
1

Best-Harmonically-Fit Periodic Task Assignment
Algorithm on Multiple Periodic Resources

Chunhui Guo, Student Member, IEEE , Xiayu Hua, Student Member, IEEE , Hao Wu, Student Member,
IEEE , Douglas Lautner, Student Member, IEEE , Shangping Ren, Senior Member,IEEE

Abstract—The periodic task set assignment problem in the context of multiple processors has been studied for decades. Different
heuristic approaches have been proposed, such as the Best-Fit (BF), the First-Fit (FF), and the Worst-Fit (WF) task assignment
algorithms. However, when processors are not dedicated but only periodically available to the task set, whether existing approaches
still provide good performance or if there is a better task assignment approach in the new context are research problems which, to our
best knowledge, have not been studied by the real-time research community. In this paper, we present the Best-Harmonically-Fit (BHF)
task assignment algorithm to assign periodic tasks on multiple periodic resources. By periodic resource we mean that for every fixed
time interval, i.e., the period, the resource always provides the same amount of processing capacity to a given task set. Our formal
analysis indicates that if a harmonic task set is also harmonic with a resource’s period, the resource capacity can be fully utilized by
the task set. Based on this analysis, we present the Best-Harmonically-Fit (BHF) task assignment algorithm. The experimental results
show that, on average, the BHF algorithm results in 53.26%, 42.54%, and 27.79% higher resource utilization rate than the Best-Fit
Decreasing (BFD), the First-Fit Decreasing (FFD), and the Worst-Fit Decreasing (WFD) task assignment algorithms, respectively; but
comparing to the optimal resource utilization rate found by exhaustive search, it is about 11.63% lower.

Index Terms—Real-Time Systems; Task Assignment; Periodic Resource; Best-Harmonically-Fit

F

1 INTRODUCTION

A S computer hardware technology advances, both
the number of processing units and the compu-

tational capabilities of these processing units used in
real-time systems are increasing. To take the advantages
of the increased physical resource’s capacity, multiple
groups of real-time applications are deployed on the
same physical platform. However, because each group
of real-time applications may have different time gran-
ularity [1], when multiple groups of applications share
the same processors, traditional real-time system models
and theoretic results may not be sufficient or even appli-
cable to guarantee that each group of real-time applica-
tions will not have time interference among each other
and that they will satisfy their timing requirements.

In order to study the issues of scheduling multiple
groups of real-time applications on the same physical
resources, the concept of virtual real-time resources is
proposed [1]. Virtual real-time resources are an abstrac-
tion of physical resources where the physical resources
are shared by real-time application groups [1]. With the
concept of virtual real-time resources, each group of real-
time applications has its own isolated and independent
virtual resource, hence avoiding interference among dif-
ferent groups of real-time applications. However, from
an application perspective, virtual real-time resources
are not continuously available to the application. Instead,
virtual resources are periodic, i.e., they periodically

The authors are with Computer Science Department, Illinois Institute of
Technology, Chicago, IL 60616, USA
Emails: {cguo13, xhua, hwu28, dlautner}@hawk.iit.edu, ren@iit.edu

provide certain amount of processing capability to the
applications [1], [2], [3], [4], [5].

The study of periodic resources can be traced back
to 1999 when the concept of periodic resource was
first formally defined [4]. It has recently drawn more
attention in the community [1], [5], [6], [7], [8], [9],
[10], [11], [12]. However, until now, most of the studies
about periodic resources focus on task set schedula-
bility analysis on a single periodic resource. There has
not been much work, if any, in the literature dealing
with the task assignment problem on multiple periodic
resources in computer cloud. In this paper, “multiple
resources” refers to multiple processing units. Under a
computer cloud environment, we have virtually unlim-
ited resources where a task set can be scheduled on, the
problem is how to minimize the total resource usage,
i.e., maximize resource utilization rate and minimize the
number of resources used. The paper studies the task
assignment problem in the context of assigning multiple
periodic tasks to multiple periodic processing units. The
main goal is to decide on a task assignment strategy that
maximally utilizes the resource capacities provided by
periodic resources.

To achieve the goal, we first study the period rela-
tionship between a task and a resource that enables the
resource capacity be fully utilized by the task. Intuitively,
the more harmonically related the task and the periodic
resource are, the better resource utilization rate we can
achieve. We formally prove that, in fact, if a harmonic
task set is also harmonic with a periodic resource, the
resource capacity can be fully (100%) utilized under
the RM (rate-monotonic) scheduling algorithm. Second,

2

based on the harmonicity property, we present the Best-
Harmonically-Fit (BHF) task assignment algorithm to
assign a periodic task set to multiple periodic resources.
We then experimentally evaluate the BHF algorithm’s
performance by comparing it with commonly used mul-
tiprocessor task assignment approaches in the literature,
i.e., the Best-Fit Decreasing, the First-Fit Decreasing, and
the Worst-Fit Decreasing approaches [13], [14], [15], [16].
We also evaluate the BHF algorithm by comparing it
with the optimal task assignment found through exhaus-
tive search for a small-sized task set and resource set.

The rest of the paper is organized as follow: Sec-
tion 2 discusses related work. Section 3 defines system
models, presents preliminary results, and formulates
the problem we are to address. Section 4 presents the
harmonic utilization bound for a single periodic resource
and a task set harmonic transformation with respect
to a periodic resource. In Section 5, we introduce the
Best-Harmonically-Fit (BHF) task assignment algorithm.
Section 6 discusses experimental results. We conclude
and point out future work in Section 7.

2 RELATED WORK

Since the rate-monotonic (RM) and the earliest deadline
first (EDF) scheduling algorithms were first analyzed by
Liu and Layland in 1973 [17], the real-time scheduling
problem has been studied extensively. To this day, the
rate-monotonic scheduling algorithm is still considered
the most significant fixed-priority scheduling algorithm
for scheduling periodic tasks on a single dedicated
resource. The RM utilization bound for a preemptive
system is N(21/N − 1) with its limit of 69.3% on a single
dedicated resource, where N is the number of tasks [17].
Mossé et al. [18], [19] proposed an R-Bound based on
the Liu and Layland bound. The R-Bound takes task
period differences into consideration and tightens the
utilization bound to (N − 1)(r1/(N−1)− 1) + 2/r− 1 with
limit ln r + 2/r − 1, where r = Tmax/Tmin and 1 ≤ r < 2.
Another improvement on the RM bound was made by
Han et al. [20]. They proved that the utilization bound
can reach 100% with the RM scheduling algorithm if the
task set has harmonic periods.

Another major research area in the real-time commu-
nity is scheduling tasks on multiprocessors. The goal of
multiprocessor scheduling is to schedule as many tasks
as possible (from the total task utilization perspective)
on a given number of processors while still guaran-
teeing task set deadline satisfication [21], [15], [22] or
minimize the number of used processors to guarantee
task set deadlines [23]. However, as stated by Liu and
Layland in [17], scheduling periodic tasks on multi-
processors is much harder than on a single processor.
The utilization bound for a multiprocessor system is
much lower than for a single processor. Many algo-
rithms are proposed to improve the utilization bound
for multiprocessors. However, it is proven that the op-
timal utilization bound for a multiprocessor scheduling

algorithm is only (M + 1)/2 [21], where M is the num-
ber of processors. Recently, researchers have improved
the utilization bound for multiprocessors under certain
conditions. Wang et al. proved that the utilization bound
for multiprocessors can reach Liu and Layland bound
for a single processor if tasks can be split [15]. Fan and
Quan proposed a harmonic-aware scheduling approach
to improve schedulability on multiprocessors [24], [25],
[22].

However, the literature mentioned above is based on
the assumption that resources are dedicated resources,
i.e., they are constantly available to application tasks.
When multiple groups of real-time applications share the
same physical resources, the assumption that resources
are constantly available to the application becomes in-
valid. Hence, the concept of virtual real-time resources
is proposed to handle such scenario. A virtual resource
is often represented as γ = (Π,Θ), where Π is the virtual
resource period and Θ is the processing time available
to applications [1], [2], [3], [4], [5].

Shirero et al. [4] first defined periodic resources and
proposed a real-time round robin scheduling algorithm
in 1999. They also introduced the concept of resource
regularity. Based on resource regularity, they gave a
schedulability bound for periodic tasks on a single pe-
riodic resource. Mok et al. [5], [26] extended Shirero’s
work and proposed a more comprehensive schedulabil-
ity analysis for periodic resources under both EDF and
RM scheduling algorithms. However, both Shirero’s and
Mok’s periodic resource models have a constraint that
either the resource available pattern within each period
or the resource regularity is known and does not change
at run-time. Shin et al. later removed the constraint on the
periodic resource model and provided the schedulability
analysis under a relaxed model where resource pattern
can be arbitrary and can change at run-time. They gave
schedulability bounds under the relaxed model for both
EDF and RM [6], [7], [8], [9].

Hua et al. [12] recently studied how multiple periodic
resources may be integrated into an equivalent single
periodic resource so that existing real-time scheduling
theorems on a single periodic resource can be applied.
They further extended schedulability tests of periodic
tasks on a single periodic resource from the continuous
time domain given in [9] to a discrete time domain so
that the schedulability tests given in [9] can be applied
in practice.

