machine needed. Line 2 to line 10 implements that
when there is no virtual machine running, load balancing will
direct launch new virtual machine for the batch system. Line
12 to line 19 determine how many extra virtual machines are
needed. Line 20 to line 27 launch virtual machines according
to the number obtained from previous steps.

V. EXPERIMENTS

We set up several experiments to test the virtual machine
launching overhead and the performance of the load balancer.

A. Virtual Machine Launch Overhead

We first test the virtual machine launch overhead in Fermi-
Cloud. All the virtual machines that we launch on FermiCloud
are configured as one CPU and 2GB memory with image size
15GB. We launch virtual machines on the FermiCloud hosts by
the default OpenNebula policies. Fig. 4 depicts the launching
overhead for each virtual machine we launched. We also test

Algorithm 1: Load Balance Algorithm
Input : Running job set Rj , Waiting job set Wj , Running VM set

RV M , Host set H and average job running time Tave

1 if |Wj | 6= 0 then
2 if |RV M | = 0 then
3 host← first host in H;
4 for i← 0 to |H| do
5 if hi has largest utilization and hi can still

allocate resource for new VM then
6 host← hi

7 end
8 end
9 deploy a new vm on host;

10 end
11 else
12 i← 0;
13 forall the job j in Rj do
14 Tj ← j’s running time;
15 if (Tave − Tj) is larger than VM’ launch

overhead then
16 i++
17 end
18 end
19 for j ← 0 to i do
20 host← first host in H;
21 for k ← 0 to |H| do
22 if hk has largest utilization and hk can still

allocate resource for new VM then
23 host← hk

24 end
25 end
26 deploy a new vm on host;
27 end
28 end
29 end

 33

 34

 35

 36

 37

 38

 39

 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

S
ec

Number of VMs

Overhead

Fig. 4: VM Launching Overhead on FermiCloud

the virtual machine launch overhead on Amazon EC2. We
use the micro instance as the test virtual machine. We launch
virtual machines on Amazon’s northern Virginia datacenter in
different time period on daily base. The result is depicted in
Fig. 5. It is not hard to tell from Fig. 5 that on Amazon
EC2, virtual machine launch overheads are almost around

 0

 10

 20

 30

 40

 50

 60

 70

 80

9 AM
10 AM

11 AM

12 PM

1 PM
2 PM

3 PM
4 PM

5 PM
6 PM

7 PM
8 PM

9 PM
10 PM

11 PM

S
ec

Time of Day

Overhead

Fig. 5: VM Launching Overhead on Amazon EC2

00

02

04

06

08

10

12

14

16

18

20

22

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

T
im

e
(M

in
ut

es
)

Utilization(%)

Overhead

Fig. 6: Utilization Impact of VM Launch Overhead

one minute (55 seconds on average). However, variation of
the launching overheads on Amazon EC2 is significant (44%
compared with the average launching overhead). On the other
hand, launching a virtual machine on FermiCloud takes 37
seconds on average, which is 18 seconds faster than launching
a virtual machine on Amazon EC2. Furthermore, the launch
overhead are quite stable on FermiCloud, all virtual machines
are ready within the time range of 30 seconds to 40 seconds.
The launching overhead variation on FermiCloud is only 11%.
In addition, the virtual machine instance we launched on
Amazon EC2 is micro instance, it may take longer time to
launch more powerful virtual machines on Amazon EC2. This
results may impact the performance of the cloud bursting.

As we discussed in section IV, however, performance of
the virtual machine may suffer some degree of drop as the
physical machine’s utilization increase. We set up another
experiment to see how the physical machine’s utilization affect
the virtual machine launching overhead. We first launch one
virtual machine on one empty physical machine (no virtual
machine has been deployed on it). After the virtual machine
is successfully running on that physical machine, we let the
virtual machine execute some tasks, i.e. disk write and read.
Then we launch another virtual machine on the same physical
machine. We repeat the process until no virtual machine can
be deployed on the same physical machine. Fig. 6 shows
the virtual machine launching overhead on the same physical
machine as the physical machine’s utilization increases.

As shown in Fig. 6, the virtual machine launching over-
heads are relatively small and steady when the physical ma-
chine is lightly utilized (utilization below 50 %). When the
physical machine’s utilization increases to above 55 %, the
virtual machine launching overhead increases significantly, but
remain the same level until the physical machine is almost
fully utilized. The physical machine can still allocate resources
for the new virtual machine when it has a relatively high
utilization(more than 90%) , the overhead of launching a
virtual machine becomes extremely large.

B. Performance of Load Balancer

In order to test the implementation of our cloud bursting
automation and the performance of the load balancer, we
conducted another set of experiments. We use HTCondor as
our batch job system, and establish a virtual condor system
using cloud burster. We create a set of simple jobs that only
consume times but do nothing. We first run all the jobs using
one single virtual machine. Then we run the same set of jobs
using two virtual machines. At last, we run the same set of
jobs without any virtual work machine and let cloud bursting

00:00:00

00:30:00

01:00:00

01:30:00

02:00:00

02:30:00

03:00:00

03:30:00

04:00:00

04:30:00

05:00:00

1 VM 2 VM Load Balancer: 5 VMs

T
im

e

Fig. 7: Job Execution Time with Load Balancer

automation to decide the number of virtual machine needed to
execute the jobs.

Fig. 7 illustrates the results. With only one virtual work
machine, the total execution time for all the jobs is about
four hours. When we adopt two virtual work machines, the
total execution time reduces to almost half of the execution
time using only one machine. However, with cloud bursting
automation, the total execution time is reduced to 48 minutes
with 5 virtual machines. After all the jobs are completed, the
cloud burster automatically removes these virtual machines.
This indicate the cloud bursting automation can successfully
launch virtual work machines according to the batch job status.
Furthermore, the results shows that, the load balancer can
actually help the system to utilize the resources and hence
to reduce the total execution time for the batch job system.

