
Use Two-Level Rejuvenation to Combat Software
Aging and Maximize Average Resource

Performance
Chunhui Guo, Hao Wu, Xiayu Hua, Douglas Lautner†, Shangping Ren∗

Department of Computer Science
Illinois Institute of Technology

Chicago, IL 60616, USA
{cguo13, hwu28, xhua, dlautner}@hawk.iit.edu, ren@iit.edu

Abstract—Software aging is a common phenomenon which
is often manifested through system performance degradation.
Rejuvenation is one of the most commonly used approaches
to handle issues caused by software aging. To combat re-
source performance degradation and at the same time maintain
maximized average resource performance, we present a two-
level rejuvenation strategy, i.e., interleaving a set of n warm
rejuvenations with one cold rejuvenation. Our target is to find
the optimal n that maximizes system average performance. We
first define a resource model that takes into consideration of
performance degradation and two-level rejuvenations. Based on
the resource model, we formally analyze the resource supply and
present the MAX-PERFORMANCE algorithm to determine the
optimal rejuvenation pattern that maximizes the average resource
performance. The simulation results show that with a two-level
rejuvenation strategy, we can achieve 25.22% higher average
resource performance compared with a single level rejuvenation
strategy.

Index Terms—Software Aging, Performance Degradation, Re-
source Model, Two-Level Rejuvenation, Resource Supply Analy-
sis, Resource Performance Maximization

I. INTRODUCTION

Software aging is a well-known phenomenon in computer
systems that slows down the system performance and even-
tually leads to transient failure [1]. Software aging is usually
caused by memory leaks and error accumulation. As modern
computer systems are getting more complex and supporting
more concurrent applications, software aging becomes more
obvious and significantly impacts system performance.

Software aging also has an impact on today’s mobile
device performance. To provide evidences for such slowdown
phenomena on cellphones, we write an Android APP which
computes the multiplication of two 500 × 500 matrices and
records the computation time. The APP runs on a cellphone
with a Qualcomm 1.5GHz dual-core, 1G RAM, and 2G inter-
nal storage. The APP is the only application running on the
cellphone under Android 2.3.6. Fig. 1 shows the measurements

†Douglas Lautner is a part-time Ph.D student at CS Dept. IIT. He is also
the Director of Software Engineering at Motorola Mobility.
∗The research is supported in part by NSF under grant number CAREER

0746643, CNS 1018731 and CNS 1035894.

of the computation times of matrix multiplication over about
5 days. Each point represents the average computation time
of 300 matrix multiplication computations. From Fig. 1, we
have following observations:

1) The computation time within the interval [1, 10], [15, 20],
[24, 39], and [42, 53] has an increasing trend, which
indicates that the cellphone suffers from aging effects.

2) The computation time within the [10, 15], [20, 24] and
[39, 42] intervals have a decreasing trend. The log file
indicates that the cellphone was rebooted at point 10;
and the matrix multiplication application was restarted at
point 20 and 39.

1 10 20 30 40 50

24.2

24.4

24.6

24.8

No. of Points

Se
co

nd
s

Fig. 1. Aging Effect of Matrix Multiplication Time on Cellphone

The second observation also indicates that both cellphone
reboot (cold rejuvenation) and application restart (warm re-
juvenation) can restore a cellphone’s performance, but the
restore capability of cold rejuvenation is higher than the
warm rejuvenation. In addition, the resource performance after
the second warm rejuvenation is lower than the first warm
rejuvenation.

Currently, smartphone subsystems have reset mechanisms,
called “silent resets”, incorporated to restore functionality
while minimizing user impact. However, these resets happen
in a reactive manner and are not predicted or scheduled. For
instance, WiFi has a reset mechanism a.k.a. sub system restart.



It’s a structure for the WiFi Firmware to restart its execution
point. The reset is initiated by either a program fault (e.g. out-
of-bound memory access, bad instruction jump, or memory
corruption) or a health-monitoring trigger (e.g. inability to
transmit packets for a period of time (hardware lockup), packet
memory overflow, or register value lockup).