However, as of today, much of the work in the litera-
ture has been on schedulability analysis of a task set on
a single periodic resource. To the best of our knowledge,
there is no prior work studying the task assignment
problem on multiple periodic resources. In this paper, we
are to address the problem: for a given set of periodic
tasks and a given set of periodic resources, if the task
set is schedulable on any single periodic resource in
the resource pool, how to assign tasks to the available
periodic resources so that the utilization rate of periodic
resources used is maximized. The problem we are to

3

address is similar to the work of assigning a periodic
task set to processors so as to minimize the number
of processors used [23], but it is in a different context
where resources are not dedicated processors, but rather
periodic in nature.

3 PROBLEM FORMULATION

3.1 Models and Definitions
Task Model

The task model considered in this paper is similar
to the one defined in [17]. In particular, a task set
Γ = {τ1, τ2, . . . , τN} has N independent periodic tasks
that are all released at time 0. Each task τi ∈ Γ is a 2-
tuple (Ti, Ci), where Ti is the inter-arrival time between
any two consecutive jobs of τi (also called period), and Ci
is the worst-case execution time. We further assume that a
task period is an integer, i.e., Ti ∈ N+. The utilization of
each task τi is defined as Uτi = Ci/Ti, and the utilization
of the task set Γ is denoted as UΓ, where

UΓ =
∑
τi∈Γ

Uτi . (1)

We use Umax and Tmin to denote the maximum task
utilization and the minimum task period of the task set
Γ, respectively, i.e.,

Umax = max{Uτi |∀τi ∈ Γ}
Tmin = min{Ti|∀τi ∈ Γ}.

Definition 1. [Harmonic Tasks] Given two periodic tasks τi
and τj , they are harmonic if one task’s period can divide the
other task’s period, i.e.,

Ti mod Tj = 0 ∨ Tj mod Ti = 0. (2)

�

Definition 2. [Harmonic Task Set] Given a task set Γ, it is a
harmonic task set if all tasks in Γ are pairwise harmonic, i.e.,

∀τi, τj ∈ Γ : Ti mod Tj = 0 ∨ Tj mod Ti = 0. (3)

�

Resource Model
The resource model used in the paper is the same

as the one defined in [6]. In particular, a resource set
R = {γ1, γ2, . . . , γM} consists of M periodic resources
that are all available at time 0. Each resource γj ∈ R
is characterized by a 2-tuple (Πj ,Θj), where Πj is the
resource period, and Θj is the allocation time. We further
assume that a resource period is an integer, i.e., Πj ∈ N+,
and satisfies 0 < Θj ≤ Πj . The capacity of each resource
γj is defined as Cγj = Θj/Πj , and the capacity of a
resource set R is denoted as CR, where

CR =
∑
γj∈R

Cγj . (4)

We use τ 7→ γ to denote that task τ is assigned to
periodic resource γ, and refer γ as the host resource for

task τ . For a resource γ and a task set Γ, we use Γγ ⊆ Γ
to denote the task subset containing all tasks assigned
to resource γ, i.e.,

Γγ = {τi|τi ∈ Γ ∧ τi 7→ γ}. (5)

Similarly, the number of tasks in Γγ is denoted as Nγ ,
and the utilization of Γγ is denoted as

UΓγ =

∑
τi∈Γγ

Uτi if Γγ 6= ∅

0 if Γγ = ∅
(6)

A periodic resource γ is called an unused resource if
there are no tasks assigned to it; otherwise it is called a
used resource. For a resource set R, we use Rused ⊆ R to
denote the resource subset containing all used resources;
Mused is the size of Rused, i.e., Mused = |Rused|.

Definition 3. [Resource Utilization Rate (URγ)] The uti-
lization rate of a periodic resource γ is defined as the ratio
between the utilization used by a task set assigned to the
resource and the resource’s capacity, i.e.,

URγ =
UΓγ

Cγ
. (7)

�

Definition 4. [Resource Set Utilization Rate (URR)] The
utilization rate of a resource set R is defined as the total
capacity percentage used by tasks assigned to R, i.e.,

URR =

∑
γj∈Rused

UΓγj∑
γj∈Rused

Cγj
. (8)

�

3.2 Preliminary Results
For self-containment, we introduce a few terms and
schedulability analysis results from [9], and give our
corollaries derived from the theorems given in [9].

Theorem 1. [9] Given a task set Γ and a single periodic
resource γ = (Π,Θ), if ∀i, 1 ≤ i ≤ N,Ti ≥ 2Π−Θ, the task
utilization bound under RM scheduling is

UBγ = Cγ ·Nγ

[(
2k + 2(1− Cγ)

k + 2(1− Cγ)

)1/Nγ

− 1

]
(9)

where k = max{k ∈ N0|(k + 1)Π−Θ < Tmin}. �

From Theorem 1, we can derive the following corol-
lary.

Corollary 1. Given a task τ = (T,C) and a single periodic
resource γ = (Π,Θ) with condition T ≥ 2Π − Θ, the task
τ is guaranteed to be schedulable on resource γ with the RM
scheduling policy if

Cγ ·
k

k + 2(1− Cγ)
≥ Uτ (10)

where k = max{k ∈ N0|(k + 1)Π−Θ < T}. �

4

Proof. Task τ is guaranteed to be schedulable on resource
γ under RM scheduling if

UBγ ≥ Uτ

Since there is only one task to be scheduled on re-
source γ, the utilization bound of γ can be obtained by
substituting Nγ in formula (9) with 1. Hence, we have

UBγ = Cγ ·
k

k + 2(1− Cγ)

where k = max{k ∈ N0|(k + 1)Π−Θ < T}.
�

Definition 5. [Abstraction Overhead (O)][9] For a single
periodic resource γ and a task set Γ, the abstraction overhead
is defined as

O =
Cγ − UΓ

UΓ
(11)

Theorem 2. [9] Given a single periodic resource γ and a
task set Γ which is schedulable on γ under RM, the lower
abstraction overhead bound is 0.443 when k → +∞, i.e.,

OB =
Cγ − UΓ

UΓ
≥ 44.3% (12)

where k = max{k ∈ N0|(k + 1)Π−Θ < Tmin}.
�

From Theorem 2, we can derive the following corol-
lary:

Corollary 2. Given a single periodic resource γ and a task
set Γ which is schedulable on γ with RM, the upper bound of
resource utilization rate of γ is 0.693 when k → +∞, i.e.,

URγ ≤ 69.3% (13)

where k = max{k ∈ N0|(k + 1)Π−Θ < Tmin}. �

Proof. According to Theorem 2, we have

Cγ ≥ 1.443UΓ (14)

Since Γ is schedulable on γ with RM, by Definition 3,
we have

URγ =
UΓγ

Cγ
=
UΓ

Cγ
≤ 69.3% (15)

�

It is worth noting that Theorem 1 is only a sufficient
condition with a strong precondition of Tmin ≥ 2Π − Θ.
In other words, a task set may still be schedulable on a
periodic resource even if the task set violates the utiliza-
tion bound (Eq. (9)) or its precondition Tmin ≥ 2Π − Θ.
For example, given a periodic resource γ = (10, 5) and a
periodic task τ = (10, 1). The task τ is schedulable on the
resource γ, though T < 2Π−Θ. However, for Theorem 2
and Corollary 2, the assumption made is that the task
set Γ is schedulable on γ, which may or may not satisfy
Eq. (9) or Tmin ≥ 2Π−Θ.

To achieve the above utilization rate of 69.3%, a pre-
condition is that k → +∞, which implies that the period

of the resource is infinitely small. When the resource
period becomes infinitely small, the periodic resource
approaches the dedicated resource. In this case, the uti-
lization bound for a single periodic resource becomes the
Liu and Layland RM utilization bound for dedicated re-
sources [17]. However, since a resource with an infinitely
small period is difficult to implement in reality, Shin’s
periodic resource utilization bound is hardly achievable
in practice.

3.3 Problem Formulation
The problem to be addressed in this paper is how to
assign a task set to a periodic resource set such that the
used resource set utilization rate is maximized and all
tasks are schedulable on their assigned resources. It is
formally defined as follows:

Given a task set Γ = {τ1, τ2, . . . , τN} where τi =
(Ti, Ci), and a resource set R = {γ1, γ2, . . . , γM} where
γj = (Πj ,Θj), assign Γ to R such that:

Object: max URR

Subject to:
Constraint 1: ∀j 1 ≤ j ≤M, Cγj · k

k+2(1−Cγj) ≥ Umax

Constraint 2: M ≥ N
Constraint 3: ∀j 1 ≤ j ≤M, 2Πj −Θj ≤ Tmin

where k = max{k ∈ N0|(k + 1)Πj −Θj < Tmin}.
Constraint 1 guarantees that each resource is large

enough to schedule any single task in the given task
set (Corollary 1). Constraint 2 together with Constraint 1
ensure that the task set is schedulable on the resource set
without task splitting. Constraint 3 is the pre-condition
of Constraint 1 (needed by Theorem 1).

