
Reliability Guaranteed Energy-Aware Frame-Based Task Set Execution Strategy for Hard
Real-Time Systems

Zheng Lia, Li Wanga, Shuhui Lia, Shangping Rena, Gang Quanb

aIllinois Institute of Technology, Chicago, IL 60616, USA
bFlorida International University, Miami, FL 33174, USA

Abstract

In this paper, we study the problem of how to execute a real-time frame-based task set on DVFS-enabled processors so that the
system’s reliability can be guaranteed and the energy consumption of executing the task set is minimized. To ensure the reliability
requirement, processing resources are reserved to re-execute tasks when transient faults occur. However, different from commonly
used approaches that the reserved processing resources are shared by all tasks in the task set, we judiciously select a subset of
tasks to share these reserved resources for recovery purposes. In addition, we formally prove that for a give task set, the system
achieves the highest reliability and consumes the least amount of energy when the task set is executed with a uniform frequency
(or neighboring frequencies if the desired frequency is not available). Based on the theoretic conclusion, rather than heuristically
searching for appropriate execution frequency for each individual task as used in many research work, we directly calculate the
optimal execution frequency for the task set. Our simulation results have shown that with our approach, we can not only guarantee
the same level of system reliability, but also have up to 15% energy saving improvement over other fault recovery-based approaches
existed in the literature. Furthermore, as our approach does not require frequent frequency changes, it works particularly effective
on processors where frequency switching overhead is large and not negligible.

Keywords: Transient fault, real-time, energy saving, frame-based task set

1. Introduction

Reliability and power/energy efficiency have increasingly
become one of the critical issues in real-time system designs.
As aggressive scaling of CMOS technology continues, transis-
tors also become more vulnerable than ever before to radiation
related external impacts [5, 7, 14], which often lead to rapid
system reliability degradation. The system reliability problem
is further worsened by ever increasing system complexity and
dramatically increased operating temperature [8, 15]. As a re-
sult, computing systems become more and more susceptible to
both transient and permanent faults [15].

Furthermore, as more and more transistors are integrated
into a single chip, operation power consumption of the chip has
also increased exponentially. The dramatic power consump-
tion increase not only exacerbates the power supply problem for
power constrained platforms such as portable devices, but also
aggravates the operational cost for power-rich platforms such
as data centers. Therefore, more and more aggressive power
aware reduction techniques have been proposed [6, 9].

However, for real-time system, power/energy conservations
and reliability enhancement are usually at odds. Taking the Dy-
namic Voltage and Frequency Scaling (DVFS) technique as an
example, as we know the DVFS is one of the widely used means

Email addresses: zli80@iit.edu (Zheng Li), lwang64@iit.edu
(Li Wang), sli38@iit.edu (Shuhui Li), ren@iit.edu
(Shangping Ren), gang.quan@fiu.edu (Gang Quan)

for power management [13], by dynamically lowering down the
supply voltage and working frequency, the DVFS can reduce
system’s power consumption. However, reducing the system’s
working frequency may also prolong task execution times and
potentially cause tasks to miss their deadlines. In addition, ex-
isting work [23] has shown that the transient fault rate increases
when the supply voltage on an IC chip is scaled down. In other
words, lowering down system’s supply voltage can potentially
degrade the system’s reliability. Hence, for systems demanding
reliability and deadline guarantees and low energy consump-
tion, such as satellite and surveillance systems [20], it is a chal-
lenge to design a task execution strategy that guarantees the sat-
isfaction of both system reliability and deadline requirements,
but at same time consumes the least amount of energy.

As transient faults are found more frequent than permanent
faults [4, 9], in this work, we focus on the transient fault and
explore using backward fault recovery techniques. The back-
ward fault recovery technique stores system’s safe state. In
case of a failure occurrence, the system is restored to its pre-
vious safe state and the computation after the safe state point is
repeated [12], to tolerate transient faults and guarantee system
reliability requirement. As both the backward fault recovery
techniques for reliability guarantee and the DVFS for energy
savings depend on task’s available slack time, i.e., the temporal
difference between a task’s deadline and its completion time,
which is limited for hard real-time system, therefore, the prob-
lem we are interested is, how to effectively utilize the limited
slack time to design a system with guaranteed reliability and

Preprint submitted to Journal of Systems and Software July 11, 2013



minimum energy consumption.
A few researches have been published in the literature which

are closely related to our work. For example, Zhu et al. [19]
proposed a reliability-aware power management scheme which
aims to minimize energy consumption while maintaining sys-
tem’s reliability at the same level as if all tasks were executed at
the highest processor frequency. However, as scaling down task
execution frequencies for energy saving purpose often degrades
system’s reliability, hence, the basic idea behind the scheme
is to reserve some slack time exclusively for fault recovery to
maintain system’s reliability at the target level. We call the re-
served slack time for fault recovery as recovery block. A few
heuristics as to how to decide the size of recovery block and
the task execution frequencies, such as the longest task first
(LTF) and the slack usage efficiency factor (SUEF), are de-
veloped [20]. Zhao et al. [17] improved the approach and de-
veloped the shared recovery (SHR) technique which allows all
tasks share the same reserved recovery block, but only allow a
single fault recovery during the entire task set execution.

Recently, Zhao et al. [18] extended the work and developed
the Generalized Shared Recovery Technique (GSHR) approach
which allows multiple fault recoveries by reserving multiple re-
covery blocks. As the GSHR approach allows sharing the re-
covery block among different tasks, the slack time is more effi-
ciently used and thus has a better energy saving performance
comparing to its predecessors. Zhao et al also developed a
heuristic, i.e. the Incremental Reliability Configuration Search
(IRCS), to determine the processor frequencies for different
tasks. The IRCS essentially adopts a dynamic programming
approach and searches for a suitable frequency for each task to
maximize energy savings.

The techniques mentioned above work well when task exe-
cution times in a given task set do not have large variations and
the available slack time, i.e., the temporal difference between
the deadline and its earliest completion time of the task set, is
large. However, when the slack time is limited, if there is a
task whose execution time is much larger than the other tasks
in the task set, the aforementioned approaches need to reserve
a recovery block long enough to accommodate the outlier task,
which not only results in low usage of the reserved block for
short tasks, but also less slack time can be used to scale down
the processing frequency for energy saving purposes.

In this paper, we present the Generalized Subset Shared Re-
covery technique (GSSR) to guarantee hard real-time system’s
reliability and at the same time minimize energy consumption
of executing a given task set. The essence of the developed
GSSR approach is to judiciously partition a given task set into
two subsets: fault-unprotected task set and fault-protected task
set. To guarantee the reliability, the fault-unprotected task set is
executed with the highest processor frequency; while the exe-
cution frequencies for fault-protected tasks are scaled down and
tasks in the fault-protected task set share recovery block in case
of a failure occurrence. As such, our approach can effectively
reduce unnecessary resource reservations and leave more slack
time to adjust tasks’ processing frequencies for energy saving.

We also formally prove that, if a task set remains active in an
interval, executing the task set under a uniform frequency is the

optimal strategy to maximize task set reliability and minimize
the energy consumption. If such a frequency is not available,
then using two neighboring frequencies, i.e. adjacent frequen-
cies, become the optimal choice. Therefore, different from the
IRCS that different tasks may run at different frequencies, we
employ two (if the desired scaled-down frequency is available),
or at most three, different processor frequencies for the entire
task set. Our extensive experimental study has shown that, com-
paring to recent work in the literature, such as the IRCS, the
proposed GSSR approach can achieve up to 15% more energy
saving without sacrificing reliability and deadline guarantees.