For systems that support long lasting applications, software
aging is an unavoidable phenomenon which may lead the
applications running on the system violate their QoS require-
ments. Hence, rejuvenation is a necessary process to maintain
the system performance at an expected level. However, reju-
venation takes time during which the system is not available
to user applications. Different levels of rejuvenation have
different overhead, different performance restore capability,
and result in different system performance. In this paper, we
are to maximize the system’s average performance by using
the combination of warm and cold software rejuvenation. In
particular, we extend our previous P 2-resource model [2] with
the consideration of both warm and cold software rejuvenation.
Based on the extended resource model, we formally analyze
resource supply and give the optimal combination of using
warm and cold software rejuvenation that maximizes the
system’s average performance.

The rest of the paper is organized as follows. First, we
discuss related work in Section II. System models and assump-
tions the paper is based upon are presented in Section III. A
formal definition of the problem the paper is to address is
also presented in Section III. Section IV analyzes the resource
supply within the system longevity with a given rejuvenation
pattern. In Section V, we present the MAX-PERFORMANCE
algorithm to determine the optimal rejuvenation pattern with
the goal of maximizing the average resource performance.
We verify the theoretical analysis and evaluate the proposed
resource model by simulations in Section VI. Section VII
concludes the paper and points out our future work.

II. RELATED WORK

Software rejuvenation is a preventive and proactive main-
tenance solution for handling system aging effects. Huang et
al. [3] first proposed the concept of software rejuvenation and
developed a four-state (i.e., Robust State, Failure Probable
State, Failure State, and Rejuvenation State) system model to
perform rejuvenation. Since then, many rejuvenation models
have been developed by the research community [3], [4]. For
instance, Koutras et al. extended the initial rejuvenation model
by considering two levels of rejuvenation actions [5], i.e.,
perfect rejuvenation action and minimal rejuvenation action.
The perfect rejuvenation (cold rejuvenation) results in the
system returning to the Robust State (initial state), while
the minimal rejuvenation (warm rejuvenation) results in the
system returning to the Failure Probable State (the state
before rejuvenation). Alonso et al. experimentally compared
the overhead by taking different software rejuvenation tech-
nologies [6]. They categorize the software rejuvenation into
three different granularities, i.e. application level, operating
system (OS) level and hardware level. The application level

rejuvenation takes the least time but also has the least impact
on the system performance. The hardware level rejuvenation
takes the longest time but lead to the best system performance.
The OS level rejuvenation is in the middle for both time cost
and performance impact.

To analyze software aging and study aging related failures,
Trivedi et al. [7] presented two approaches: analytical mod-
eling approach for determining optimal times to rejuvenate
and measurement based approach for detection and validation.
Tai et al. [8] identified key factors that may impact system
reliability and developed an approach to maximizing system
reliability by analyzing the optimal interval between main-
tenances. Guo et al. considered both transient faults caused
by software aging effects and network transmission faults and
analyzed the optimal software rejuvenation period that max-
imizes systems reliability [9]. Okamura et al. [10] discussed
a maintenance policy that combines aperiodic rejuvenations
and periodic checkpoints to maximize the system availability.
The estimations of reliability and availability were analyzed
in [11], [5].

The two-level rejuvenation model has also been analyzed
by the research community. Hong et al. studied two-level
closed-loop rejuvenation techniques and proposed an approach
to minimize the average rejuvenation cost [12]. Koutras et
al. observed the effects of a two-level software rejuvenation
model on availability, downtime and rejuvenation cost indica-
tors [13]. The two-level rejuvenation model was also modeled
by a Semi-Markov process and analyzed to find the optimal
rejuvenation policy to maximize the system availability [14],
[15], [16].

As pointed out in [17], a general characteristic of soft-
ware aging is the gradual performance degradation and/or
an increase in the software failure rate. The above works
mainly focus on aging related failure effects on QoS and how
to perform rejuvenations to optimize the system QoS, such
as availability and reliability. However, not much work has
been done on aging caused performance degradation analysis
and how to perform rejuvenations to improve the resource
performance.

Recently, Hua et al. [2] proposed a new resource model (P 2-
resource) which takes software aging and periodical resource
rejuvenations into consideration. It gives formally schedula-
bility analysis under the P 2-resource model for both EDF
(earliest deadline first) and RM (rate monotonic) scheduling
algorithms.

In this paper, we are to extend the P 2-resource with the
consideration of both warm and cold software rejuvenations
along with their impacts on the system performance. Based
on the extended resource model, we give the formal analysis
of resource supply and present a linear search algorithm to
determine the optimal interleaving between warm and cold re-
juvenations that maximizes the average resource performance.