Constraint 3 also implies Πj ≤ Tmin, i.e., all resource
periods have to be smaller than or equal to task periods.
This restriction is necessary for a task to be schedulable
on a resource. Otherwise, even if the resource’s capacity
is larger than the task’s utilization, the task may still
not be schedulable on the resource. For example, given
a periodic resource γ = (20, 10) with capacity Cγ = 0.5
and a periodic task τ = (10, 1) with utilization Uτ = 0.1,
if the given resource γ’s available time occurrence is at
the end of each period as shown in Fig. 1, the task τ is
not schedulable on the resource γ even if Cγ > Uτ .

Fig. 1. Resource Occurrence Example

We take two steps to address the problem. First,
we analyze the periodic resource harmonic utilization
bound under the RM scheduling policy, and present
task set harmonic transformation with respect to a pe-
riodic resource (Section 4). Second, we present the Best-
Harmonically-Fit (BHF) algorithm (Section 5) which as-
signs tasks to resources with the goal of maximizing the

5

resource set utilization rate while guaranteeing task set
schedulability.

In a cloud computing environment, there are virtually
unlimited resources to guarantee the execution of a
given task set, however, how to optimally utilize these
resources while guaranteeing real-time task deadlines
is a research challenge. This paper is to address the
challenge and presents an algorithm to maximize the
resource utilization rate under the assumption that a
given task set Γ is schedulable on the given resource
set R, i.e., three constraints defined in the formulated
problem are satisfied.

4 HARMONIC PROPERTY

4.1 Utilization Bound for Harmonically Related Task
Set and Periodic Resource

If a harmonic task set is also harmonic with a given
periodic resource, then the schedulable utilization bound
of the task set can be as high as the resource capacity. To
prove this property, we first give a lemma to show that if
one task is harmonic with a given periodic resource, then
the task can fully utilize the resource. We then prove a
theorem stating that if a harmonic task set and a periodic
resource are harmonic, the resource can be fully utilized
by the task set under RM scheduling.

Lemma 1. Given a task τ = (T,C) and a periodic resource
γ = (Π,Θ), if the task and the resource are harmonic, i.e.,
T = K ·Π (K ∈ N+), then task τ is schedulable on γ if and
only if C

T ≤
Θ
Π . �

Proof. Since T = K ·Π (K ∈ N+) and γ and τ all start at
time 0, each task period T contains K complete resource
periods. In other words, in each period, task τ obtains
K·Θ allocation time from resource γ. Hence, to guarantee
that in each period of τ there is at least C allocation time,
if and only if the following condition holds: K ·Θ ≥ C,
which means C

T ≤
K·Θ
T , i.e. CT ≤

Θ
Π . �

Lemma 2. Given a task set Γ with two harmonic tasks τ1 =
(T,C1) and τ2 = (K · T,C2), and a periodic resource γ =
(Π,Θ) which is also harmonic with the task set Γ. Let task
τ = (T,C1 + C2

K), if task τ is schedulable on resource γ, then
the task set Γ is also schedulable on γ with RM scheduling.
�

Proof. Since τ is harmonic with γ and is schedulable,
according to Lemma 1, we have C1+C2/K

T ≤ Θ
Π .

In task set Γ, based on RM, τ1 has the highest priority.
In addition, since τ1 and τ have the same period, both
release at time 0, and C1 < C1 + C2

K , if τ is schedulable,
it guarantees that τ1 is schedulable.

Since τ2 also releases at time 0, within each period of
τ2, there are K instances of τ1. The total resource demand
is C2+KC1. Furthermore, within each period of τ2, there
are also K instances of τ , with total execution time of
K×(C1+C2

K) = KC1+C2. As τ is schedulable on resource
γ, τ2 is also schedulable on resource γ. �

Based on Lemma 1 and Lemma 2, we have the follow-
ing theorem.

Theorem 3. Given a harmonic task set Γ = {τ1, τ2, . . . , τN}
with period Ti = T1 · pi−1(p ∈ N+) and a periodic resource
γ = (Π,Θ) which is harmonic with the task set Γ, i.e., T1 =
K · Π(K ∈ N+), the harmonic utilization bound under RM
scheduling policy is

HUBγ =
Θ

Π
(16)

�

Proof. To prove Theorem 3 is equivalent to prove that
the task set Γ is schedulable on the resource γ under
RM scheduling if

N∑
i=1

Ci
Ti
≤ Θ

Π
(17)

holds.
We use induction on the number of tasks (n) in the

task set to prove the theorem.
• Base case n = 1, based on Lemma 1, the theorem

holds.
• Assume when n = N , if

∑n
i=1

Ci
Ti
≤ Θ

Π , the task set
is schedulable on γ with RM scheduling.

• We prove that if n = N + 1 and
∑N+1
i=1

Ci
Ti
≤ Θ

Π , then
the task set is schedulable on the resource by RM.
Without loss of generality, we assume the task set is
Γ = {τ1, τ2, . . . , τN−1, τN , τN+1} and Ti ≤ Ti+1,∀i ∈
{1, 2, ..., N}. Since Γ is harmonic, TN+1

TN
= p where

p ∈ N+, we replace τN and τN+1 by a single task
τ = (TN , CN + CN+1

p) and denote the new task set
as Γ∗ = {τ1, τ2, ..., τN−1, τ}. The utilization of UΓ∗ is
calculated as:

UΓ∗ =

N−1∑
i=1

Ci
Ti

+
CN + CN+1

p

TN
=

N+1∑
i=1

Ci
Ti

= UΓ ≤
Θ

Π

Hence, for Γ∗, its task number n = N and its total
utilization UΓ∗ ≤ Θ

Π . Then, according to the induc-
tion assumption, Γ∗ is schedulable, which indicates
τ along with the task set {τ1, ..., τN−1} is schedulable
by RM. According to Lemma 2, τN and τN+1 are also
schedulable if τ is schedulable. Hence, the task set
Γ is schedulable by RM.

�

4.2 Task Set Harmonic Transformation with Respect
to Periodic Resource

As discussed in the previous sub-section, the harmonic
relation among a set of tasks and a resource brings the
advantage that the resource capacity can be fully utilized
by the task set. However, in a real world this criteria, i.e.,
tasks and resource are pairwise harmonic, is difficult to
achieve. In order to take the advantage of the harmonic
relationship, we need to transform an arbitrary task set
into a task set that meets the criteria.

6

Han et al. [20] developed the DCT (Distance-
Constrained Tasks) algorithm that transforms an arbi-
trary task set into a harmonic task set. In particular, given
a task set Γ = {τ1, τ2, . . . , τN}, if we use task τ1’s period
T1 as the base for transformation, the harmonic periods
of the other tasks transformed by the DCT Algorithm
are

T ′i =

{
T1 · bTi/T1c if Ti ≥ T1

T1

dT1/Tie if Ti < T1
(18)

where 2 ≤ i ≤ N .
Han et al. [20] also proved that such transformation

does not change the schedulability of the given task set
as shown in the following theorem.

Theorem 4. [20] Given a task set Γ = {τi(Ti, Ci)}, if there
exists another task set Γ′ = {τ ′i(T ′i , C ′i)} such that T ′i ≤ Ti
and C ′i = Ci, for 1 ≤ i ≤ N , and Γ′ is schedulable by RM,
then Γ is also schedulable by RM. �

For the problem we are to address (defined in Section
3.3), the smallest task period in the task set and the
resource must satisfy Constraint 3, i.e., 2Π − Θ ≤ Tmin,
which implies that Π < Tmin holds. Based on (18) and
Constraint 3, we give the definition of a task’s harmonic
transformation with respect to a resource.

Definition 6. [Task Harmonic Transformation] Given a task
τ = (T,C) and a periodic resource γ = (Π,Θ), let τ ′ =
(T ′, C) where the period is

T ′ = Π · bT/Πc (19)

Then τ ′ is called task τ ’s harmonic transformation with respect
to resource γ. �

According to Theorem 3, tasks and the resource must
be pairwise harmonic. When assigning more than one
task to the same resource, the harmonic transformation
must not only be harmonic with respect to the resource
period, but also be harmonic with respect to the periods
of the tasks that are already assigned to the resource. We
use a recursive definition to define a task set’s harmonic
transformation with respect to a given resource.

Definition 7. [Task Set Harmonic Transformation] Given a
task set Γ = {τ1, τ2, . . . , τN} and a periodic resource γ =
(Π,Θ),

Γ′ = {τ ′i = (T ′i , Ci) | 1 ≤ i ≤ N}

is task set Γ’s harmonic transformation with respect to re-
source γ, where

T ′1 = Π · bT1/Πc (20)
T ′i = max{t ∈ N+ |2 ≤ i ≤ N (21)

∧ t ≤ Ti ∧ t mod Π = 0 (22)
∧ ∀j ∈ [1, i− 1] : t mod T ′j = 0 ∨ T ′j mod t = 0}

(23)

�

In Definition 7, formula (20) guarantees that the first
task is harmonic to the periodic resource. The for-
mula (22) and (23) guarantee that all tasks are harmonic
to the periodic resource and all prior tasks assigned to
the resource, respectively. We use an example to illustrate
the task set harmonic transformation.