The remainder of the paper is organized as follows: Sec-
tion 2 introduces the system models and definitions. In Sec-
tion 3, we present a motivating example and formally formu-
late the task set execution strategy (TSES) decision problem to
be addressed. We discuss the proposed approach in Section 5.
Section 6 presents the performance evaluation. We conclude
the paper in Section 7.

2. Models and Definitions

In this section, we introduce the models and terms used in
the paper.

2.1. Processor and Task Model

We assume the processor is DVFS enabled and has a fi-
nite set (F ) of working frequencies, i.e. F = {f1, ..., fq} with
fi < fj if i < j, where fi and fi+1 are called neighboring
frequencies. The minimum and maximum frequency f1 and fq
are denoted as fmin and fmax, respectively. The values are nor-
malized with respected to fmax, i.e. fmax = 1.

As the processor’s processing frequency is almost linearly
related to supply voltage 1 and the supply voltage adjustment
will result in processing frequency scaling, hence, in this paper,
we use frequency scaling to stand for both supply voltage and
frequency adjustment.

The task set Γ being considered is a frame-based task set 2.
It has n tasks, i.e. Γ = {τ1, · · · , τi, · · · , τn} with ci ≥ cj if
i < j where ci is the worst-case execution time (WCET) of task
τi under the maximum frequency fmax. When a lower working
frequency fi (fi < fmax) is used, the execution time of a task
is extended to ci

fi
. For simplicity, we use f(τi) to denote the

execution frequency of task τi.
Tasks in a given task set may or may not be independent.

To ease the representation, we first assume that tasks are in-
dependent, then in Section 5.3, we explain why the proposed
technique can also be applied to a dependent task set.

1f = a · (Vdd−Vt)2
Vdd

, where a is constant, f , Vdd and Vt are the processing
frequency, supply voltage and threshold voltage, respectively [2].

2A frame-based task set is a task set of which all tasks have the same arrival
time and deadline [16].

2



2.2. Energy Model
The energy model used in this paper is adopted from Aydin

et al.’s work [1, 21, 23]. For self containment, we give a short
summary here.

In particular, the system’s active power (Pa) under oper-
ating frequency f consists of frequency independent and fre-
quency dependent power, i.e.

Pa = Pind + Pdep = Pind + Ceff
θ (1)

where Pind, Cef, and θ are system dependent constants and θ ≥
2 [1, 2]. If the task τi is executed under f(τi), its power con-
sumption is represented as:

E(f(τi), ci) = (Pind + Ceff(τi)
θ)

ci
f(τi)

= Pind
ci

f(τi)
+ Cefcif(τi)

θ−1 (2)

From (2), it is clear that scaling down the processing fre-
quency reduces frequency dependent energy (Cefcif(τi)

θ−1)
but it also increases the frequency independent energy (Pind

ci
f(τi)

)
because of longer execution time due to lower processing fre-
quency. Hence, there is a balanced point, i.e. the Energy-
Efficient Frequency (fee). Further scaling down the processing
frequency below fee will increase the total energy consumption.
Early studies [21, 23] concludes that

fee = θ

√
Pind

Cef(θ − 1)
(3)

2.3. Fault and Reliability Model
Although both permanent and transient faults may occur

during the execution of task sets, transient faults are found more
frequent than permanent faults [4, 9]. Hence, in this paper, we
focus only on transient faults and adopt the same fault arrival
rate model as given in [18, 20, 23]:

λ(f) = λ̂010−d̂f (4)

where λ̂0 = λ010
d

1−fmin , d̂ = d
1−fmin

, d (> 0) is a system-
dependent constant, and λ0 is the average fault arrival rate un-
der fmax.

The reliability of task τi under execution frequency f(τi)
is defined as the probability of finishing its execution without
encountering any transient faults, which is expressed as [18,
20]:

γ(f(τi), ci) = e
−λ(f(τi))

ci
f(τi) (5)

where λ(f(τi)) is given by Equation (4).

2.4. Definitions
In this subsection, we introduce the terms and notations to

be used later in the paper.

Reserved recovery block (B): a reserved recovery block is
a time block reserved exclusively for task re-execution in the
presences of faults.

If the reserved recover block B is for task τi, the length of
the block is equal to τi’s WCET under fmax, i.e. len(B) = ci.
If k (≥ 1) reserved recovery blocks are shared among tasks in
the task set Γ, the total duration of the reserved blocks equals
to the sum of the first k longest tasks’ WCETs under fmax, i.e.∑k
i=1 len(Bi) =

∑k
i=1 ci, where ci ≥ cj if i < j.

Fault-Protected Task (τp): a fault-protected task is a task that
is allowed to share a reserved recovery block for re-execution if
a fault occurs during its execution.

Fault-Protected Task Set (Γp): a fault-protected task set is a
task set of which all its member tasks are fault-protected, i.e.
∀τ ∈ Γp, τ is fault-protected.

Fault-Unprotected Task (τu): a fault-unprotected task is the
task which is not allowed to use a reserved recovery block for
fault recovery even if faults occur during its execution.

Fault-Unprotected Task Set (Γu): a fault-unprotected task set
is a task set of which all its member tasks are fault-unprotected.
We have Γu ∪ Γp = Γ and Γu ∩ Γp = ∅.
Task Set Execution Strategy (Ψ): for a given task set Γ, the
task set execution strategy decides the number of reserved re-
covery blocks (k), the protect task set (Γp), and execution fre-
quency for task τi. In other words, Ψ(Γ) = (

−−−→
f(τi)τi∈Γ,Γp, k),

where
−−−→
f(τi)τi∈Γ is the abbreviation for [(f(τ1), c1

f(τ1) ), · · · ,
(f(τn), cn

f(τn) )], i.e. executing task τi with frequency f(τi) for
ci

f(τi)
time duration, f(τi) ∈ F , and Γp ⊆ Γ.

Task Set Reliability under a Given Execution Strategy (R):
for a given task set (Γ) and its processing strategy (Ψ(Γ) =

(
−−−→
f(τi)τi∈Γ,Γp, k)), the task set reliability (R) is defined as the

probability of successfully executing all tasks under the given
execution strategy.

3. Motivation and Problem Formulation

Before we formulate the research problem, we first give a
motivating example.

3.1. A Motivating Example
Considering a task set with four independent tasks, i.e. Γ =

{A,B,C,D}, their execution times under fmax are 10ms, 5ms,
4ms and 3ms, respectively. These tasks arrive at the same time
and have the same deadline 35ms. The reliability constraint for
the task set is Rg =

∏
τi∈{A,B,C,D} γ(fmax, ci), which is the

probability of successfully executing all four tasks under fmax
with zero fault occurrence. Fig. 1(a) depicts the setting.

Assume the available frequencies on a processor are from
fmin = 0.1 to fmax = 1 with step value of 0.1, transient fault
arrival follows Poisson distribution with average arrival rate as
λ0 = 10−6 as given in [18]. We evaluate system reliability and
energy consumption of two well recognized reliability-aware
power management approaches, i.e. the approaches with [18]
and without [20] reserved recovery block sharing, respectively.
Without Sharing Reserved Recovery Block — the Longest
Task First (LTF) Approach [20]

3



Figure 1: Motivating Example

The LTF approach, as the name suggested, always chooses
the task with longest worst-case execution time in the task set
and applies frequency scaling to the task. For the given ex-
ample, as task A has the longest WCET of 10ms, it is cho-
sen for using frequency scaling. A reserved recovery block of
size 10ms is allocated for task A in case faults occur during
its execution. The other three tasks are executed with maxi-
mal frequency fmax = 1. The remaining slack time of 3ms is
hence used for scaling down the processing frequency for task
A. In this case, task A should be executed under frequency of
10/13 = 0.7692. Hence, the nearest available frequency 0.8 is
chosen. Fig. 1(b) illustrates the execution strategy under LTF. It
is not difficult to calculate that the total energy cost, normalized
to the energy cost when all tasks are executed with fmax, is 84%.
The task set reliability, normalized to the reliability requirement
of Rg , is 100.0007%.