III. SYSTEM MODELS AND PROBLEM FORMULATION

A. Models and Assumptions

Resource Performance Function



We use function f(t) to denote the resource performance at
time t. The resource performance represents the computation
cycles per unit time provided by the resource to applications.
As the system deteriorates with aging, we assume that the
resource performance function f(t) decreases with time t and
f(0) = 1 [1], [2]. As for any decreasing resource performance
function, the strategy to analyze the resource’s performance is
the same. Hence, to simplify the discussion of our approach,
we further assume that the resource performance function is
a linear decreasing function, i.e.,

f(t) = 1− at

where a denotes the resource performance decreasing rate
which is assumed to be a constant and 0 ≤ a < 1. If a = 0,
the resource’s performance does not degrade.

Resource Rejuvenation Pattern
Similar to [15], [11], [6], the system can perform two levels

of rejuvenations, i.e., cold rejuvenation and warm rejuvenation.
Once the resource’s performance f(t) degrades to a threshold
r (0 ≤ r < 1), we take a warm or cold rejuvenation to
restore its performance. After a cold rejuvenation, the system
returns to the Robust State, and the resource performance is
restored to f(t) = 1. When a warm rejuvenation is completed,
the system goes back to the Failure Probable State, and the
resource performance is only restored to f(t) = fs · p where
fs denotes the resource start performance (f(t) after last
rejuvenation) and p is the resource performance restore factor
(0 < p < 1). The resource is unavailable when it goes through
the rejuvenation process. The downtime caused by each cold
rejuvenation or warm rejuvenation is assumed to be a constant
ΦC and ΦW , respectively. We further assume ΦC > ΦW .

As the resource performance after each warm rejuvenation
is smaller than the previous warm rejuvenation, if we only take
warm rejuvenations, the resource performance will eventually
be below the threshold r and hence a cold rejuvenation
becomes necessary. We define the rejuvenation pattern as n
(n ∈ N) warm rejuvenations followed by one cold rejuve-
nation, as shown in Fig. 2. The time interval of an entire
rejuvenation pattern is denoted as rejuvenation hyperperiod
Π. We assume that the resource is repeatedly rejuvenated by
the above pattern with period Π.

Fig. 2. Resource Rejuvenation Pattern
As the initial resource performance is f(0) = 1, the resource

performance after n warm rejuvenations is f(t) = pn. The
resource performance after the nth warm rejuvenation must
not be smaller than the threshold, i.e., pn ≥ r, otherwise
the nth rejuvenation should be a cold rejuvenation. Hence,
we have n ≤ logp r and the maximal warm rejuvenation

number before a cold rejuvenation in the rejuvenation pattern
is Nmax = blogp rc.

Resource Model
The resource model is characterized by a 6-tuple

(f(t), r, p,ΦW ,ΦC , n), where f(t) is the resource perfor-
mance function, r is the resource performance threshold to
start a cold rejuvenation, p is the resource performance restore
factor of a warm rejuvenation, ΦW is the warm rejuvenation
time cost, ΦC is the cold rejuvenation time cost, and n is the
number of warm rejuvenations before a cold rejuvenation in
the rejuvenation pattern. We assume the resource starts at time
zero.

If the resource only takes cold rejuvenations, i.e., n = 0,
the resource model degenerates to the P 2-resource model
in [2].

Average Resource Performance
We define the average resource performance within a sys-

tem’s longevity L as the ratio between the total resource supply
SL within L, i.e.,

fL =
SL

L
(1)

B. Problem Formulation

The problem we are to address is defined below:

Problem: Given a resource R(f(t), r, p,ΦW ,ΦC , n), decide
n that maximizes the average resource performance, i.e., fL,
within its operational interval [0, L].

According to Eq. (1), maximizing the average resource
performance fL is to maximize the total resource supply SL

with given system longevity L. We take two steps to address
the problem. First, we analyze the total resource supply SL

with a given rejuvenation pattern (Section IV). Second, we
present the MAX-PERFORMANCE algorithm (Section V) to
determine the optimal rejuvenation pattern, i.e., n with respect
to maximizing average resource performance.