VI. CONCLUSION

This paper has presented an international collaboration
project between Fermi National Accelerator Laboratory (Fer-
milab) and Korea Institute of Science and Technology Infor-
mation (KISTI), with technical contributions from the Illinois
Institute of Technology (IIT). The joint project is aimed to
build a cloud federation for scientific applications, especially
for the scientific workflows in the field of high energy physics.
In particular, the proposed cloud federation aims to enable
scientific workflows of stakeholders to run on multiple cloud
resources by use of (a) virtual Infrastructure Automation
and Provisioning, (b) interoperability and federation of cloud
Resources, and (c) high-throughput fabric virtualization. This
paper mainly focused on accomplishing one of the three objec-
tives of cloud bursting automation and resource provisioning
on the cloud federation. In the paper, we describe the design
of cloud burster, a middleware that bridges the underlayer
clouds and upper layer batch systems. We also show the
implementation of cloud bursting automation and present an
efficient load balancing algorithm to support the automation.
Experiments results show that our cloud bursting automation
is successfully running on the cloud federation and the load
balancer can efficiently reduce the batch job total execution
time. Furthermore, the FermiCloud is more efficient and stable
on launching virtual machines compared with Amazon EC2.

Our preliminary prototyping and experiments have shown
promising success, yet, they also have opened new chal-
lenges to be studied. From the experiment we know that
the virtual machine launching overhead may vary in private
clouds, when the physical machine has a high utilization,
the overhead increases significantly. In addition, launching
virtual machines on commercial cloud takes much more time

than on FermiCloud. Hence further tests on virtual machines’
performance on commercial clouds needed to be done in the
future. Furthermore, the load balancing algorithm we proposed
in the paper is simple. The algorithm can be improved by
adopting more accurate job completion prediction heuristic
algorithm. These will affect the load balancing algorithm on
virtual machine deployment. In parallel, we will keep working
on the project to achieve high-throughput fabric virtualization
and interoperability and federation of cloud resources.

VII. ACKNOWLEDGEMENT

This work is supported by the US Department of Energy
under contract number DE-AC02-07CH11359 and by KISTI
under a joint Cooperative Research and Development Agree-
ment CRADA-FRA 2013-0001 / KISTI-C13013.

REFERENCES

[1] Amazon ec2. aws.amazon.com.
[2] Feature - clouds make way for STAR to shine.

http://www.isgtw.org/feature/isgtw-feature-clouds-make-way-star-shine.
[3] Icpads workshop on cloud services and systems. http://datam.i2r.a-

star.edu.sg/css13/.
[4] Microsoft windows azure. http://www.windowsazure.com/en-us/.
[5] Nimbus and cloud computing meet STAR production

demands. http://www.hpcwire.com/hpcwire/2009-04-
02/nimbus and cloud computing meet star production demands.html.

[6] Fermicloud, 2013. http://fclweb.fnal.gov.
[7] P. Armstrong, A. Agarwal, A. Bishop, A. Charbonneau, R. Desmarais,

K. Fransham, N. Hill, I. Gable, S. Gaudet, S. Goliath, et al. Cloud
scheduler: a resource manager for distributed compute clouds. arXiv
preprint arXiv:1007.0050, 2010.

[8] A. Celesti, F. Tusa, M. Villari, and A. Puliafito. How to enhance cloud
architectures to enable cross-federation. In Cloud Computing (CLOUD),
2010 IEEE 3rd International Conference on, pages 337–345. IEEE,
2010.

[9] I. Gable, A. Agarwal, M. Anderson, P. Armstrong, K. Fransham,
D. H. C. Leavett-Brown, M. Paterson, D. Penfold-Brown, R. Sobie,
M. Vliet, et al. A batch system for hep applications on a distributed
iaas cloud. In Journal of Physics: Conference Series, volume 331, page
062010. IOP Publishing, 2011.

[10] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. P. Berman,
and P. Maechling. Scientific workflow applications on amazon ec2.
In E-Science Workshops, 2009 5th IEEE International Conference on,
pages 59–66. IEEE, 2009.

[11] S.-Y. Noh, S. C. Timm, and H. Jang. vcluster: A framework for
auto scalable virtual cluster system in heterogeneous clouds. Cluster
Computing. To appear.

[12] J. Qiu, J. Ekanayake, T. Gunarathne, J. Y. Choi, S.-H. Bae, H. Li,
B. Zhang, T.-L. Wu, Y. Ruan, S. Ekanayake, et al. Hybrid cloud
and cluster computing paradigms for life science applications. BMC
bioinformatics, 11(Suppl 12):S3, 2010.

[13] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster. Virtual
infrastructure management in private and hybrid clouds. Internet
Computing, IEEE, 13(5):14–22, 2009.

[14] TheCloudMarket.com. The Cloud Market Statistic Monitor, 2012.
http://thecloudmarket.com.

[15] J.-S. Vöckler, G. Juve, E. Deelman, M. Rynge, and B. Berriman. Ex-
periences using cloud computing for a scientific workflow application.
In Proceedings of the 2nd international workshop on Scientific cloud
computing, pages 15–24. ACM, 2011.

[16] D. A. e. a. Z. Akopov, Silvia Amerio. Data preservation in high energy
physics, 2009. arXiv:0912.0255.

[17] D. A. e. a. Z. Akopov, Silvia Amerio. Status report of the dphep study
group: Towards a global effort for sustainable data preservation in high
energy physics, 2012. arXiv:1205.4667.