Example 1. Given a task set Γ =
{τ1(13, 2), τ2(25, 4), τ3(20, 3)}, and a periodic resource
γ = (6, 4), we are to compute Γ’s harmonic transformation
with respect to γ based on Definition 7.

The period of τ1’s harmonic transformation τ ′1 is calculated
directly by (20), so τ ′1 = (12, 2).

The task τ2’s harmonic period with respect to γ is T ′2 = 24,
which is also harmonic with T ′1. Hence, the harmonic trans-
formation of τ2 is τ ′2 = (24, 4).

If only considering the harmonic relationship between τ3
and γ, then the harmonic period of τ3 is T ′3 = 18. However,
T ′3 = 18 is not harmonic with T ′1 = 12 nor T ′2 = 24.
According to formula (23), τ3’s harmonic transformation
becomes to τ ′3 = (12, 3). Hence, the harmonic transformation
of Γ with respect to γ is Γ′ = {(12, 2), (24, 4), (12, 3)}. After
the transformation, each task in Γ′ is not only harmonic with
the resource γ but also harmonic with all other tasks in Γ′.
�

The task set harmonic transformation defined in Def-
inition 7 can be computed by Algorithm 1.

Algorithm 1 TRANSFORM(Γ, γ)
Input: A task set Γ = {τ1, τ2, . . . , τN} and a periodic

resource γ = (Π,Θ).
Output: The task set Γ’s harmonic transformation Γ′ =
{τ ′1, τ ′2, . . . , τ ′N} with respect to γ.

1: Γ′ = ∅, τ ′ = NULL

2: T ′1 = Π · bT1/Πc
3: τ ′ = (T ′1, C1)
4: Γ′ = Γ′ ∪ {τ ′}
5: for i = 2 to N do
6: T ′i = Π · bTi/Πc
7: while TRUE do
8: if ∀τ ′k ∈ Γ′ : T ′k mod T ′i = 0∨T ′i mod T ′k = 0 then
9: τ ′ = (T ′i , Ci)

10: Γ′ = Γ′ ∪ {τ ′}
11: Break
12: else
13: T ′i = T ′i −Π
14: end if
15: end while
16: end for
17: return Γ′

In Algorithm 1, the first task’s harmonic transforma-
tion is directly calculated by Eq. (20) (Line 2). For the
remaining tasks, the while loop (Line 7 to Line 15)
calculates the harmonic period T ′i with respect to the
resource period Π (Line 6), and determines whether T ′i
is also harmonic with all tasks already transformed, i.e.,
Γ′ (Line 8 to Line 14). If T ′i is also harmonic with all tasks

7

in Γ′, the harmonic transformation of τi is found (Line
9 to Line 11); otherwise, T ′i is decreased by the resource
period Π each time until T ′i is also harmonic with all
tasks in Γ′ (Line 13). The while loop is guaranteed to
terminate, as in worst case when T ′i decreases to Π, it
becomes harmonic to the resource and all tasks already
transformed. The complexity of Algorithm 1 is O(N2).

The defined harmonic transformation does not change
the task set’s schedulability as shown in the following
theorem.

Theorem 5. Given a periodic resource γ = (Π,Θ), a task set
Γ, and its harmonic transformation Γ′ with respect to γ, if
UΓ′ ≤ Θ/Π the task set Γ is schedulable on resource γ under
RM scheduling policy. �

Proof. Definition 7 indicates T ′i ≤ Ti and C ′i = Ci, for
1 ≤ i ≤ N . Based on Definition 7 and Theorem 4,
under RM scheduling, if Γ′ is schedulable, then Γ is also
schedulable.

According to Theorem 3, UΓ′ ≤ Θ/Π indicates that Γ′

is schedulable on γ under RM scheduling. Hence, the
task set Γ is schedulable on resource γ by RM. �

To measure how harmonically related a task (set) and
a resource (set) are, we introduce the following two
definitions.

Definition 8. [Task and Resource Harmonicity (H(τ, γ))]
Given a task τ = (T,C) and a periodic resource γ = (Π,Θ),
assume the task’s harmonic transformation with respect to the
resource is τ ′ = (T ′, C). The harmonicity between task τ and
resource γ is defined as

H(τ, γ) =
T ′

T
. (24)

�

Definition 9. [Task Set and Resource Set Harmonicity
(H(Γ,R))] Given a task set Γ = {τ1, τ2, . . . , τN} and a
periodic resource set R = {γ1, γ2, . . . , γM}, the harmonicity
between task set Γ and resource set R is defined as the average
value of each task’s harmonicity with every resource, i.e.,

H(Γ,R) =

∑
τi∈Γ,γj∈R

H(τi, γj)

N ·M
. (25)

�

Lemma 3. The harmonicity H(τ, γ) of a task τ = (T,C)
and a periodic resource γ = (Π,Θ) is in the range (0.5, 1],
i.e., 0.5 < H(τ, γ) ≤ 1. �

Proof. By the harmonic transformation definition (Defi-
nition 6) and harmonicity definition (Definition 8), we
have T ′ ≤ T , hence H(τ, γ) ≤ 1.

We prove H(τ, γ) > 0.5 by contradiction. Since the
period of a task is a positive number, the harmonicity
must be larger than 0. Assume to the contrary, we
have 0 < H(τ, γ) ≤ 0.5. According to the harmonic
transformation definition (Definition 6), we assume T ′ =

K · Π, where K ∈ N+. By the harmonicity definition
(Definition 8), we have the following inequality

H(τ, γ) =
T ′

T
=
K ·Π
T
≤ 0.5 (26)

hence

T ≥ 2K ·Π (27)

By formula (19) and formula (27), the period of τ ′ should
be at least 2K · Π, i.e., T ′ ≥ 2K · Π, which contradicts
the assumption that T ′ = K · Π. Hence, the assumption
0 < H(τ, γ) ≤ 0.5 does not hold, i.e., H(τ, γ) > 0.5.

Therefore, we prove that 0.5 < H(τ, γ) ≤ 1. �

For a task τ , the utilization of its harmonic transfor-
mation is

Uτ ′ = C/T ′ = Uτ/H(τ, γ) (28)

and the utilization increment is

∆Uτ = Uτ ′ − Uτ = (
1

H(τ, γ)
− 1) · Uτ (29)

which defines the utilization difference between a task
and its harmonic transformation.

Lemma 4. Given a task τ and a periodic resource γ, the
utilization increment caused by task harmonic transformation
is less than 100%, i.e.,

0 ≤ ∆Uτ
Uτ

< 1. (30)

�

Proof. It can be directly derived from Lemma 3 and
formula (29). �

It is not difficult to see that there is a trade-off: when
a task set is transformed to a harmonic task set with
respect to the given periodic resource, the transformed
task set can utilize the resource to its capacity with
guaranteed schedulibility under RM. But on the other
hand, the transformation itself increases the task set’s
utilization. Therefore, to reduce the cost of utilizing
the harmonicity property, we need to select tasks and
periodic resources that are best harmonically fit.

5 BEST-HARMONICALLY-FIT (BHF) TASK
ASSIGNMENT ALGORITHM

As discussed in Section 4, the harmonicity measures how
harmonically related a task (set) is to a resource (set). The
higher the harmonicity, the smaller the task utilization
increment ∆Uτ caused by the harmonic transformation.
As the harmonic utilization bound of a periodic resource
is fixed (Theorem 3), a resource has more potential
availability to schedule other tasks if the task utilization
increment ∆Uτ caused by the harmonic transformation
is smaller, i.e., the harmonicity between the task and the
resource is higher. In this section, we present the Best-
Harmonically-Fit (BHF) task assignment algorithm that
utilizes the harmonicity characteristics between tasks

8

and periodic resources to maximize the periodic resource
utilization rate. The intuition behind the proposed BHF
task assignment algorithm is to assign tasks to a periodic
resource in the non-decreasing order of their harmonicity
to the resource until the resource can no longer schedule
more tasks.

When assigning tasks to a resource, we have to ensure
that all tasks assigned to the resource are schedulable,
i.e., the total task utilization must not exceed the uti-
lization bound. Shin’s utilization bound (9) applies to
a general task set, and is therefore relatively low. The
harmonic utilization bound only applies to a harmonic
task set that is also harmonic to the resources. Only when
the harmonicity condition holds, can the task set fully
utilize the resource’s capacity. For an arbitrary task set,
in order to take the advantage of the higher harmonic
utilization bound, the task set has to be transformed
to a harmonic task set. However, such transformation
may result in an increased task utilization. Hence, to
guarantee schedulability and also maximize the resource
utilization rate, when deciding if a task set’s utilization
exceeds the resource’s capacity, both Shin’s utilization
bound (9) and the harmonic utilization bound (16) need
to be checked. The task set is schedulable on the resource
if either bound is satisfied. Theorem 6 gives the com-
bined schedulability condition.

Theorem 6. Given a periodic resource γ, and a set of tasks
Γγ assigned to the resource γ. For a new task τ , let τ ′ and
Γ′γ be the harmonic transformations of task τ and task set Γγ
with respect to γ, respectively, the task τ is schedulable on γ
if the following schedulability condition SC(τ, γ) is satisfied:

SC(τ, γ) : (UΓ′γ
+ Uτ ′ ≤ HUBγ) ∨ (UΓγ + Uτ ≤ UBγ) (31)

�

Proof. The conclusion can be directly derived from The-
orem 1 and Theorem 3. �

We use an example to illustrate that both bounds
are needed in deciding task schedulability on a given
resource.