IV. RESOURCE SUPPLY ANALYSIS

In this section, we first analyze the resource supply SΠ

within a rejuvenation hyperperiod, and then formalize the total
resource supply SL within the system longevity on the basis
of SΠ.

A. Resource Supply within Rejuvenation Hyperperiod Π

Suppose the rejuvenation pattern is given as follows: n
warm rejuvenations followed by one cold rejuvenation, as
shown in Fig. 2.

Before the ith (1 ≤ i ≤ n + 1) rejuvenation, the start
performance and the end performance of the resource are pi−1

and r, respectively. The resource available time length of the
ith rejuvenation is

li = f−1(r)− f−1(pi−1) =
pi−1 − r

a
. (2)



The resource supply of the ith rejuvenation is

Si =

∫ f−1(r)

f−1(pi−1)

f(t)dt =

∫ 1−r
a

1−pi−1

a

f(t)dt. (3)

To generalize Eq. (2) and Eq. (3), we assume l0 = 0 and
S0 = 0.

A rejuvenation pattern contains n + 1 resource available
intervals, n warm rejuvenations, and one cold rejuvenation.
The rejuvenation hyperperiod is

Π =

n+1∑
i=1

li + n · ΦW + ΦC . (4)

The resource supply within the rejuvenation hyperperiod Π is
the summation of n + 1 resource available intervals, i.e.,

SΠ =

n+1∑
i=1

Si. (5)

B. Resource Supply within System Longevity L

In practical cases, the system longevity is much larger than
the rejuvenation hyperperiod, i.e., L >> Π [3]. We divide
the analysis of the resource supply SL within the longevity
into two cases based on if the longevity L is divisible by the
rejuvenation hyperperiod Π or not.

Case 1: L mod Π = 0
In this case, the system longevity contains L/Π entire

rejuvenation hyperperiods. The total resource supply within
the longevity is the sum of L/Π resource supplies SΠ in a
rejuvenation hyperperiod, i.e.,

SL = SΠ ·
L

Π
. (6)

Case 2: L mod Π 6= 0
In this case, we divide the total resource supply into two

parts: the resource supply in the interval containing bL/Πc
entire rejuvenation hyperperiods and the resource supply of the
remaining time interval IR. Hence, the total resource supply
within the longevity is

SL = SΠ ·
⌊
L

Π

⌋
+ SR. (7)

where SR is the resource supply of the remaining time interval
IR with length lR = L mod Π.

We further divide the analysis of the remaining resource
supply SR into two cases based on if the remaining time
interval IR ends in the time period when a rejuvenation is in
process.

Case 2.1: IR ends during a rejuvenation
As shown in Fig. 3, the remaining interval IR ends during

the jth rejuvenation implies
j∑

i=1

li + (j − 1)ΦW ≤ lR ≤
j∑

i=1

li + jΦW if 1 ≤ j ≤ n

Π− ΦC ≤ lR ≤ Π if j = n + 1
(8)

Fig. 3. Resource Supply Analysis

where j ∈ N.
The resource supply SR within IR is hence

SR =

j∑
i=1

Si (9)

where the value of j can be calculated from lR and Eq. (8).

Case 2.2: IR ends when the resource is available
Similar to Case 2.1, IR may end at the jth resource available

interval, which implies
j−1∑
i=0

li + (j − 1)ΦW ≤ lR ≤
j∑

i=0

li + (j − 1)ΦW (10)

where 1 ≤ j ≤ n + 1 and j ∈ N.
Hence, as shown in Fig. 3, the resource supply within IR

is

SR =

j−1∑
i=0

Si +

∫ f−1(pj−1)+lR−
∑j−1

i=0 li−(j−1)ΦW

f−1(pj−1)

f(t)dt

(11)

where the value of j can be calculated from lR and Eq. (10).

V. AVERAGE RESOURCE PERFORMANCE MAXIMIZATION

As n ∈ N and 0 ≤ n ≤ Nmax, the possible choices
of the number of warm rejuvenations n that maximizes the
average resource performance fL are limited. We present a
linear search method, i.e., the MAX-PERFORMANCE algo-
rithm, to determine the optimal number of warm rejuvenations
N∗ before a cold rejuvenation. The MAX-PERFORMANCE
algorithm is given as Algorithm 1.