Globally Sharing Reserved Recovery Block — the General-
ized Shared Recovery (GSHR) Approach [18]

With the GSHR approach, reserved recovery blocks are
shared among all tasks in the task set. The Incremental Reliabil-
ity Configuration Search (IRCS) heuristic is developed [18] to
search a suitable frequency for each task. In particular, task A,
B, C and D are executed under frequency of 0.9, 0.9, 0.8 and
0.9, respectively. The recovery block is shared by all four tasks
and has the length of 10ms. Fig. 1(c) depicts the result of IRCS.
The normalized energy consumption under the IRCS scheme is
79% and the normalized task set reliability is 100.0189%.

The example shows that the results derived from both the
LTF and the IRCS satisfy the reliability and deadline require-
ments. However, the IRCS approach performs better than the
LTF approach from energy consumption perspective.

Our Observations
In order to allow all tasks be able to share the same recovery

block, the IRCS approach needs to reserve 10ms as its recov-
ery block. If, on the other hand, we exclude the longest task,

i.e. task A, from sharing the recovery block, we only need to
reserve 5ms for the recovery block, which means more slack
time can be used for frequency scaling. It is very interesting
that, when we run task A at the maximum frequency and task
B, C, andD at frequency 0.6, the normalized energy consump-
tion is only 68% and the normalized reliability is 100.0110%.
Under this execution strategy, we not only satisfy the reliabil-
ity and deadline requirements, but also save 11% more energy
comparing to the IRCS approach. Fig. 1(d) shows the process-
ing strategy that outperforms the IRCS approach.

This example indicates that if we judiciously select a subset
of tasks to share the recovery block, we can save more energy
without compromising reliability and deadline constraints.

Another observation is that the IRCS uses a heuristic ap-
proach to searching a suitable frequency for each task in the
task set. When the search space, i.e. the number of available
frequencies and the number of tasks in the task set, is large, due
to the heuristic nature, the chance of finding a good solution
for every task reduces and hence the performance of the IRCS
approach degrades. Simulation results in Section 6 confirm this
observation. Therefore, our second motivation is to develop a
task set execution strategy search algorithm which is indepen-
dent of the number of available frequencies and the number of
tasks in a task set.

3.2. Problem Formulation
In this subsection, we formulate the research problem the

rest of the paper to address, i.e. to find a reliability and dead-
line guaranteed task set execution strategy that minimizes en-
ergy consumption. We call the problem the Task Set Execution
Strategy decision problem, the TSES problem for short.

Problem 1 (The TSES Decision Problem). Given a task set
with n independent tasks, i.e. Γ = {τ1, · · · , τn} with ci ≤ cj
if i > j where ci is the τi’s WCET under fmax, and a DVFS
enabled processor with q different processing frequencies, i.e.
F = {f1, · · · , fq}, where f1 = fmin, fq = fmax, and fi < fj
if i < j. The reliability and deadline constraints are Rg and
D, respectively, decide a task set processing strategy Ψ(Γ) =

(
−−−→
f(τi)τi∈Γ,Γp, k) with

Objective:

min
∑
τi∈Γ

E(f(τi), ci) (6)

Subject to:

R(
−−−→
f(τi)τi∈Γ,Γp, k) ≥ Rg (7)∑

τi∈Γ

ci
f(τi)

≤ D −
k∑
i=1

len(Bi) (8)

where len(Bi) = cpi is the ith longest WCET of fault-protected
task τpi ∈ Γp, and Γp ⊆ Γ. �

It is worth pointing out that we assume fault detections are
done at the end of each task execution using techniques such
as sanity or consistency checks [12] and the time overhead is

4



counted as part of task’s worst-case execution time. Although,
frequency switching has extra time and energy overhead, we
leave the frequency switching overhead discussion to Section 5.3.

4. Generalized Subset Shared Recovery

As we have observed from the motivating example given
in Section 3.1 that recovery block sharing has its superiority
over the techniques that do not share the recovery block. When
tasks’ worst-case execution times in a given task set are close
to each other, i.e. the variation among task’s WCETs is small,
globally sharing a reserved recovery block among all tasks in
the given task set performs well as evidenced in [18]. However,
when there is a large variation among the worst-case execution
times, as shown in the motivating example, sharing the reserved
recovery block among a judiciously selected subset of tasks per-
forms better than globally sharing the block among all tasks in
the task set. The intuition behind the conclusion is as follows.

For a given task set Γ of size n, when the variation of their
worst-case execution times is large, k (1 ≤ k ≤ n) reserved re-
covery blocks may occupy most of the slack time, hence leave
only a small portion for frequency scaling. However, if we ex-
clude the outliers, for instance, the first few longest tasks, and
only allow a subset of tasks to share the recovery blocks, we can
reduce the total length of the recovery blocks and leave more
slack time for energy saving. Based on the intuition, we pro-
pose a generalized subset shared recovery (GSSR) technique.
It is not difficult to see that the GSHR is a special case of the
proposed GSSR technique, i.e. when Γp = Γ, the GSSR de-
generates to the GSHR.

With the GSSR technique, a given task set Γ is partitioned
into two subsets, i.e. fault-protected task set Γp and fault-
unprotected task set Γu, where all fault-unprotected tasks are
executed under the maximum frequency fmax, i.e. ∀τu ∈ Γu,
f(τu) = fmax. Furthermore, fault-unprotected tasks are not al-
lowed to use the reserved recovery blocks to do fault recoveries.
On the other hand, tasks in the fault-protected task set are ex-
ecuted under scaled down frequencies and share the reserved
recovery blocks for fault recoveries.

Given a task set Γ, and an execution strategy Ψ(Γ) =

(
−−−→
f(τi)τi∈Γ,Γp, k), where Γp = {τp1 , · · · , τpm}, reliability of the

task set Γ is the product of the reliability of fault-protected task
set and the reliability of fault-unprotected task set, i.e.

R(
−−−→
f(τi)τi∈Γ,Γp, k) = Rk(Γp)×

∏
τj∈Γ−Γp

γ(f(τj), cj) (9)

where the calculation of the reliability of fault-protected task
set sharing k reserved recovery blocks (Rk(Γp)) is recursively
defined given below [18]:

Rk(τp1 , · · · , τpm) = γ(f(τp1 ), cp1)×Rk(τp2 , · · · , τpm)+

(1− γ(f(τp1 ), cpi ))× γ(fmax, c
p
1)×Rk−1(τp2 , · · · , τpm) (10)

The value of Rk(τp1 , · · · , τpm) can be found using dynamic pro-
gramming and the time complexity is O(km).

As the probability of fault occurrences is relatively small,
the expected energy consumption for fault recoveries is negli-
gible comparing to the energy cost of executing all tasks in the
task set. Hence, the expected energy consumption under given
Ψ(Γ) = (

−−−→
f(τi)τi∈Γ,Γp, k) can be defined as:

E((
−−−→
f(τi)τi∈Γ,Γp, k)) =

∑
τi∈Γ

E(f(τi), ci) (11)

From formula (9) and (11), we can see that the task set exe-
cution strategy Ψ has direct impact on the task set reliability and
energy consumption. Next section, we present our approach
to finding a task execution strategy that minimizes the energy
consumption and at the same time guarantees the satisfaction
of both reliability and deadline constraints.