Example 2. Given a periodic resource γ = (7, 5), assume
there is no other task assigned to the resource. Decide if a task
τ given below can be assigned to the resource.
Case 1: τ = (12, 5.2)

The task’s utilization Uτ = 5.2/12 is smaller than Shin’s
utilization bound UBγ = 5/9. Hence, the task can be assigned
to the resource. However, task τ ’s harmonic transformation
with respect to γ is τ ′ = (7, 5.2), with utilization Uτ ′ =
5.2/7 which is larger than the resource’s harmonic utilization
bound, i.e., resource capacity HUBγ = 5/7. In other words,
task τ ’s harmonic transformation is not schedulable on the
given resource. In this case, we need to use Shin’s utilization
bound (Theorem 1) to decide whether the task can be assigned
to the resource.
Case 2: τ = (15, 9)

The task’s utilization Uτ = 9/15 is larger than Shin’s
utilization bound UBγ = 5/9. Hence, the task shall not be

assigned to the resource according to Shin’s bound. How-
ever, task τ ’s harmonic transformation with respect to γ is
τ ′ = (14, 9), with utilization Uτ ′ = 9/14 which is smaller
than the resource’s harmonic utilization bound HUBγ = 5/7. In
other words, task τ ’s harmonic transformation is schedulable
on the resource. Hence, τ is also schedulable on γ. In this case,
we need to use the harmonic utilization bound (Theorem 3)
to decide if τ can be assigned to γ.
Case 3: τ = (15, 5.2)

The task’s utilization Uτ = 5.2/15 is smaller than Shin’s
utilization bound UBγ = 5/9. Hence, it is schedulable on the
resource. Furthermore, task τ ’s harmonic transformation with
respect to γ is τ ′ = (14, 5.2), with utilization Uτ ′ = 5.2/14
which is also smaller than the resource’s harmonic utilization
bound HUBγ = 5/7. In other words, task τ ’s harmonic
transformation is also schedulable on the resource. In this
case, we can use either Shin’s utilization bound (Theorem
1) or the harmonic utilization bound (Theorem 3) to check
schedulability. �

When a heuristic approach is used to assign tasks to
periodic resources, the order in which tasks are assigned
may impact the resource utilization rate. We use an
example to illustrate this.

Example 3. Given a task set Γ =
{τ1(13, 3), τ2(23, 8), τ3(27, 6), τ4(17, 0.5)} and a resource set
R = {γ1(6, 3), γ2(5, 2), γ3(7, 3.5)}, we assign the task set Γ
to the resource set R.

If we first assign task τ2 to resource γ1, then the optimal
way to assign the rest of the tasks is to assign τ3 and τ4
to γ2, and τ1 to γ3. The resource utilization rate of such an
assignment is 59.3%. However, if we first assign task τ1 to
resource γ1, the optimal way to assign the rest of the tasks is
to assign τ3 to γ1, and τ2 and τ4 to γ3. Such assignment only
uses two resources and increases the resource utilization rate
to 83%. �

In this example, it is not difficult to see that τ1 and
γ1 have the highest harmonicity among all task and
resource pairs. The example also reveals that assigning
the most harmonically related task and resource pair first
leads to a higher resource utilization rate. Based on the
observation and the discussion in Section 4 that assign-
ing tasks to their most harmonically related resources
can improve the resource utilization rate, we present
the Best-Harmonically-Fit task set assignment algorithm.
We first introduce the concept of Best-Harmonically-
Fit-Task (BHFT) and Best-Harmonically-Fit-Pair (BHFP).
Then, we show how to find the BHFT and the BHFP,
respectively.

Definition 10. Given a task set Γ = {τ1, τ2, . . . , τN}
and a periodic resource γ, the Best-Harmonically-Fit-Task
BHFT(Γ, γ) with respect to resource γ is τi, i.e., BHFT(Γ, γ) =
τi, if task τi satisfies the following condition:

τi ∈ Γ ∧ SC(τi, γ)

∧ ∀j 1 ≤ j 6= i ≤ N H(τi, γ) ≥ H(τj , γ)

∧H(τi, γ) = H(τj , γ)→ Uτi ≥ Uτj (32)

9

�

In other words, the BHFT(Γ, γ) is the task in the task set
Γ that satisfies: (1) it is schedulable on the resource, i.e.,
SC(τi, γ) = true; (2) it has the highest harmonicity with
resource γ, i.e., ∀j 1 ≤ j 6= i ≤ N H(τi, γ) ≥ H(τj , γ);
(3) if more than one task in the task set has the same
harmonicity with the given resource, it has the highest
utilization, i.e., ∀j 1 ≤ j 6= i ≤ N H(τi, γ) = H(τj , γ) →
Uτi ≥ Uτj .

We extend the best harmonically fit task with respect
to a given resource to a given resource set and define
the best harmonically fit task and resource pair.

Definition 11. Given a task set Γ = {τ1, τ2, . . . , τN} and
a resource set R = {γ1, γ2, . . . , γM}, the Best-Harmonically-
Fit-Pair BHFP(Γ,R) is (τi, γj), i.e., BHFP(Γ,R) = (τi, γj), if
the pair (τi, γj) satisfies the following condition:

τi ∈ Γ, γj ∈ R
∧ SC(τi, γj)

∧ ∀m∀k 1 ≤ m 6= i ≤ N1 ≤ k 6= j ≤M
H(τi, γj) ≥ H(τm, γk)

∧H(τi, γj) = H(τm, γk)→ Uτi ≥ Uτm (33)

�

Algorithm 2 and Algorithm 3 give the pseudo code
that find BHFT(Γ, γ) and BHFP(Γ,R), respectively. In Al-
gorithm 2, the for loop (Line 4 to Line 10) compares
all tasks in the task set against the given resource γ and
finds the maximum H(τi, γ) and Uτi . The complexity of
the algorithm is O(N).

Algorithm 3 calls Algorithm 2 to find the BHFT for
each resource in the resource set, and selects the task
and resource pair that has the maximum harmonicity
and task utilization. The complexity of Algorithm 3 is
O(NM).

Algorithm 2 SEARCH-BHFT(Γ, γ)
Input: A task set Γ = {τ1, τ2, . . . , τN} and a periodic

resource γ.
Output: The BHFT τBHF.

1: τBHF = NULL

2: Hmax = 0
3: Umax = 0
4: for i = 1 to N do
5: if SC(τi, γ)∧((H(τi, γ) > Hmax)∨(H(τi, γ) = Hmax∧

Uτi > Umax)) then
6: τBHF = τi
7: Hmax = H(τi, γ)
8: Umax = Uτi
9: end if

10: end for
11: return τBHF

Once the Best-Harmonically-Fit-Task and Best-
Harmonically-Fit-Pair are found, we are ready to
introduce the Best-Harmonically-Fit (BHF) task

Algorithm 3 SEARCH-BHFP(Γ,R)
Input: A task set Γ = {τ1, τ2, . . . , τN} and a periodic

resource set R = {γ1, γ2, . . . , γM}.
Output: The BHFP (τBHF, γBHF).

1: τBHF = NULL

2: γBHF = NULL

3: Hmax = 0
4: Umax = 0
5: for i = 1 to M do
6: τtmp = SEARCH-BHFT(Γ, γi)
7: if H(τtmp, γi) > Hmax ∨ (H(τtmp, γi) = Hmax ∧

Uτtmp > Umax) then
8: τBHF = τtmp
9: γBHF = γi

10: Hmax = H(τtmp, γi)
11: Umax = Uτtmp
12: end if
13: end for
14: return (τBHF, γBHF)

assignment algorithm given in Algorithm 4. In
Algorithm 4, the for loop (Line 1 to Line 6) calculates
the harmonic period T ′i of each task with respect
to each resource, and the initial harmonicity value
H(τi, γj) of every task and resource pair. If there are
tasks in the task set Γ, Algorithm 3 is called to find
the Best-Harmonically-Fit-Pair (Line 9). Once we have
the best harmonically fit pair (τ, γ), assign the task τ
to the resource γ (Line 11), remove τ from the given
task set Γ (Line 12), compute the task τ ’s harmonic
transformation τ ′ (Line 13), and once τ is assigned to
the resource γ, we add the harmonic task τ ′ to the
harmonic task set Γ′γ which contains tasks assigned to
the resource γ (Line 14). Update the harmonicity value
for the remaining tasks with respect to γ (Line 15), and
assign remaining tasks that are best harmonically fit to
the resource γ until γ is full (Line 16 to Line 24) and
then remove resource γ from the resource set R (Line
25). The complexity of Algorithm 4 is O(N2M).

It is worth pointing out that in Algorithm 4, Line
13 and Line 20 update the harmonicity value between
each unassigned task and the resource. According to
Definition 7 and Definition 8, if a task is harmonically
related to a resource, the task is also harmonically re-
lated to all the tasks assigned to the resource. Hence,
we need to update tasks’ harmonicity after each task
assignment. The harmonicity update algorithm is shown
in Algorithm 5.

