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Abstract—This paper transforms sequential power flow prob-
lem to a parallel problem and solves it on GPU. In particular,
we implement parallel Gauss-Seidel solver, Newton-Raphson
solver, and P-Q decoupled solver using CUDA (Compute Unified
Device Architecture) on GPU. The aim is to investigate the
performance of the three different parallel power flow solvers. We
use four IEEE standard power systems and one actual running
power system from Shangdong Province as the test cases when
comparing the speedups that a GPU system can provide. The
results show that Newton-Raphson solver has the best speedup
when it is operated on GPU, Gauss-Seidel solver performs the
worst, and P-Q decoupled solver is in the middle. The test results
also indicate that when the size of the system is small, GPU does
not seem to have advantages over CPU from computation time
perspective. However, as the size of the system increases, the
advantages of GPU becomes more clear. For instance, when the
system has close to one thousand bus counts, the GPU can provide
as high as over fifty-three times speedup.

Index Terms—Power Flow; GPU; CUDA; Newton-Raphson
Method; P-Q Decoupled Method; Gauss-Seidel Method; Cyber-
Physical Systems

I. INTRODUCTION

Power flow is often used to describe the steady state of

the power system. It gives a power system’s parameter values

(i.e., the magnitude and angle of the voltage, real and reactive

power, etc.) when the system is in a steady state. A power

system’s power flow is calculated based on the power network

structure and running status (i.e., the power of generator,

the voltage of the slack bus, etc.) [1], [2]. With real-time

system power flow information, we can predict whether the

changes in the load and network structure may compromise

the safety of the power system, and whether the elements in

the system, i.e., lines, transformers, etc., are overloaded, and

decide what preventive measures should take place in the event

of overloading, etc. In addition, through power flow analysis,

we can also verify if all running requirements made in the

planning stage are met. Hence, it is not difficult to see that the

power systems’ power flow not only plays an important role

in optimizing real-time control of operating power systems, it
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also provides essential information for design future extensions

of existing power system and new power systems.

Aside from the importance mentioned above, power flow

is also fundamental to short circuit diagnostic analysis, tran-

sient stability computing, etc. Hence, accelerated power flow

calculation will also speedup the process of these analysis

and computation [3]. However, due to the complexity of large

size power systems, thousands of equations are involved in

the power flow calculation. Therefore, our goal is to increase

the computing speed so that the real-time flow analysis can

become possible.

CUDA (Compute Unified Device Architecture) is a parallel

computing architecture developed by NVIDIA for graphics

processing. In CUDA programming model, CPU works as

a host, and GPU works as an assistant processor or device.

The computing architecture is considered to be heterogeneous.

In this architecture, CPU mainly processes highly logical

transactions and serial computation because of its powerful

control logics. On the other hand, as GPU has abundant

computation resources but uses simple logic, it is used to

execute highly parallel tasks. The functions that are executed

by GPU are called kernel. Unlike the functions which are

executed on CPU, when the kernel is called, it is executed

multiple times by the CUDA thread; while the functions

executed by CPU are executed only once.

The rest of the paper is organized as follows. The mathe-

matical presentation of power flow is given in Section III. In

Section IV, we analyze and compare three algorithms in power

flow: Gauss-Seidel algorithm, Newton-Raphson algorithm, and

P-Q decoupled algorithm. The parallel implementation of these

three algorithms is shown in Section V. In Section VI, we

evaluate the speedup performance of these three algorithms

using four IEEE standard power systems and one real power

system. Finally, we conclude and point out future work in

Section VII.

II. RELATED WORK

Parallel computing is a good solution to increasing the

computation speed. Currently, a commonly used approaches

to accelerating the speed of power flow solver are through

distributed multi-threading, parallel machines, or distributed
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systems [4], [5], [6]. However, these approaches are often

constrained by the need of special hardware support, high cost,

and limited speed improvement.