5. GSSR-based Task Set Execution Strategy

As we have observed from our motivating example that if
we judiciously select a fault-protected task set (Γp ⊆ Γ) and
corresponding task execution frequencies for Γp, we can save
more energy without compromising the satisfaction of reliabil-
ity and deadline constraints. In this section, we present in detail
the generalized subset shared recovery (GSSR) based task set
execution strategy. In particular, we first consider for a given
fault-protected task set (Γp), what should be its execution strat-
egy (

−−−→
f(τi)τi∈Γ,Γp, k). Second, for a given task set (Γ), how to

judiciously decide the fault-protected task set (Γp ⊆ Γ).

5.1. Deciding Task Set Execution Strategy for a Given Fault-
Protected Task Set

In this subsection, we discuss for a given task set (Γ), if a
judiciously selected fault-protected task set (Γp ⊆ Γ) is given,
what processing frequencies

−−−→
f(τi)τi∈Γ should be used to ex-

ecute the fault-protected tasks and how many blocks (k) need
be reserved for shared recovery among all fault-protected tasks
(τp ∈ Γp).

As fault-unprotected tasks are not allowed to do fault re-
coveries, to achieve their highest reliability, they are always
executed under fmax. Hence, we only need to determine the
execution frequencies for fault-protected tasks, i.e.

−−−→
f(τi)τi∈Γp .

Before we consider the execution frequencies for a given task
set, we first investigate the execution strategy for a single task
without considering fault recovery.

The following lemma states that among all execution strate-
gies taking the same amount of time T to complete a task’s ex-
ecution, the execution strategy that uses a uniform frequency,
or neighboring frequencies if the desired frequency is not avail-
able, to execute the task for the fixed duration T provides the
maximal reliability (γ), i.e. the maximal probability of success-
fully executing a task without encountering a fault.

Lemma 1. Given a task τ , its WCET c, time duration T (T ≥
c), and available frequencies F = {fmin, f2 · · · , fmax} with
fi < fj for i < j, if frequency switching is allowed during
task τ ’s execution, we have the following conclusions:

5



1. if fu = fmax
c
T ∈ F , then

γ(fu, T ) = max{
q∏
i=1

γ(fi, ti)|fi ∈ F,
q∑
i=1

ti = T}

2. otherwise

γ([(fj , t), (fj+1, T − t)])

= max{
q∏
i=1

γ(fi, ti)|fi ∈ F,
q∑
i=1

ti = T}

where fj < fu < fj+1, fj , fj+1 ∈ F and
∑q
i=1 fiti =

fmaxc.

�

Proof. We use notation
−−−−→
(fi, ti)q = [(f1, t1), ..., (fq, tq)] to de-

note the strategy of executing a task with frequency fi ∈ F for
ti time units, where ti ≥ 0,

∑q
i=1 fiti = fmaxc and

∑q
i=1 ti =

T . Hence, the reliability of the task under
−−−−→
(fi, ti)q can be rep-

resented as:

γ(
−−−−→
(fi, ti)q) =

q∏
i=1

γ(fi, ti) = e−
∑q
i=1 λ(fi)ti

If fu = fmax
c
T ∈ F is used for the whole duration T , then

the execution strategy is (fmax
c
T , T ) = (

∑q
i=1 fiti∑q
i=1 ti

,
∑q
i=1 ti), and

the reliability is:

γ(fmax
c

T
, T ) = e

−λ(
∑q
i=1

fiti∑q
i=1

ti
)
∑q
i=1 ti

As λ(x) is a convex function3, based on convex function
property (12), we have:

q∑
i=1

λ(fi)ti ≥ λ(

∑q
i=1 fiti∑q
i=1 ti

)(

q∑
i=1

ti)

Furthermore, as e−x is a decreasing function, we have
γ(fmax

c
T , T ) ≥ γ(

−−−−→
(fi, ti)q), which concludes the proof for case

1).
If fmax

c
T /∈ F and fj < fmax

c
T < fj+1, the reliability of

task under [(fj , t), (fj+1, T − t)] can be expressed as:

γ([(fj , t), (fj+1, T − t)]) = e−(λ(fj)t+λ(fj+1)(T−t))

According to formula (12), we have:

q∑
i=1

λ(fi)ti ≥ λ(fj)t+ λ(fj+1)(T − t)

3 If g(x) is a convex function, q(≥ 2) ∈ I+, xi, ti ∈ <+ and xi < xk if
i < k, then we have:

q∑
i=1

g(xi)ti ≥ g(xj)tj + g(xj+1)tj+1 ≥ g(
∑q
i=1 xiti∑q
i=1 ti

)(

q∑
i=1

ti) (12)

Where xjtj + xj+1tj+1 =
∑q
i=1 xiti, xj <

∑q
i=1 xiti∑r
i=1 ti

< xj+1, and

tj + tj+1 =
∑q
i=1 ti.

Hence, e−(λ(fj)t+λ(fj+1)(T−t)) ≥ e−
∑q
i=1 λ(fi)ti , which im-

plies γ([(fj , t), (fj+1, T − t)]) ≥ γ(
−−−−→
(fi, ti)q). These conclude

the proof.

Lemma 1 can easily be extended to a task set (Γ) by treating
the single task’s execution time c as the summation of ci, i.e.
c =

∑
τi∈Γ ci. We formulate the extension as Lemma 2.

Lemma 2. Given a task set Γ = {τ1, · · · , τn} with task τi’s
worst-case execution time ci, available frequencyF = {fmin, f2,
· · · , fmax} with fi < fj for i < j, and fixed execution time du-
ration T (T ≥

∑
τi∈Γ ci), when shared recovery block k =

0, the execution strategy of using a uniform frequency fu =
fmax

∑
τi∈Γ ci

T if fu ∈ F , or neighboring frequencies fi and fi+1

with fi < fu < fi+1 if fu /∈ F , to execute the task set provides
the highest reliability. More specificly, we have

1. if fu = fmax

∑
τi∈Γ ci

T ∈ F , then

R(
−−−−−→
(fu,

ci

fu
)τi∈Γ, φ, 0)

= max{R(
−−−−−−−−−→
(f(τi),

ci

f(τi)
)τi∈Γ, φ, 0)|f(τi) ∈ F,

∑
τi∈Γ

ci

f(τi)
= T}

(13)

2. otherwise,

R([(fj , t), (fj+1, T − t)], φ, 0)

= max{R(
−−−−−−−−−→
(f(τi),

ci

f(τi)
)τi∈Γ, φ, 0)|f(τi) ∈ F,

∑
τi∈Γ

ci

f(τi)
= T}

(14)

where fj × t+ fj+1(T − t) =
∑n
i=1 fmaxci, or t =∑n

j=1 ci−fj+1×T
fj−fj+1

, fj < fu < fj+1 and fj , fj+1 ∈ F

�

We skip the proof for Lemma 2 as it is very similar to the
one given for Lemma 1.

Rizvandi [13] studied the relationship between task exe-
cution frequency and energy consumption and concluded that
when the energy model is a convex function of frequency, using
a uniform, or neighboring frequencies if the desired frequency
is not available, is the optimal strategy for energy saving pur-
pose. With this conclusion, we derive the Lemma 3.

Lemma 3. Given a task set Γ = {τ1, · · · , τn} with task τi’s
worst-case execution time ci, available frequencyF = {fmin, f2,
· · · , fmax} with fi < fj for i < j, and fixed execution time du-
ration T (T ≥

∑
τi∈Γ ci), when shared recovery block k = 0,

then using one uniform frequency fu =
fmax

∑
τi∈Γ ci

T , or neigh-
boring frequencies fj and fj+1 with fj < fu < fj+1 if fu /∈ F ,
to execute the task set consumes the least energy. �

Proof. Since the execution time duration is fixed as T and the
energy model (formula (2)) is a convex function of process-
ing frequency, hence, executing the task set under frequency

fu =
fmax

∑
τi∈Γ ci

T , or neighboring frequencies fj and fj+1

with fj < fu < fj+1 if fu /∈ F , consumes the least en-
ergy [13]. In addition, based on Lemma 2, executing the task

6



set under frequency fu, or the neighboring frequencies fj and
fj+1 with fj < fu < fj+1 if fu /∈ F , can also achieve the
highest reliability. Hence, we get the conclusion summarized
as Lemma 3.