The main steps of Algorithm 5 are similar to Al-
gorithm 1. In Algorithm 5, each transformed task is
harmonic to the harmonic transformation Γ′γ of all tasks
assigned to the resource γ, rather than all tasks already
transformed in Algorithm 1. The while loop is guar-
anteed to terminate, as in worst case the transformed
task period T ′i is the same as Π. The complexity of
Algorithm 5 is O(N2).

10

Algorithm 4 BHF(Γ,R)
Input: A task set Γ = {τ1, τ2, . . . , τN} and a resource set
R = {γ1, γ2, . . . , γM}.
//Initialize task and resource harmonicity value

1: for i = 1 to N do
2: for j = 1 to M do
3: T ′i = Πj · bTi/Πjc
4: H(τi, γj) = T ′i/Ti
5: end for
6: end for
7: τ = NULL, γ = NULL

8: while Γ 6= ∅ do
9: (τ, γ) =SEARCH-BHFP(Γ,R)

//Initialize the harmonic transformation of tasks
assigned to γ

10: Γ′γ = ∅
11: τ 7→ γ

//Remove τ from Γ
12: Γ = Γ \ {τ}

//Computer τ ’s harmonic transformation with re-
spect to γ

13: τ ′ = (T ·H(τ, γ), C)
//Add τ ′ to Γ′γ

14: Γ′γ = Γ′γ ∪ {τ ′}
//Call Algorithm 5 to update remaining tasks’
harmonicity with respect γ and tasks already as-
signed to γ

15: UPDATE-H(Γ, γ,Γ′γ)
//Call Algorithm 2 to find the BHFT

16: τ =SEARCH-BHFT(Γ, γ)
17: while τ ! = NULL do
18: τ 7→ γ
19: Γ = Γ \ {τ}
20: τ ′ = (T ·H(τ, γ), C)
21: Γ′γ = Γ′γ ∪ {τ ′}
22: UPDATE-H(Γ, γ,Γ′γ)
23: τ =SEARCH-BHFT(Γ, γ)
24: end while
25: R = R \ {γ}
26: end while

Algorithm 5 UPDATE-H(Γ, γ,Γ′γ)

Input: A task set Γ = {τ1, τ2, . . . , τN}, a periodic re-
source γ = (Π,Θ), and the harmonic transformation
Γ′γ of all tasks assigned to the resource γ.

1: for i = 1 to N do
2: T ′i = Π · bTi/Πc
3: while TRUE do
4: if ∀τ ′k ∈ Γ′γ : T ′k mod T ′i = 0 ∨ T ′i mod T ′k = 0

then
5: H(τi, γ) = T ′i/Ti
6: Break
7: else
8: T ′i = T ′i −Π
9: end if

10: end while
11: end for

We use an example to illustrate the BHF procedure.

Example 4. Consider the same resource set and task set as
given in Example 3, i.e., Γ = {τ1(13, 3), τ2(23, 8), τ3(27, 6),
τ4(17, 0.5)}, R = {γ1(6, 3), γ2(5, 2), γ3(7, 3.5)}. We are to
use the proposed BHF algorithm to assign the task set to the
resource set.

We first calculate the harmonicity for each task and resource
pair. The results are shown in Table 1(a).

The Best-Harmonically-Fit-Pair in Table 1(a) is (τ1, γ1).
Hence, τ1 is assigned to γ1. After τ1 is assigned to γ1, the
harmonicity between each unassigned task and γ1 is updated
and shown in Table 1(b). From Table 1(a) and Table 1(b), it
can be seen that the harmonicity of τ2 decreases from 18/23
to 12/23.

Then, we find the Best-Harmonically-Fit-Task for resource
γ1, which is τ3. Task τ3 is assigned to resource γ1.

Once τ3 is assigned to γ1, γ1 does not have enough capacity
to host neither τ2 nor τ4. Hence, we find the next Best-
Harmonically-Fit-Pair which is (τ2, γ3), and assign τ2 to γ3.
The harmonicity of the only remaining task τ4 with respect to
γ3 is updated to 7/17 after assigning τ2 to γ3.

Finally, we assign τ4 to resource γ3. The harmonicity
between each task and each resource is shown in Table 1(c).

The task assignment resulted from the BHF algorithm
for this example matches the optimal assignment given in
Example 3, with a resource utilization rate of 83%. �

TABLE 1
Harmonicity for Γ and R

(a) Initial State (Before Assignment)
H(τi, γj) γ1 γ2 γ3

τ1 12/13 10/13 7/13
τ2 18/23 20/23 21/23
τ3 24/27 25/27 21/27
τ4 12/17 15/17 14/17

(b) After Assigning τ1 to γ1
H(τi, γj) γ1 γ2 γ3

τ1 12/13 10/13 7/13
τ2 12/23 20/23 21/23
τ3 24/27 25/27 21/27
τ4 12/17 15/17 14/17

(c) Final State (Assignment Done)
H(τi, γj) γ1 γ2 γ3

τ1 12/13 10/13 7/13
τ2 12/23 20/23 21/23
τ3 24/27 25/27 21/27
τ4 12/17 15/17 7/17

The BHF algorithm is a heuristic and uses a sufficient
utilization bound to check schedulability. The scenario
where a task set violates the bound but is still schedu-
lable exists and the necessary utilization bound for RM
scheduling on periodic resources is yet to be found.

In next section, we experimentally evaluate how well
the BHF algorithm performs when it is compared with
other heuristic approaches and the optimal solutions
found through exhaustive search.

11

6 PERFORMANCE EVALUATION

In this section, we experimentally evaluate the per-
formance of the proposed Best-Harmonically-Fit algo-
rithm through simulations. We compare the BHF task
assignment algorithm with three commonly used mul-
tiprocessor task assignment algorithms, namely Best-Fit
Decreasing (BFD), First-Fit Decreasing (FFD), and Worst-
Fit Decreasing (WFD) algorithms [16], which assign tasks
in non-increasing utilization order.

When BFD, FFD, and WFD are used, Shin’s utilization
bound [9], i.e., formula (9), is used to decide if a task set
assigned to a resource is schedulable.
• Best-Fit Decreasing (BFD) [16]: Assign task τ ∈ Γ to

the periodic resource γ ∈ R so that the remaining
capacity percentage is minimal after the assignment,
i.e.,

UΓγ + Uτ ≤ UBγ ∧
UBγ − UΓγ − Uτ

Uγ
= min{

UBγj − UΓγj
− Uτ

Uγj
|∀γj ∈ R}

• First-Fit Decreasing (FFD) [16]: Assign task τ ∈ Γ
to the first periodic resource γ ∈ R that satisfies τ ’s
schedulability condition, i.e.,

UΓγ + Uτ ≤ UBγ

• Worst-Fit Decreasing (WFD) [16]: Assign task τ ∈ Γ
to the periodic resource γ ∈ R so that the remaining
capacity percentage is maximal after the assignment,
i.e.,

UΓγ + Uτ ≤ UBγ ∧
UBγ − UΓγ − Uτ

Uγ
= max{

UBγj − UΓγj
− Uτ

Uγj
|∀γj ∈ R}

The performance of a task assignment algorithm is
evaluated by two criteria, i.e., (1) resource utilization rate
URR, and (2) total number of periodic resources used
Mused. The higher the URR and the smaller the Mused,
the better the performance of the algorithm.

In the following experiments, the task sets and the
resource sets are generated using the UUniFast algo-
rithm [27] which gives an unbiased distribution of uti-
lization values.

6.1 Harmonicity Impact

This set of experiments is to evaluate harmonicity impact
on the performance of task assignment algorithms.
Experiment Settings
• Task number: 20
• Task utilization range: [0.1, 1.0]
• Resource number: 20
• Resource capacity range: [0.5, 1.0]
• Resource set capacity: 13
• Harmonicity: varies in the range of [0.55, 1.0] with

step 0.05

As the harmonicity can never be smaller than 0.5
which is proven in Lemma 3, the experiment only con-
siders harmonicities larger than 0.5.
Experiments

In this set of experiments, we randomly generate
200 resource sets; for each resource set, we randomly
generate 10 task sets that satisfy Constraint 1, Constraint
2, and Constraint 3 given in Section 3.3. For each valid
task set, we fix the utilization of each task and adjust
task periods to generate 10 task sets such that the
harmonicity between the resource set and each of the
task set is one of the values in harmonicity variable set
{0.55, 0.6, 0.65, . . . , 1.00}. For each test case, we apply
the BFD, the FFD, the WFD, and the BHF algorithms
to assign the generated tasks to resources. The average
value of 200 × 10 × 10 repeats is used to represent the
performance of each algorithm.

Fig. 2(a) and Fig. 2(b) show the resource utilization
rate and the number of periodic resources used under
different harmonicities, respectively. From Fig. 2, we
have the following observations:

1) For all four task assignment algorithms, the resource
utilization rate increases and the number of pe-
riodic resources used decreases when harmonicity
increases;

2) The BHF algorithm has up to 35.96% higher resource
utilization rate and uses up to 55.79% less number
of resources than the other three algorithms;

3) The BHF algorithm is more sensitive to the har-
monicity change than the other three algorithms.