In particular, the MAX-PERFORMANCE algorithm ini-
tializes both the optimal number of warm rejuvenations N∗

and the maximal average resource performance fmax as 0
(line 1-2), and calculates the possible maximal number of
warm rejuvenations Nmax (line 3). In the for loop (line 4-
11), for each possible number of warm rejuvenations n, we
calculate the total resource supply SL (line 5) according the
analysis in Section IV and the average resource performance
fL (line 6). Then we determine if the current n maximizes
the average resource performance (line 7-10). The algorithm
finally returns the maximal average resource performance fmax

and the corresponding number of warm rejuvenations N∗ (line
12).

Based on the resource supply analysis in Section IV, the
resource supply calculation in Algorithm 1 (line 5) costs O(n)
time. Hence, the time complexity of Algorithm 1 is O(n2).



Algorithm 1 MAX-PERFORMANCE
Input: A resource R(f(t), r, p,ΦW ,ΦC , n) and the system

longevity L.
Output: The optimal warm rejuvenation number N∗ before a

cold rejuvenation that maximizes the average resource per-
formance, and the maximal average resource performance
fmax during the system longevity.

1: N∗ = 0
2: fmax = 0
3: Nmax = blogp rc
4: for n = 0 to Nmax do
5: Calculate SL according to Eq. (6) or Eq. (7)
6: fL = SL/L
7: if fL > fmax then
8: N∗ = n
9: fmax = fL

10: end if
11: end for
12: return N∗ and fmax

VI. EXPERIMENT EVALUATION

In this section, we use simulation to evaluate the relationship
between warm rejuvenation number n and average resource
performance fL and the impacts of warm/cold rejuvenation
time coat on the optimal warm rejuvenation number N∗ that
maximizes the average resource performance fL.

Alonso et al. conducted a set of experiments to evaluate the
rejuvenation overhead of different rejuvenation techniques [6].
Their experimental results show that standalone application
restart and virtual/physical machine reboot consume about 45
seconds and 150 seconds, respectively. The application restart
can be treated as warm rejuvenation, while the machine reboot
is one kind cold rejuvenation. In our simulations, we use the
above experimental results as a guide of how to set warm and
cold rejuvenation time cost parameters.

A. Relationship between n and fL

To evaluate the relationship between the number of warm
rejuvenation n and average resource performance fL, we
conduct a simulation with the following parameters:

• Resource performance degradation rate: a = 0.005
• Resource performance threshold: r = 0.3
• Resource performance restore factor of a warm rejuvena-

tion: p = 0.95
• Cold rejuvenation time cost: ΦC = 150
• Warm rejuvenation time cost: ΦW = 45
• System longevity: L ∈ {1×104, 3×104, 5×104, 1×105}
The possible maximal number of warm rejuvenations is

Nmax = blogp rc = 23. With a given system longevity L, for
each possible warm rejuvenation number, i.e., n ∈ [0, Nmax],
we calculate the average resource performance fL according
to the analysis in Section IV and Eq. (1). Fig. 4 shows
the average resource performance under different numbers of
warm rejuvenations for each system longevity. From Fig. 4,
we have the following observations:

1) When the number of warm rejuvenations n increases, the
average resource performance fL first increases and then
decreases. For instance, fL increases when n increases
from 0 to 3 and starts to decrease when n increases from
3 to 23.

2) When the number of warm rejuvenations n is too small
or too large, the average resource performance fL is
relatively low. For instance, when n = Nmax = 23, fL
reaches its minimal value.

3) The system longevity L does not have significant impact
on the rejuvenation behavior when L >> Π.

In our models given in Section III-A, we assume a reju-
venation pattern starts with the initial state, i.e., f(t) = 0,
which indicates the rejuvenation behaviors in each rejuve-
nation hyperperiod are the same. In addition, we have also
made the assumption that the system periodically repeats the
rejuvenation pattern with period Π. If L >> Π, the system
longevity does not have a significant impact on rejuvenation
effects. This observation is evidenced from the following
aspects:

1) For different system longevity, the optimal number of
warm rejuvenations that maximize the average resource
performance are the same. In particular, for the tested
four longevity cases, N∗ = 3.

2) With the same number of warm rejuvenations n, the
average resource performance fL of the four longevity
cases is similar. For instance, the maximal difference of
fL for four longevity cases is 3.76%.