From Lemma 2 and Lemma 3, we have the following theo-
rem.

Theorem 1. Given a task set Γ = {τ1, · · · , τn} with task τi’s
worst-case execution time ci, available frequencyF = {fmin, f2,
· · · , fmax} with fi < fj for i < j, and fixed execution time du-
ration T (T ≥

∑
τi∈Γ ci), when shared recovery block k = 0,

then the execution strategy of using a uniform frequency fu =
fmax

∑
τi∈Γ ci

T if fu ∈ F , or neighboring frequencies fj and fj+1

with fj < fu < fj+1 if fu /∈ F , to execute the task set provides
the highest reliability and consumes the least energy. �

Proof. The proof of the theorem can be directly derived from
the proof of Lemma 2 and Lemma 3.

Theorem 1 gives the execution strategy that has the highest
reliability, but consumes the least energy for a task set when
zero recovery is considered. We argue that when k recovery
blocks are allocated for fault-protected task set, the conclusions
stated in Theorem 1 still holds.

The intuition behind it is that if a strategy under which ex-
ecuting the task set has the highest reliability, i.e. the probabil-
ity to successfully execute the task set without encountering a
fault, it simply implies that executing the task set with the strat-
egy has the least probability to encounter a fault, hence, has the
least probability to require a recovery. Therefore, when a given
number of recovery blocks become available, the strategy will
perform the best, i.e. provide the highest reliability among all
other strategies. As task set execution energy consumption is
independent of recovery blocks as shown in (11), the execution
strategy that leads to the minimal energy consumption under
zero recovery blocks will remain to be the optimal one when
there are k reserved recovery blocks.

It is worth pointing out that when fu =
fmax

∑
τi∈Γ ci

T /∈ F ,
based on (14), we need to use fj and fj+1 to execute for t
and T − t time units, respectively, where fj < fu < fj+1,
fj , fj+1 ∈ F , and t =

∑n
i=1 ci−fj+1×T
fj−fj+1

. The question is if
frequency switching is only allowed at the beginning of each
task, and t happens to be in the middle of a task τm’s execution
time, i.e.

∑m−1
i=1 ci < fjt <

∑m
i=1 ci, where 1 ≤ m ≤ n. In

this case, we choose a conservative approach, i.e. use higher
frequency fj+1 to execute task τm to guarantee reliability.

Now, we are ready to give the task set execution strategy
for a given fault-protected task set Γp with deadline D and reli-
ability constraint Rg . The basic idea is we start with 0 recovery
blocks, i.e. k = 0, and use Lemma 2 and (5) to calculate the
reliability R with T = D. If R ≥ Rg , then the execution strat-

egy is Ψ = (
−−−−−→
(fu,

ci
fu

)τi∈Γp ,Γp, 0), if fu = fmax

∑
τi∈Γ ci

T ∈ F ;

or Ψ = ([
−−−−→
(fj ,

ci
fj

)i<m,
−−−−−−−−→
(fj+1,

ci
fj+1

)m≤i≤n],Γp, 0). Otherwise,
we allocate one recovery block, i.e. k = 1, then the avail-
able time for task execution is T = D − cp1, where cp1 =

maxτi∈Γp{ci} is the longest WCET in the fault-protected task
set Γp. We then use Lemma 2 and (10) to calculate reliability
R, if R ≥ Rg , we have obtained the execution strategy with
k = 1. Otherwise, we iterate the process with k = i and
T = D −

∑i
j=1 c

p
j until the reliability is satisfied, where cpj

is jth longest WCET in the fault-protected task set Γp.
We use an example to explain the procedure.

Example 1. Assume a fault-protected task set has three tasks
A, B, and C with WCET ci under fmax of 8ms, 6ms, and 4ms,
respectively. The deadline for the task set is D = 30ms and
the reliability constraint is Rg =

∏
τi∈{A,B,C} γ(fmax, ci). The

available discrete frequencies F = {0.1, 0.2, ..., 1}.

Table 1: Execution Strategy for Fault-Protected Task Set

k T fu (f̃l, f̃u)
f(τi) =
f̃l

f(τi) =
f̃u

R
Rg

(%)

0 30 0.6 (0.6, 0.6) A,B,C A,B,C 99.850

1 22 0.8182 (0.8, 0.9) A,B C 100.001

The execution strategy is determined in two iterations. First,
when no recovery block is reserved, i.e. k = 0, all tasks are as-
signed to frequency fu = 8+6+4

30 = 0.6. Based on formula (9),
the normalized reliability is 99.85%, which implies that the re-
liability constraint is not satisfied. Hence, we increase k to 1
and the desired frequency is fu = 8+6+4

30−8 = 0.8182 /∈ F .
The neighboring frequencies (0.8, 0.9) are used for executing
the tasks. The calculated optimal frequency switching point
is t = 18, which is found in the middle of task C’s execu-
tion. Therefore, we execute A and B under 0.8 and C under
0.9. The normalized reliability under this execution strategy is
100.001% which satisfies the reliability requirement. Hence,
the execution strategy is to reserve one recovery block of size
8ms, and execute task A and B with frequency 0.8, task C with
frequency 0.9. Table 1 gives the execution detail.

The algorithm of using a uniform or neighboring frequen-
cies scaling (UNS) for task set execution under a given fault-
protected task set is illustrated in Algorithm 1.

We start from reserving zero recovery block, i.e, k = 0 (line
3) to find the uniform frequency fu (line 4), if fu is not avail-
able, using neighboring frequencies f̃u and f̃l instead (line 8 -
16). If the reliability requirement is satisfied, we stop and re-
turn the solution (line 17 - 19). Otherwise, reserving one more
recovery block and repeat the above steps until reliability con-
straint is satisfied or slack time is used up (Line 3 - 21).

The time complexity of this algorithm is dominated by the
while loop (line 3 - 21). The time complexity of calculating
the reliability R(

−−−→
f(τi)τi∈Γ,Γp, k) is O(n2) and the number of

iterations of while loop (Line 3) is O(n) since the number
of tasks in the task set is n. Hence, the total time complexity
should be O(n3).

5.2. Deciding the Fault-Tolerated Task Set
The previous subsection assumes the fault-tolerated task set

(Γp) is given. In this subsection, we discuss how to judiciously
select the set.

7



Algorithm 1 UNS(Γp, Rg , D, F = {f1, ..., fq})

1: f̃l = f̃u = fq , f(τi) = fq
2: k = 0, T = D,m = |Γp|, slack = T −

∑m
i=1 c

p
i

3: while slack > 0 do
4: fu =

∑m
i=1 c

p
i

T
5: id = min{i|fi ≥ fu ∧ fi ∈ F}
6: f̃u = fid
7: f(τi) = f̃u,∀τpi ∈ Γp
8: if f̃u 6= fu then
9: f̃ee = min{fi|fi ≥ fee ∧ fi ∈ F}

10: if f̃u > f1 ∧ f̃u > f̃ee then
11: f̃l = fid−1

12: t =
∑m
i=1 c

p
i−f̃uT

f̃l−f̃u
13: id = max{j|

∑j
i=1 c

p
i ≤ f̃lt}

14: f(τi) = f̃l,∀i ≤ id
15: end if
16: end if
17: if R(

−−−→
f(τi)τi∈Γp ,Γp, k) ≥ Rg then

18: break
19: end if
20: k = k + 1, T = T − cpk, slack = slack − cpk
21: end while
22: return (

−−−→
f(τi)τi∈Γp , k)

Lemma 4. For the given task set (Γ) and the reserved recovery
blocks, we have:

R(
−−−→
f(τi)τi∈Γ,Γp, k) > R(

−−−→
f(τi)τi∈Γ,Γ

′
p, k) if Γ′p ⊂ Γp

where k is the number of reserved recovery blocks. �

Proof. Let Γu = Γ−Γp and Γv = Γp−Γ′p = {τi, τi+1, ..., τj}
(j > i), then based on formula (10) , we have:

Rk(Γp) > γ(f(τi), ci)×Rk(Γp − {τi})

>

i+1∏
l=i

γ(f(τl), cl)×Rk(Γp − {τi, τi+1})

> ...