The third observation is consistent with the design of
the BHF algorithm, i.e., BHF is based on harmonicity.
The sensitivity of BHF is demonstrated in the following
two aspects:

1) The discrepancy of the resource utilization rate be-
tween BHF and the other three algorithms increases
with an increase in harmonicity;

2) The BHF has a larger increase of the resource uti-
lization rate than the other three algorithms as the
harmonicity increases.

0.55 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

Harmonicity H(Γ,R)

R
es

ou
rc

e
U

ti
liz

at
io

n
R

at
e

U
R

R

BFD
WFD
FFD
BHF

(a) Utilization Rate under differ-
ent Harmonicity

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
6.5

7.5

8.5

9.5

10.5

11.5

12.5

13.5

14.5

Harmonicity H(Γ,R)

N
um

be
r

of
R

es
ou

rc
es

U
se

d
M

u
s
e
d

BFD
WFD
FFD
BHF

(b) Number of Resources Used
under different Harmonicity

Fig. 2. Harmonicity Impact

6.2 Task Set Utilization Impact
The second set of experiments evaluates the performance
of the proposed BHF task assignment algorithm under

12

different task set utilizations.
Experiment Settings
• Task number: 20
• Task utilization range: [0.1, 1.0]
• Task set utilization: random
• Resource number: 20
• Resource capacity range: [0.3, 1.0]
• Resource set capacity: 13

Experiments
In the experiments, we randomly generate 200 re-

source sets with above resource set parameters. For each
resource set, we randomly generate 100 task sets that
satisfy the three constraints given in Section 3.3. For each
test case, we apply the four different task assignment
algorithms. We run 200 × 100 test cases, and combine
the results based on task set utilizations rounded to
the nearest hundredth. The average value is used to
represent the performance of each algorithm.

Fig. 3(a) depicts the average resource utilization rate
under different task set utilizations. Among the four
task assignment algorithms, the BHF algorithm has the
highest resource utilization rate. The resource utilization
rate resulted from the BHF algorithm is always above
69.05%. On average, the BHF algorithm results in a
53.26%, 42.54%, and 27.79% higher resource utilization
rate than the BFD, the FFD, and the WFD algorithms,
respectively.

Fig. 3(b) depicts the number of periodic resources used
under different task set utilizations. In general, when the
task set utilization increases, the number of resources
used also increases. From Fig. 3(b), we observe that BFD
uses the most number of resources, which is consistent
with the observation that BFD has the lowest resource
utilization rate. The WFD, on the other hand, uses less
number of resources than the proposed BHF approach,
but also has a lower utilization rate, which seems to be
counter intuitive.

2.5 3 3.5 4
0.4

0.5

0.6

0.7

0.8

0.9

Task Set Utilization UΓ

R
es

ou
rc

e
U

ti
liz

at
io

n
R

at
e

U
R

R

BFD
WFD
FFD
BHF

(a) Utilization Rate

2.5 3 3.5 4
4

6

8

10

12

14

Task Set Utilization UΓ

N
um

be
r

of
R

es
ou

rc
es

U
se

d
M

u
s
e
d

BFD
WFD
FFD
BHF

(b) Number of Resources Used

Fig. 3. Task Set Utilization Impact (Θ
Π ∈ [0.325, 1.0])

Further study reveals that since the WFD algorithm
always selects the largest resource to assign tasks to,
when resource capacity is relatively small, the remain-
ing portion of the resource resulting from the WFD
algorithm would have a higher possibility than other
approaches to host another task. Therefore, the WFD
algorithm results in less number of resources used. To
verify this reasoning, we repeat the above experiments

but with a higher capacity resource set: each resource
capacity is in the range of [0.8, 1.0] and we do not fix
the total resource set capacity. The results are shown in
Fig. 4.

As shown in Fig. 4, BHF has better performance
(higher resource utilization rate and smaller number
of resources used) than the other three algorithms. In
particular, the BHF algorithm uses 23.96% less number
of resources than the other three approaches on average.
Another observation from Fig. 4 is that the performance
difference among BFD, FFD, and WFD algorithms is
small when individual resource capacity is large. The
experiment also confirms our observation that when
individual resource capacity is small, the WFD algorithm
may have some advantage with respect to the number
of resources needed.

4.6 4.8 5 5.2 5.4 5.6 5.8 6
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Task Set Utilization UΓ

R
es

ou
rc

e
U

ti
liz

at
io

n
R

at
e

U
R

R

BFD
WFD
FFD
BHF

(a) Utilization Rate

4.6 4.8 5 5.2 5.4 5.6 5.8 6

7

8

9

10

11

Task Set Utilization UΓ

N
um

be
r

of
R

es
ou

rc
es

U
se

d
M

u
s
e
d

BFD
WFD
FFD
BHF

(b) Number of Resources Used

Fig. 4. Task Set Utilization Impact (Θ
Π ∈ [0.8, 1.0])

6.3 BHF and Optimal Solution Comparison

The third set of experiments compares the performance
of the proposed BHF task assignment algorithm with the
optimal solution obtained by brute-force search.
Experiment Settings
• Task number: 3
• Task utilization range: [0.1, 1.0]
• Task set utilization: random
• Resource number: 3
• Resource capacity range: [0.3, 1.0]
• Resource set capacity: 1.95

Experiments
The experiment procedure is the same as in Section 6.2

except for some parameters.
For each test case, we apply the four different task

assignment algorithms, and consider all possible task
assignments. We choose the one with the largest resource
utilization rate as the optimal solution. It is worth not-
ing that when searching for the optimal solution, we
use both Shin’s utilization bound (Theorem 1) and the
harmonic utilization bound (Theorem 3) to check for
schedulability. We consider tasks to be schedulable if
either bound is satisfied.

Fig. 5(a) and Fig. 5(b) depict the average resource
utilization rate and the number of resources used, respec-
tively. Compared with the optimal solution, on average,

13

the BHF algorithm results in 11.63% lower resource uti-
lization rate and uses 22.02% more number of resources.

0.3 0.4 0.5 0.6 0.7 0.8
0.3

0.4

0.5

0.6

Task Set Utilization UΓ

R
es

ou
rc

e
U

ti
liz

at
io

n
R

at
e

U
R

R

BHF
OPT

(a) Utilization Rate

0.3 0.4 0.5 0.6 0.7 0.8
0.5

1

1.5

2

2.5

Task Set Utilization UΓ

N
um

be
r

of
R

es
ou

rc
es

U
se

d
M

u
s
e
d

BHF
OPT

(b) Number of Resources Used

Fig. 5. BHF and Optimal Solution Comparison

7 CONCLUSION

Periodic resource models and their scheduling problems
have drawn more attention in real-time community in
recent years. However, to our best knowledge, there has
not been much work, if any, in the literature dealing
with the task assignment problem on multiple periodic
resources. In this paper, we study the task assignment
problem in the context of assigning multiple periodic
tasks to multiple periodic resources. Specifically, we first
study the harmonic properties between periodic tasks
and periodic resources. We prove that if a harmonic
task set is also harmonic with the resource, the task
set can 100% utilize the resource’s capacity under the
RM scheduling algorithm. Then we propose a heuristic
Best-Harmonically-Fit (BHF) task assignment algorithm
to maximize the resource utilization rate based on the
harmonic properties between periodic tasks and peri-
odic resources. We compare the performance of Best-
Harmonically-Fit (BHF) task assignment algorithm with
Best-Fit Decreasing (BFD), First-Fit Decreasing (FFD),
Worst-Fit Decreasing (WFD) task assignment algorithms,
and the optimal task assignment (found through ex-
haustive search for a small-sized task set and resource
set). The experiment concludes that, on average, the
BHF algorithm results in 53.26%, 42.54%, and 27.79%
higher resource utilization rate than the Best-Fit De-
creasing(BFD), the First-Fit Decreasing (FFD), and the
Worst-Fit Decreasing (WFD) task assignment algorithms,
respectively; but comparing to the optimal resource
utilization rate found by exhaustive search, it is about
11.63% lower.

Currently, we are developing a private cloud CODE-
Cloud (CCloud) [28] on top of RT-Xen hypervisor, which
extends Xen [29] with built-in real-time schedulers for
periodic resources [30], [31], [32]. Our future work is to
integrate the proposed BHF task assignment algorithm
into RT-Xen scheduler.

ACKNOWLEDGEMENT

The research is supported in part by NSF under grant
number CAREER 0746643, CNS 1018731 and CNS
1035894.

REFERENCES

[1] Aloysius K Mok, Xiang Feng, and Deji Chen. Resource partition
for real-time systems. In Real-Time Technology and Applications
Symposium, 2001. Proceedings. Seventh IEEE, pages 75–84. IEEE,
2001.

[2] Yu Li, Albert MK Cheng, and Aloysius K Mok. Regularity-
based partitioning of uniform resources in real-time systems.
In Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2012 IEEE 18th International Conference on, pages 368–
377. IEEE, 2012.

[3] Jaewoo Lee, Sisu Xi, Sanjian Chen, Linh TX Phan, Chris Gill, Insup
Lee, Chenyang Lu, and Oleg Sokolsky. Realizing compositional
scheduling through virtualization. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2012 IEEE 18th,
pages 13–22. IEEE, 2012.