3) The average resource performance trend changing over
the number of warm rejuvenations are similar.

The observations are consistent with our analysis, i.e., there
is an optimal number of warm rejuvenations between 0 and
Nmax that maximizes the average resource performance. When
n = 0, i.e., the system only takes cold rejuvenations, the
resource becomes a P 2-resource [2]. The simulation results
also show that the extended resource model achieves 25.22%
higher average resource performance than the P 2-resource
model.

0 5 10 15 20 23
0.28

0.3

0.32

0.34

0.36

0.38

0.4

n

f L

L = 1 × 104

L = 3 × 104

L = 5 × 104

L = 10 × 104

Fig. 4. Average Resource Performance vs Warm Rejuvenation Number

B. Warm/Cold Rejuvenation Time Cost Impact

We conduct a simulation to evaluate the impact of
warm/cold rejuvenation time cost on the optimal number
of warm rejuvenations N∗ that maximizes fL and average
resource performance fmax. The simulation parameters are
set the same as in Section VI-A except the following two
parameters:



• Cold rejuvenation time cost: ΦC ∈ {100, 150, 200, 300}
• Warm rejuvenation time cost: ΦW ∈ [0, 100] with step 5
• System longevity: L = 10× 104

With a given cold rejuvenation time cost ΦC , for each
warm rejuvenation time cost ΦW choice, we use the MAX-
PERFORMANCE algorithm (Algorithm 1) to determine the
optimal number of warm rejuvenations N∗ that maximizes fL
and average resource performance fmax. Fig. 5(a) and Fig. 5(b)
depict the warm/cold rejuvenation time cost impact on N∗

and fmax, respectively. From Fig. 5, we have the following
observations:

1) In general, the optimal number of warm rejuvenations
N∗ decreases when the warm rejuvenation time cost ΦW

increases; it increases when the cold rejuvenation time
cost ΦC increases.

2) The maximal average resource performance fmax de-
creases when both warm and cold rejuvenation time costs
increases.

3) Both the optimal number of warm rejuvenation N∗ and
the maximal average resource performance fmax decrease
with warm/cold rejuvenation time cost ratio ΦW /ΦC

increasing.
The observations are consistent with the intuition behind

the proposed resource model. If the warm/cold rejuvenation
costs less/more time, i.e., the ratio ΦW /ΦC is smaller, we
should perform more warm rejuvenations to take its low
time cost advantage. As the resource is unavailable during
rejuvenations, the average resource performance decreases if
the rejuvenation’s time cost increases. When the ratio ΦW /ΦC

is larger, the proposed resource model can benefit more from
the low time cost advantage of warm rejuvenations, i.e., results
in higher average resource performance fmax.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

11

ΦW /ΦC

N
∗

ΦC = 100

ΦC = 150

ΦC = 250

ΦC = 300

(a) Optimal Number of Warm Reju-
venations

0 0.2 0.4 0.6 0.8 1
0.28

0.3

0.35

0.4

0.45

0.5

0.53

ΦW /ΦC

f m
a
x

ΦC = 100

ΦC = 150

ΦC = 250

ΦC = 300

(b) Maximal Average Resource Per-
formance

Fig. 5. Warm/Cold Rejuvenation Time Cost Impact

VII. CONCLUSION

To combat resource performance degradation due to soft-
ware aging, we have extended our previous P 2-resource model
by using a two-level rejuvenation strategy to maintain resource
performance. Based on the extended resource model, we have
formally analyzed the resource supply function and presented
the MAX-PERFORMANCE algorithm to determine the opti-
mal rejuvenation pattern that maximizes the average resource
performance. We have also verified the theoretical analysis and
compared the extended resource model through simulations.
Compared with the P 2-resource model, the extended resource
model achieves 25.22% higher average resource performance.

The current rejuvenation pattern is n warm rejuvenations
followed by one cold rejuvenation. The paper does not con-
sider tasks deployed on the resource. Our future work is to
analyze task schedulability and study the optimal rejuvenation
pattern for a given task set with the goal of maximizing the
task set schedulability.

REFERENCES

[1] David Lorge Parnas. Software aging. In Proceedings of the 16th
International Conference on Software Engineering, ICSE ’94, pages
279–287, Los Alamitos, CA, USA, 1994. IEEE Computer Society Press.