GPUs have been developed rapidly in recent years. Because

of the high computing efficiency and low prices, they are

widely used in sparse matrix solvers [7], finite element anal-

ysis [8], electromagnetic [9], biology [10], etc. In addition,

GPUs are also used in parallel power flow. For instance,

in [11], Gopal et al. implemented the failure analysis for

power systems on GPU. In [12], Xia et al. presented a sim-

plified Newton-Raphson power flow solver. Singh et al. [13]

discussed pre-processing steps in using Newton power flow

solver. Garcia [14] showed GPU-based approach to the power

flow problem that integrate biconjugate gradient algorithm and

Newton method; while Vilacha et al. [15] presented Jacobi

method for power flow problem based on SIMD-processors.

The work discussed above compared the execution time of

obtaining the power flow on both CPU and GPU and showed

that a good speedup ratio can be achieved. However, they

did not compare the execution time of different algorithms

after parallelism. The main difference between our work

and the work discussed above is that we implement three

parallel Gauss-Seidel solver, Newton-Raphson solver, and P-

Q decoupled solver, and compare their speedup ratios when

running on GPU and find out the appropriate approach for

solving the power flow problem.

III. POWER FLOW MODEL AND PROBLEM DEFINITION

In a power system, the relationship between bus injection

current and bus voltage is represented by bus admittance

matrix. That is

Yij = |Yij |(cos θij + j sin θij) = Gij + jBij (1)

where Yij whose magnitude and angle are |Yij | and θij ,

respectively, refers to the admittance between bus i and bus j,

and it can be further divided into electrical conductance Gij

and susceptance Bij . When i is equal to j, Yij becomes the

self-admittance. For the power systems with n independent

buses, the dimensions of their bus admittance matrix is n×n.

For bus i, its complex power is

Si = Vi

n∑
k=1

∗
Yij

∗
Vk= Pi − jQi (2)

where “*” refers to conjugate complex, and its voltage Vi is

Vi = |Vi|(cos δi + j sin δi) (3)

where |Vi| and δi refer to magnitude and angle of voltage,

respectively.

In addition, complex power can be further divided into real

power Pi, and reactive power Qi, where

Pi =
n∑

k=1

|ViVkYik| cos (θik + δk + δi) (4)

and

Qi = −
n∑

k=1

|ViVkYik| sin (θik + δk + δi) (5)

In (4) and (5), the values of both Yik and θik are known.

For different types of buses, only two out of four variables’

values are known. Therefore, for both (4) and (5), they are

non-linear, and they are used as power equation in the power

system.

For power systems with n independent bus, the number of

(4) and (5) is n, both. Therefore, in order to obtain a power

system’s power flow, we need to solve the nonlinear equation

systems with 2n equations.

IV. POWER FLOW SOLVER

The essence of obtaining the power flow of a power system

is to solve the set non-linear equations given by (4) and (5)

in Section III. In our work, we take the iteration approach.

The commonly used iteration methods for solving the power

flow problem include Gauss-Seidel method, Newton-Raphson

method, and P-Q decoupled method.

The main flow for obtaining a power system’s power flow

are as follows:

1) Obtain the aggregate data from a power system. The ag-

gregate data includes bus data, branch data, and identifiers

of slack bus, etc. The bus data includes identifier, voltage,

real and reactive power, and the branch data includes

starting bus identifier, the ending bus identifier, resistance,

reactance, and transformation ratio, etc.

2) Rearrange the bus by the order of PQ bus (the buses

with known real and reactive power), PV bus (the buses

with real power and voltage), slack bus (the buses with

known voltage and zero angle, as well as those which

are used to guarantee that generated power is equal to

the consumed power in the power system). For example,

if a power system has n buses, and m buses among them

are PQ buses, after rearrangement, the first m buses are

PQ buses, the (m+1)th to (n−1)th buses are PV buses,

and the last n buses are slack buses.

3) Calculate the admittance matrix for each bus.

4) Initialize the voltage value and angle for each bus, and

set the iteration times to zero.

5) Iteratively calculate the voltage value, angle, real power,

reactive power, and the increment of each parameter

between current iteration and previous iteration until each

parameter obtained is smaller than the predefined error ε.