>
∏
τl∈Γv

γ(f(τl), cl)×Rk(Γ′p)

According to formula (9) , we have:

R(
−−−→
f(τi)τi∈Γ,Γp, k) = Rk(Γp)×

∏
τj∈Γ−Γp

γ(f(τj), cj)

and,

R(
−−−→
f(τi)τi∈Γ,Γ

′
p, k) = Rk(Γ′p)×

∏
τl∈Γv

γ(f(τl), cl)

×
∏

τj∈Γ−Γp

γ(f(τj), cj)

Hence, R(
−−−→
f(τi)τi∈Γ,Γp, k) > R(

−−−→
f(τi)τi∈Γ,Γ

′
p, k).

Based on Lemma 4, we should maximize the number of
tasks that can share the reserved recovery blocks. If k recovery
blocks are reserved, the total duration of the recovery blocks is
the summation of WCETs of the first k longest tasks that share
the recovery blocks. Hence, when we exclude the long tasks in
the task set from sharing the recovery blocks to reduce the re-
served recovery block size, at the same time, we need to include
as many short tasks as possible to share the recovery blocks for
maximizing the reliability without increasing the total recovery
block size.

However, we do not have any prior knowledge as to how
many long tasks should be excluded, hence, a heuristic ap-
proach is needed to find the answer. We first let the initial fault-
protected task set Γp to be the given task set, i.e. Γp = Γ. At
each iteration, we remove the longest task from Γp and let all
the remaining tasks in Γp to share the recovery blocks. Hence,
n different selections of Γp will be generated. For each Γp, we
use Algorithm 1 (UNS) to determine its execution strategy and
select the one that consumes the least energy. The details of
this GSSR-UNS based iterative search (IS) algorithm is given
in Algorithm 2.

Algorithm 2 GSSR-UNS-IS (Γ, Rg , D, F )

1: Γp = Γ
2: f(τi) = fmax,∀τi ∈ Γ
3: E0 = +∞
4: Ψ(Γ) = (

−−−→
f(τi)τi∈Γ,Γp, 0)

5: for j = 1 to |Γ| do
6: D′ = D −

∑
τi∈Γ−Γp

ci

7: R′g =
Rg∏

τi∈Γ−Γp
γ(fmax,ci)

8: (
−−−→
f(τi)τi∈Γp , k) = UNS(Γp, R′g , D′, F )

9: if E((
−−−→
f(τi)τi∈Γ,Γp, k)) < E0 then

10: Ψ(Γ) = (
−−−→
f(τi)τi∈Γ,Γp, k)

11: E0 = E(Ψ(Γ))
12: end if
13: remove the longest task from Γp
14: end for
15: return Ψ(Γ)

Line 1 - 4 initialize the variables, and line 5 - 14 iteratively
search for the best fault-protected task set Γ. When Γp is deter-
mined, the execution strategy Ψ(Γ) is also obtained.

The time complexity of the algorithm is dominated by the
for loop (line 5 - 14). The time cost for step 8 is O(n3).
Hence, the overall time complexity is O(n4).

It is worth pointing out that though the idea of iterative
search for the fault-protected task set is simple, simulation re-
sults given in Section 6 show the obtained results are near-
optimal.

5.3. Discussion

Dealing with Dependent Tasks
When tasks have precedence constraints, for instance, the

tasks derived from Strassen matrix multiplication and Fast

8



Fourier Transform (FFT) [3] applications, their execution order
must satisfy the precedence constraints. As in our proposed
GSSR-UNS-IS approach, the procedure of determining tasks’
working frequencies is independent of task execution orders,
hence, the GSSR-UNS-IS approach can be directly applied to
tasks with dependencies.
Frequency Switching Overhead

It is well-known that DVFS is an effective way to reduce
energy consumption. However, recent studies [10, 11] have
noticed that frequency switching is not free. It has both time
and energy consumption overhead. Furthermore, frequent fre-
quency switching may decrease hardware components’ life
span [10]. As with the IRCS or the LTF approach, different
tasks may need different execution frequencies, the frequency
switching overhead is high. With our strategy, however, two,
or at most three different frequencies are used to execute the
whole task set, i.e. fmax for fault-unprotected tasks and one or
two frequencies (if desired frequency is not available) for fault-
protected tasks. If the tasks are independent, we can adjust the
execution order such that tasks under the same frequency are
executed successively, then at most two frequency changes are
needed resulting in low frequency switching overhead which is
another advantage of the proposed GSSR-UNS-IS approach.

If the task set has precedence constraints, in order to min-
imize frequency switching overhead, we need to re-consider
the partition of fault-protected and fault-unprotected task sets,
and the tasks’ frequency assignment, which will be our future
work.

6. Performance Evaluation

In this section, we intend to evaluate our proposed GSSR-
UNS-IS approach by comparing it with the two baseline ap-
proaches, i.e., LTF [20] and IRCS [18], which are the represen-
tatives of no recovery block sharing, and globally shared recov-
ery block (GSHR) based approaches, respectively.

6.1. Simulation Setting
In our simulations, the system parameters, such as, transient

fault average arrival rate and power model, are listed in Table 2.
These values are considered realistic and widely used by the
research community [18, 22].

Table 2: Parameter Settings

λ0 Pind d Cef θ
10−6 0.05 3 1 3

For each task set, its task worst-case execution times are
randomly generated with values uniformly distributed in a pre-
defined range. The energy consumption of executing a task set
under different execution strategies is normalized to the energy
cost when all tasks are executed with fmax. We set R0 as the
reliability of the task set when all the tasks are executed under
the maximum frequency, i.e. R0 = Πτi∈Γγ(fmax, ci). We first
set the reliability requirement as the one when all tasks are ex-
ecuted under fmax, i.e. Rg = R0. We then vary the reliability

requirement Rg to evaluate the sensitivity of our proposed ap-
proach toRg change. The results shown in the following figures
are the average values of repeating the experiments with 1, 000
different task sets.

We evaluate the performance of the approaches from the
following five aspects:

1. processor utilization (U ) impact on the approaches
2. the approaches’ sensitivity to task worst-case execution

time variation (V)
3. the approaches’ scalability with respect to the size of task

set (n = |Γ|)
4. the approaches’ scalability with respect to the size of task

(cmin = minτi∈Γ{ci})
5. the approaches’ sensitivity with respect to the reliability

requirement (Rg) change

where processor utilization is defines as

U =

∑
τ∈Γ ci

D
(15)

and the variation of task worst-case execution times is

V =

√
cmax
cmin

(16)

where cmin and cmax are the minimum and maximum worst-case
execution times of the given task set Γ, respectively, i.e. cmax =
maxτi∈Γ{ci}, cmin = minτi∈Γ{ci}.