[4] S Shirero, Matsumoto Takashi, and Hiraki Kei. On the schedu-
lability conditions on partial time slots. In Real-Time Computing
Systems and Applications, 1999. RTCSA’99. Sixth International Con-
ference on, pages 166–173. IEEE, 1999.

[5] Aloysius K Mok and Xiang Alex. Towards compositionality in
real-time resource partitioning based on regularity bounds. In
Real-Time Systems Symposium, 2001.(RTSS 2001). Proceedings. 22nd
IEEE, pages 129–138. IEEE, 2001.

[6] Insik Shin and Insup Lee. Periodic resource model for composi-
tional real-time guarantees. In Real-Time Systems Symposium, 2003.
RTSS 2003. 24th IEEE, pages 2–13, Dec 2003.

[7] Arvind Easwaran, Insik Shin, Oleg Sokolsky, and Insup Lee.
Incremental schedulability analysis of hierarchical real-time com-
ponents. In Proceedings of the 6th ACM &Amp; IEEE International
Conference on Embedded Software, EMSOFT ’06, pages 272–281,
New York, NY, USA, 2006. ACM.

[8] A. Easwaran, Insup Lee, Insik Shin, and O. Sokolsky. Compo-
sitional schedulability analysis of hierarchical real-time systems.
In Object and Component-Oriented Real-Time Distributed Computing,
2007. ISORC ’07. 10th IEEE International Symposium on, pages 274–
281, May 2007.

[9] Insik Shin and Insup Lee. Compositional real-time scheduling
framework with periodic model. ACM Transactions on Embedded
Computing Systems (TECS), 7(3):30:1–30:39, May 2008.

[10] Nathan Fisher and Farhana Dewan. Approximate bandwidth al-
location for compositional real-time systems. In Real-Time Systems,
2009. ECRTS’09. 21st Euromicro Conference on, pages 87–96. IEEE,
2009.

[11] Farhana Dewan and Nathan Fisher. Approximate bandwidth
allocation for fixed-priority-scheduled periodic resources. In Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2010 16th IEEE, pages 247–256. IEEE, 2010.

[12] Xiayu Hua, Zheng Li, Hao Wu, and Shangping Ren. Scheduling
periodic tasks on multiple periodic resources. In International
Conference on Advanced Communications and Computation, 2014.
INFOCOMP 2014. 4th IARIA, pages 35–40. IARIA, 2014.

[13] Yingfeng Oh and Sang H. Son. Tight performance bounds of
heuristics for a real-time scheduling problem. Technical Report
CS-93-24, Department of Computer Science, University of Vir-
ginia, Charlottesville, VA, USA, 1993.

[14] Sudarshan K. Dhall and C. L. Liu. On a real-time scheduling
problem. Operations Research, 26(1):127–140, 1978.

[15] Nan Guan, M. Stigge, Wang Yi, and Ge Yu. Fixed-priority mul-
tiprocessor scheduling with liu and layland’s utilization bound.
In Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2010 16th IEEE, pages 165–174, April 2010.

[16] Sanjoy Baruah. Partitioned edf scheduling: a closer look. Real-
Time Systems, 49(6):715–729, 2013.

[17] C. L. Liu and James W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. J. ACM,
20(1):46–61, jan 1973.

[18] A. Burchard, J. Liebeherr, Yingfeng Oh, and S.H. Son. New
strategies for assigning real-time tasks to multiprocessor systems.
Computers, IEEE Transactions on, 44(12):1429–1442, Dec 1995.

[19] Sylvain Lauzac, Rami Melhem, and Daniel Mossé. An effi-
cient rms admission control and its application to multiprocessor
scheduling. In Parallel Processing Symposium(IPPS/SPDP), 1998,
pages 511–518. IEEE, 1998.

[20] Ching-Chih Han and Hung ying Tyan. A better polynomial-
time schedulability test for real-time fixed-priority scheduling

14

algorithms. In Real-Time Systems Symposium, 1997. Proceedings.,
The 18th IEEE, pages 36–45, Dec 1997.

[21] Björn Andersson, Sanjoy Baruah, and Jan Jonsson. Static-priority
scheduling on multiprocessors. In Real-Time Systems Symposium,
2001.(RTSS 2001). Proceedings. 22nd IEEE, pages 193–202. IEEE,
2001.

[22] Ming Fan and Gang Quan. Harmonic-aware multi-core schedul-
ing for fixed-priority real-time systems. Parallel and Distributed
Systems, IEEE Transactions on, 25(6):1476–1488, June 2014.

[23] Jan Korst, Emile Aarts, JanKarel Lenstra, and Jaap Wessels.
Periodic multiprocessor scheduling. In Emile H.L. Aarts, Jan
van Leeuwen, and Martin Rem, editors, PARLE ’91 Parallel Ar-
chitectures and Languages Europe, volume 505 of Lecture Notes in
Computer Science, pages 166–178. Springer Berlin Heidelberg, 1991.

[24] Ming Fan and Gang Quan. Harmonic-fit partitioned scheduling
for fixed-priority real-time tasks on the multiprocessor platform.
In Embedded and Ubiquitous Computing (EUC), 2011 IFIP 9th Inter-
national Conference on, pages 27–32, Oct 2011.

[25] Ming Fan and Gang Quan. Harmonic semi-partitioned scheduling
for fixed-priority real-time tasks on multi-core platform. In Design,
Automation Test in Europe Conference Exhibition (DATE), 2012, pages
503–508, March 2012.

[26] Xiang Feng and Aloysius K Mok. A model of hierarchical real-
time virtual resources. In Real-Time Systems Symposium, 2002.
RTSS 2002. 23rd IEEE, pages 26–35. IEEE, 2002.

[27] Enrico Bini and GiorgioC. Buttazzo. Measuring the performance
of schedulability tests. Real-Time Systems, 30(1-2):129–154, 2005.

[28] Codecloud (ccloud). http://code.cs.iit.edu:8080/, 2015.
[29] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Har-

ris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield.
Xen and the art of virtualization. In Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles, SOSP ’03, pages
164–177, New York, NY, USA, 2003. ACM.

[30] Sisu Xi, J. Wilson, Chenyang Lu, and C. Gill. Rt-xen: Towards
real-time hypervisor scheduling in xen. In Embedded Software
(EMSOFT), 2011 Proceedings of the International Conference on, pages
39–48, Oct 2011.

[31] Jaewoo Lee, Sisu Xi, Sanjian Chen, L.T.X. Phan, C. Gill, Insup
Lee, Chenyang Lu, and O. Sokolsky. Realizing compositional
scheduling through virtualization. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2012 IEEE 18th,
pages 13–22, April 2012.

[32] Sisu Xi, Meng Xu, Chenyang Lu, Linh T. X. Phan, Christopher
Gill, Oleg Sokolsky, and Insup Lee. Real-time multi-core virtual
machine scheduling in xen. In Proceedings of the 14th International
Conference on Embedded Software, EMSOFT ’14, pages 27:1–27:10,
New York, NY, USA, 2014. ACM.

Chunhui Guo is now a Ph.D candidate in the
Computer Science Department at Illinois Insti-
tute of Technology. He earned his BSEE and
MSEE from Shandong University, China, in 2010
and 2013, respectively. His current research in-
terests mainly focus on real-time systems and
Cyber-Physical System.

Xiayu Hua is now a Ph.D candidate in the
Computer Science Department at Illinois Insti-
tute of Technology. His research interests are in
distributed file system, virtualization technology,
real-time scheduling and cloud computing. He
earned his B.S. degree from the Northwestern
Polytechnic University, China, in 2008 and his
M.S. degree from the East China Normal Uni-
versity, China, in 2012.

Hao Wu is now a Ph.D candidate in the Com-
puter Science Department at Illinois Institute of
Technology. He received B.E. in Information Se-
curity from Sichuan University, Chengdu, China,
2007. He received M.S. in Computer Science
from University of Bridgeport, Bridgeport, CT,
2009. His current research interests mainly fo-
cus on cloud computing, real-time distributed
open systems, Cyber-Physical System, parallel
and distributed systems, and real-time applica-
tions.

Douglas Lautner is now a Ph.D candidate in
the Computer Science Department at Illinois In-
stitute of Technology. His research interests are
in real-time wireless sensing and Cyber-Physical
Systems. He earned his MSCS and MSEE from
the Illinois Institute of Technology and holds an
MBA from Tulane University. Doug is also a
Director of Software at Motorola. He manages
the WISL (Wireless, Internet of Things, Sensors
and Location) Department. Doug currently has
15 patent pursues.

Dr. Shangping Ren is an associate professor
in the Computer Science Department at the
Illinois Institute of Technology. She earned her
Ph.D from UIUC in 1997. Before she joined IIT
in 2003, she worked in software and telecom-
munication companies as a software engineer
and then lead software engineer. Her current
research interests include coordination mod-
els for real-time distributed open systems, real-
time, fault-tolerant and adaptive systems, Cyber-
Physical System, parallel and distributed sys-

tems, cloud computing, and application-aware many-core virtualization
for embedded and real-time applications.