6) Calculate the power of slack buses and branches.

A. The Characteristics of Three Iterative Algorithms

Gauss-Seidel algorithm: the Gauss-Seidel algorithm uses

the latest iteration value, i.e., once a new value of a parameter

has been obtained, the new value will be used in the next

iteration to accelerate the speedup.
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The iterative format of Gauss-Seidel algorithm using bus
voltage Vi and reactive power Qi is given below:

V
(k+1)
i =

1

Yii
(
Pi − jQi

∗
V

(k)
i

−
i−1∑

j=1

YijV
(k+1)
j −

n∑

j=i+1

YijV
(k)
j ) (6)

Q
(k)
i = −Im[

∗
V

(k)
i (

i−1∑
j=1

YijV
(k+1)
j +

n∑
j=i

YijV
(k)
j )] (7)

where i and j denote the identifiers of buses, k is the number

of iterations, n is the total number of buses, the symbol “*”

above the letter refers to the conjugate complex number, and

the Im is the imaginary part of a complex number.

Newton-Raphson algorithm: in the Newton-Raphson al-

gorithm, for each iteration, the voltage correction ΔU , voltage

angle correction Δδ, real power correction ΔP , and reactive

power ΔQ are used in the power flow equation. Hence, the

power equation is expanded by using Taylor series and only the

linear part of the correction is kept. In this way, the non-linear

equation is converted into linear equation of correction, and it

is called correction equation. In the correction equation, its co-

efficient matrix is called Jacobian matrix, and each item in the

correction equation is the first partial derivative. Therefore, we

only need to solve the linear equation, i.e., correction equation,

and modify the corresponding power equation variables after

obtaining the correction value. For each iteration, the Jacobian

matrix needs to be recalculated to accelerate the speedup.

As the bus voltage can be presented in different ways,

therefore, Newton-Raphson algorithm has two presentations,

i.e., the polar form representation and rectangular form rep-

resentation. The calculation in the rectangular form is simple,

while the calculation in polar form is complex because of the

trigonometric functions involved in the calculation. However,

the number of correction equations in polar form is less

comparing to the rectangular form representation. In our work,

we use polar form in the Newton-Raphson algorithm.

P-Q decoupled algorithm: the P-Q decoupled algorithm

is a simplified version of Newton-Raphson algorithm. It uses

the imaginary part of the bus admittance matrix to replace

Jacobian matrix to get linear real power correction equations

and linear reactive power correction equations. In addition,

the coefficient matrix in the correction equations remains

unchanged. Therefore, the computation cost of Jacobian matrix

in each iteration is decreased, however, the convergence speed

slows down. Additionally, P-Q decoupled algorithm must meet

the simplification requirements. They are: (1) the first order

partial derivative of real power increment with respect to the

voltage is much larger than the first order partial derivative

with respect to the angle; (2) the first order partial derivative

of reactive power increment with respect to the angle is much

larger than the first order partial derivative with respect to

the voltage; and (3) for each element in the bus admittance

matrix, the value of real part is much smaller than the value

of imaginary part.

In summary, we have the following observations when the

three algorithms operate sequentially:

• Computation speed: P-Q decoupled algorithm is the

fastest when the size of the system is not too small, while

Gauss-Seidel algorithm is the slowest.

• Total number of iterations: Newton-Raphson algorithm

requires the least iterations, while Gauss-Seidel algorithm

requires the most iterations.

• Requirement of the initial values: For Gauss-Seidel al-

gorithm, its initial values can be random. However, for

both Newton-Raphson algorithm and P-Q decoupled al-

gorithm, their initial values are usually fixed, i.e., the

voltage magnitude is 1.0, and the voltage angle is 0.0.

• Pratical use: Newton-Raphson algorithm is the most

commonly used, while Gauss-Seidel algorithm is the least

commonly used.