[2] Xiayu Hua, Chunhui Guo, Hao Wu, and Shangping Ren. Schedulability
analysis for real-time task set on resource with performance degradation
and periodic rejuvenation. In Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2015 IEEE 21th International
Conference on, Aug 2015.

[3] Y. Huang, C. Kintala, N. Kolettis, and N.D. Fulton. Software rejuvena-
tion: analysis, module and applications. In Fault-Tolerant Computing,
1995. FTCS-25. Digest of Papers., Twenty-Fifth International Sympo-
sium on, pages 381–390, June 1995.

[4] R.S. Hanmer and V.B. Mendiratta. Rejuvenation with workload migra-
tion. In Dependable Systems and Networks Workshops (DSN-W), 2010
International Conference on, pages 80–85, June 2010.

[5] V.P. Koutras, A.N. Platis, and N. Limnios. Availability and reliability
estimation for a system undergoing minimal, perfect and failed reju-
venation. In Software Reliability Engineering Workshops, 2008. ISSRE
Wksp 2008. IEEE International Conference on, pages 40–45, Nov 2008.

[6] J. Alonso, R. Matias, E. Vicente, A. Maria, and K.S. Trivedi. A compara-
tive experimental study of software rejuvenation overhead. Performance
Evaluation, 70(3):231 – 250, 2013. Special Issue on Software Aging
and Rejuvenation.

[7] K.S. Trivedi, K. Vaidyanathan, and K. Goseva-Popstojanova. Modeling
and analysis of software aging and rejuvenation. In Simulation Sympo-
sium, 2000. (SS 2000) Proceedings. 33rd Annual, pages 270–279, 2000.

[8] AT. Tai, S.N. Chau, L. Alkalaj, and H. Hecht. On-board preventive
maintenance: analysis of effectiveness and optimal duty period. In
Object-Oriented Real-Time Dependable Systems, 1997. Proceedings.,
Third International Workshop on, pages 40–47, Feb 1997.

[9] Chunhui Guo, Hao Wu, Xiayu Hua, Shangping Ren, and JerzyM.
Nogiec. Maximize system reliability for long lasting and continuous
applications. In New Contributions in Information Systems and Tech-
nologies, volume 353 of Advances in Intelligent Systems and Computing,
pages 603–612. Springer International Publishing, 2015.

[10] H. Okamura and T. Dohi. Availability optimization in operational soft-
ware system with aperiodic time-based software rejuvenation scheme. In
Software Reliability Engineering Workshops, 2008. ISSRE Wksp 2008.
IEEE International Conference on, pages 22–27, Nov 2008.

[11] Amr Sadek and Nikolaos Limnios. Nonparametric estimation of relia-
bility and survival function for continuous-time finite markov processes.
Journal of Statistical Planning and Inference, 133(1):1 – 21, 2005.

[12] Yiguang Hong, Dong Chen, Lei Li, and K. S. Trivedi. Closed loop de-
sign for software rejuvenation. In Workshop on Self-Healing, Adaptive,
and Self-Managed Systems, 2002.

[13] V.P. Koutras and A.N. Platis. Applying partial and full rejuvenation
in different degradation levels. In Software Aging and Rejuvenation
(WoSAR), 2011 IEEE Third International Workshop on, pages 20–25,
Nov 2011.

[14] Wei Xie, Yiguang Hong, and Kishor Trivedi. Analysis of a two-level
software rejuvenation policy. Reliability Engineering & System Safety,
87(1):13 – 22, 2005.

[15] V.P. Koutras and A.N. Platis. Semi-markov availability modeling of
a redundant system with partial and full rejuvenation actions. In
Dependability of Computer Systems, 2008. DepCos-RELCOMEX ’08.
Third International Conference on, pages 127–134, June 2008.

[16] VasilisP. Koutras. Two-level software rejuvenation model with increasing
failure rate degradation. In Dependable Computer Systems, volume 97
of Advances in Intelligent and Soft Computing, pages 101–115. Springer
Berlin Heidelberg, 2011.

[17] M. Grottke, R. Matias, and K.S. Trivedi. The fundamentals of software
aging. In Software Reliability Engineering Workshops, 2008. ISSRE
Wksp 2008. IEEE International Conference on, pages 1–6, Nov 2008.