As our proposed GSSR-UNS-IS approach consists of two
algorithms, i.e. uniform/neighbroing frequencies scaling for
task set execution (UNS) and iterative search for the fault-
protected task set (IS), in order to provide an insight of perfor-
mance of these two algorithms, before giving the above com-
parisons, we compare GSSR-UNS-IS with the following three
approaches to inspect the UNS and IS algorithms.

• GSHR-UNS: use the proposed UNS approach to find task
set execution frequencies assuming all tasks are fault-
protected.

• GSHR-BF: use brute-force approach to find the optimal
task execution frequencies assuming all tasks are fault-
protected.

• GSSR-UNS-BF: use the proposed UNS approach for fault-
protected task set frequency assignment and use brute-
force approach to explore all the possible fault-protected
task sets to find the optimal one.

The GSHR-UNS and the GSHR-BF have the same fault-
protected task set but with different task set execution strategies.
By comparing these two, we can evaluate the effectiveness of
the UNS algorithm. The GSSR-UNS-IS and the GSSR-UNS-
BF approaches have the same task set execution strategy, but
with different fault-protected task set selection algorithms, by
comparing them, we can assess our proposed fault-protected
task set selection algorithm.

9



Figure 2: Evaluation of UNS and IS (n = 5, cmin = 20ms,V =
4, Rg = R0)

6.2. Simulation Results and Discussions

6.2.1. Evaluation of UNS and IS
In this set of experiments, each task set has 5 tasks (n = 5),

the minimum tasks’ WCET is set as 20ms (cmin = 20ms), the
variation of task worst-case execution times is 4 (V = 4), the
reliability requirement Rg = R0. As brute-force approaches
are timing-consuming, we can only limit the experiments with
small task sets.

From the results depicted in Fig. 2, we can see the GSHR-
UNS and the GSHR-BF nearly overlap with each other and
the GSSR-UNS-IS and the GSSR-NS-BF are also overlapped,
which indicates that our task set execution algorithm, i.e. UNS,
is closed to the brute-force approach, and our fault-protected
task set selection algorithm, i.e. IS, is near-optimal. In addi-
tion, we find that when U > 0.6, the GSSR based approaches,
i.e. the GSSR-UNS-IS and the GSSR-UNS-BF approach have
better energy saving performance than both the GSHR-UNS
and the GSHR-BF approaches. This is due to the advantage
of excluding some long tasks from fault protection, and hence
increases the opportunities to scale down tasks’ working fre-
quencies for energy saving. However, when the slack time
is long enough, fault-unprotected tasks will adversely restrict
the energy saving performance as their working frequencies are
not allowed to be adjusted. Under this case, the optimal fault-
protected task set is the whole task set containing all tasks in
the task set and the GSSR degenerates to the GSHR, hence,
these four algorithms have the similar energy saving perfor-
mance when U < 0.6.

6.2.2. Comparison of GSSR-UNS-IS with LTF and IRCS
In the following set of experiments, each task set has 20

tasks, the minimum tasks’ WCET is set as 20ms, the variation
of task worst-case execution times is 4 and the reliability re-
quirement is set as Rg = R0.

When a specific aspect is evaluated, for instance, when the
impact of processor’s utilization on execution strategies is eval-
uated, the other parameters are kept as constants.
Utilization Impact

Figure 3: Processor Utilization Impact (n = 20, cmin =
20ms,V = 4, Rg = R0)

Fig. 3 shows the performance of different execution strate-
gies when the processor’s utilization decreases from 1 to 0.3.
As depicted in Fig. 3, the LTF always consumes the most en-
ergy. Comparing with the IRCS, the GSSR-UNS-IS consumes
less energy when U > 0.8 and U < 0.6. However, in the mid-
dle range, i.e. when 0.7 ≤ U ≤ 0.8, these two have the similar
behaviors.

The reason is that the IRCS simply assumes all the tasks
are fault-protected, hence, under high processor’s utilization,
the slack time is limited, protecting long tasks will inevitably
reduce the opportunities to scale down tasks’ working frequen-
cies and hence restricts the energy saving performance. Further-
more, the IRCS searches the suitable frequency for each task in
a heuristic manner, when the search space is small, the chance
to find a good solution is high. However, under lower processor
utilization, more frequency levels are adoptable, which results
in larger search space, hence, the chance to hit a good solution
is reduced and its energy saving performance decreases.

Rather than always protecting the whole task set, our pro-
posed approach judiciously selects the fault-protected task set.
In addition, instead of heuristically searching for tasks’ suitable
working frequencies, we directly calculate the best processing
frequency or neighboring frequencies and assign them to the
whole task set. The calculation is independent of the search
space. Hence, the proposed GSSR-UNS-IS approach outper-
forms the IRCS both under high (U > 0.8) and low (U < 0.6)
processor utilization. When 0.7 ≤ U ≤ 0.8, GSSR degenerates
to GSHR, while the search space is not large enough to deviate
the heuristic IRCS from finding a good solution, hence, it has
the similar energy saving performance as the GSSR-UNS-IS .
Sensitivity to the Variation of Task Worst-case Execution
Times

This set of experiments is to investigate how sensitive each
execution strategy is to the variation of task worst-case exe-
cution times in a given task set. The simulation results are
depicted in Fig. 4. From the figure, we can see that the LTF
approach still behaves the worst from energy consumption per-
spective. However, it is insensitive to the change of the vari-
ations of task worst-case execution times. On the other hand,

10



Figure 4: Sensitivity to Variation of Task Worst-case Execution
Times (n = 20, cmin = 20ms,U = 0.6, Rg = R0)

Figure 5: Scalability with Respect to the Size of Task Set
(cmin = 20ms,V = 4, U = 0.6, Rg = R0)

the energy consumption of the IRCS continues growing when
the value of V increases, although the GSSR-UNS-IS based ap-
proach also consumes more energy under larger V , but com-
pared to the IRCS, the increase rate is much slower.

When V = 1, the IRCS and our proposed approach per-
form the same. However, when the variation of task worst-case
execution times becomes large, for instance, when V = 10,
GSSR-UNS-IS can save as much as 13% more energy than the
IRCS.

Scalability with Respective to the Size of Task Set

Fig. 5 shows the comparison by varying the number of tasks.
The energy consumption of the LTF approach is not sensitive to
task set size, but it always consumes the most energy. However,
when the number of tasks increases, even when the total proces-
sor utilization remains the same, it impacts the energy saving
performance of both IRCS and our GSSR-UNS-IS approaches,
but in different directions. More specifically, when the number
of tasks increase, IRCS consumes more energy while GSSR-
UNS-IS can save more. For instance, when the number of tasks
is set to 70, the GSSR-UNS-IS approach can save about 15%
more energy when compared to the IRCS.

This is still due to the limitations of the heuristic IRCS as

Figure 6: Scalability with Respective to Size of Task (n =
20,V = 4, U = 0.6, Rg = R0)

addressed above, i.e. increasing the task set size expands the
search space, hence results in the performance degradation.

Scalability with Respective to the Size of Task

In this experiment, we fix the variation of task worst-case
execution times V = 4, and change the cmin from 1ms to 100ms.
Hence, all tasks’ WCETs change accordingly. From Fig. 6, we
can see that the energy consumption of IRCS increases much
faster than GSSR-UNS-IS when cmin increases. When cmin =
1ms, GSSR-UNS-IS and IRCS have the same energy consump-
tion, while when cmin = 100ms, IRCS consumes 13% more
energy than GSSR-UNS-IS . LTF still consumes more energy,
but it is insensitive to the variation of task execution times.

Sensitivity with Respective to the Reliability Requirement

This set of the experiments is to evaluate the proposed ap-
proach’s sensitivity to the reliability requirement Rg change.
As R0 is defined as the reliability of the task set when all the
tasks are executed under fmax, then 1−R0 is the corresponding
probability of failure during the execution of task set. We scale
the probability of failure to vary the reliability requirement, in
particularly, we set Rg = 1 − (1 − R0)/S, where S is scaling
factor. As LTF only works when Rg = R0, hence we exclude
it from this set of experiments.

The results are shown in Fig. 7. From the figure, we can
observe when S increases, i.e. the reliability requirement Rg
increases, both the IRCS and GSSR-UNS-IS approaches con-
sume more energy. This is due to the need for reserving more
recovery blocks to meet the target reliability, hence less slack
time is available for frequency scaling to save energy. With
respect to the energy consumption increasing rate, both of the
approaches have about the same energy consumption increasing
rate.

7. Conclusion

Reliability and power/energy conservation are two of the
most critical design issues in today’s real-time system design.
However, they are often at odds in system resource usage. In
this paper, we have developed a new resource sharing technique

11



Figure 7: Sensitivity to Reliability Requirement (n = 20,V =
4, U = 0.6, Rg = 1− (1−R0)/S)

and run-time task set execution strategy to guarantee system’s
reliability and minimize energy consumption. We also have
shown that executing a given task set with a constant frequency
(or two neighboring frequencies if such a constant frequency
is not available) within a interval maximizes task set reliability
and minimize its energy consumption. This conclusion applies
to both independent and dependent task sets. Comparing to the
other fault recovery-based approaches existed in the literature,
our simulation results have revealed that our proposed approach
can save up to 15% more energy saving and is more resilient to
system parameter changes, while guarantee the same level of
system reliability, Furthermore, as our approach does not re-
quire frequent frequency changes for a task set with indepen-
dent tasks, it works particularly effective on processors where
frequency switching overhead is large and not negligible.

Acknowledgement

This work was supported, in part, by NSF CNS 1018731
and NSF Career 0746643.

References

[1] Aydin, H., Devadas, V., Zhu, D., dec. 2006. System-level energy manage-
ment for periodic real-time tasks. In: Proceedings of 27th IEEE Interna-
tional Real-Time Systems Symposium. RTSS. pp. 313 –322.

[2] Burd, T. D., Brodersen, R. W., 1995. Energy efficient cmos microproces-
sor design. In: Proceedings of the 28th Hawaii International Conference
on System Sciences. HICSS. pp. 288–297.

[3] Casanova, H., Desprez, F., Suter, F., 2010. Minimizing stretch and
makespan of multiple parallel task graphs via malleable allocations. In:
Proceedings of the 2010 39th International Conference on Parallel Pro-
cessing. pp. 71–80.

[4] Castillo, X., McConnel, S. R., Siewiorek, D. P., Jul. 1982. Derivation and
calibration of a transient error reliability model. IEEE Trans. Comput.
31 (7), 658–671.

[5] Chandra, V., Aitken, R., 2008. Impact of technology and voltage scaling
on the soft error susceptibility in nanoscale cmos. In: Proceedings of the
IEEE International Symposium on Defect and Fault Tolerance of VLSI
Systems. DFT. pp. 114–122.

[6] Ernst, D., Das, S., Lee, S., Blaauw, D., Austin, T., Mudge, T., Kim, N. S.,
Flautner, K., 2004. Razor: circuit-level correction of timing errors for
low-power operation. Micro, IEEE 24 (6), 10–20.

[7] Hazucha, P., Svensson, C., dec 2000. Impact of cmos technology scaling
on the atmospheric neutron soft error rate. Nuclear Science, IEEE Trans-
actions on 47 (6), 2586–2594.

[8] Huang, W., Stant, M. R., Sankaranarayanan, K., Ribando, R. J., Skadron,
K., 2008. Many-core design from a thermal perspective. In: Proceedings
of the 45th annual conference on Design automation. DAC. pp. 746–749.

[9] Iyer, R. K., Rossetti, D. J., Hsueh, M. C., Aug. 1986. Measurement and
modeling of computer reliability as affected by system activity. ACM
Trans. Comput. Syst. 4 (3), 214–237.

[10] Jaberi, N., 2012. An open question about dependency of life time of hard-
ware components and dynamic voltage scaling. CoRR abs/1203.3909.

[11] Kim, W., Gupta, M. S., yeon Wei, G., Brooks, D., 2008. System level
analysis of fast, per-core dvfs using on-chip switching regulators. In:
Processding of International Symposium on High-Performance Computer
Architecture. pp. 123 – 134.

[12] Pradhan, D. K. (Ed.), 1986. Fault-tolerant computing: theory and tech-
niques. Vol. 1. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[13] Rizvandi, N. B., Zomaya, A. Y., Lee, Y. C., Boloori, A. J., Taheri, J.,
2012. Multiple frequency selection in dvfs-enabled processors to mini-
mize energy consumption. CoRR.

[14] Shafik, R. A., Al-Hashimi, B. M., Chakrabarty, K., 2010. Soft error-aware
design optimization of low power and time-constrained embedded sys-
tems. In: Proceedings of the Conference on Design, Automation and Test
in Europe. DATE. pp. 1462–1467.

[15] Srinivasan, J., S.V., A., P., B., J., R., Hu, C.-K., 2003. Ramp: A
model for reliability aware microprocessor design. IBM Research Report,
RC23048.

[16] Yang, C.-Y., Chen, J.-J., Kuo, T.-W., Thiele, L., april 2009. An approx-
imation scheme for energy-efficient scheduling of real-time tasks in het-
erogeneous multiprocessor systems. In: Design, Automation Test in Eu-
rope Conference Exhibition. pp. 694 –699.

[17] Zhao, B., Aydin, H., Zhu, D., 2009. Enhanced reliability-aware power
management through shared recovery technique. In: Proceedings of the
International Conference on Computer-Aided Design. ICCAD. pp. 63–
70.

[18] Zhao, B., Aydin, H., Zhu, D., 2011. Generalized reliability-oriented en-
ergy management for real-time embedded applications. In: Proceedings
of the Design Automation Conference. DAC. pp. 381–386.

[19] Zhu, D., 2006. Reliability-aware dynamic energy management in depend-
able embedded real-time systems. In: Proceedings of the 12th IEEE Real-
Time and Embedded Technology and Applications Symposium. RTAS.
pp. 397–407.

[20] Zhu, D., Aydin, H., 2006. Energy management for real-time embedded
systems with reliability requirements. In: Proceedings of IEEE/ACM In-
ternational Conference on Computer-Aided Design. ICCAD. pp. 528–
534.

[21] Zhu, D., Aydin, H., oct. 2009. Reliability-aware energy management for
periodic real-time tasks. Computers, IEEE Transactions on 58 (10), 1382
–1397.

[22] Zhu, D., Aydin, H., Chen, J.-J., 2008. Optimistic reliability aware energy
management for real-time tasks with probabilistic execution times. In:
Proceedings of the Real-Time Systems Symposium. RTSS. pp. 313–322.

[23] Zhu, D., Melhem, R., Mosse, D., 2004. The effects of energy manage-
ment on reliability in real-time embedded systems. In: Proceedings of the
IEEE/ACM International conference on Computer-aided design. ICCAD.
pp. 35–40.

12


	Introduction
	Models and Definitions
	Processor and Task Model
	Energy Model
	Fault and Reliability Model
	 Definitions

	Motivation and Problem Formulation
	A Motivating Example
	Problem Formulation

	Generalized Subset Shared Recovery
	GSSR-based Task Set Execution Strategy
	Deciding Task Set Execution Strategy for a Given Fault-Protected Task Set
	Deciding the Fault-Tolerated Task Set
	Discussion

	Performance Evaluation
	Simulation Setting
	Simulation Results and Discussions
	Evaluation of UNS and IS
	Comparison of GSSR-UNS-IS with LTF and IRCS


	Conclusion