B. Speedup Analysis
For each algorithm, as the number of iterations before and

after parallelism remains the same, and for each iteration, the

speedup of the algorithm is also the same, therefore, we only

need to analyze the speedup in one iteration. In our work, we

use the number of multiplication to estimate the computation

cost. If the power system has total n buses, and m out of n
buses are PQ buses, we assume values of n and m are in the

same order of magnitude for large scale power system. When

approximating the computation cost, we use n to replace m,

and only keep the quadratic parts in the equation.
The total number of multiplications for Gauss-Seidel solver

is
n−1∑
1

(n− 1 + 2) +

n−m−1∑
1

(n+ 1) ≈ n2 (8)

while the total number of multiplications after parallelism

becomes
n−1∑
1

(1 + 2) +

n−m−1∑
1

(1 + 1) ≈ 5n (9)

Suppose the computation cost of trigonometric function is

r times as much as multiplication. As the value of r is usually

much larger than 1, hence, we will keep r but ignore other

small coefficients when approximating the computation cost.
The total number of multiplications for Newton-Raphson

solver to calculate Jacobian matrix is

(n+m)2∑
1

(2r + 4) +
n+m∑

1

(2r + 3) ≈ 8rn2 (10)

and the total number of multiplications after parallelism be-

comes

(2r + 4) +
n+m∑

1

(2r + 3) ≈ 4rn (11)

As Newton-Raphson solver applies Gaussian elimination

method to solve linear equations, therefore, the total number

of multiplications is

n∑
k=1

(n+ 1− k)2 +
1∑

k=n

(n− k) ≈ 4n2/3 (12)
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and the total number of multiplications after parallelism be-

comes

(2n+ 1) + n ≈ 3n (13)

The speedup is calculated by dividing the number of mul-

tiplications after parallelism by the number of multiplications

before parallelism. The speedup value for each solver is shown

in Table I, where n refers to the bus count of power system.

From Table I, we can see that under parallelism, the Newton-

Raphson solver performs the best, while the Gauss-Seidel

solver performs the worst.

TABLE I
THEORETICAL SPEEDUPS OF DIFFERENT POWER FLOW SOLVERS

Power Flow Solver Speedup
Gauss-Seidel Solver 0.2n

Newton-Raphson Solver 2n
P-Q Decoupled Solver 0.4n

It is worth pointing out that the the communication cost

between CPU memory and GPU memory is not considered

when theoretically calculating the speedup value for each

solver.

V. TRANSFORMING SEQUENTIAL POWER FLOW SOLVER

TO PARALLEL POWER FLOW SOLVER

In this section, we discuss how the sequential power flow

solvers are transformed to parallel programs on GPU. The

steps involved in the transformation are

1) Allocate GPU memory for the program.

2) Copy the original data from CPU to GPU.

3) Set the thread structure in GPU and call the kernel to

process the data.

4) Copy the processed data from GPU back to CPU.

5) Release the allocated GPU memory.

In this paper, we parallelize the calculation of bus admit-

tance matrix and the iteration process in the power flow solver.

The following subsections gives the detailed description of the

implementation.

A. Linear Equations Solver

As both Newton-Raphson algorithm and P-Q decoupled al-

gorithm need to solve linear equations, we choose a commonly

used method, i.e., the Gaussian elimination method, to solve

the linear equations. Gaussian elimination method consists of

two parts: forward elimination and back substitution.

For augmented matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

a1,1 · · · a1,k · · · a1,n a1,n+1

...
. . .

...
. . .

...
...

ak,1 · · · ak,k · · · ak,n ak,n+1

...
. . .

...
. . .

...
...

an,1 · · · an,k · · · an,n an,n+1

⎞
⎟⎟⎟⎟⎟⎟⎠

(14)

the procedure of the kth (1 ≤ k ≤ n) forward elimination is

akj = akj/akk, j = k + 1, · · · , n+ 1 (15)

aij = aij − aik × akj , i = k + 1, · · · , n,
j = k + 1, · · · , n+ 1 (16)

Equation (15) and (16) can be calculated separately. In our

implementation, we define two CUDA kernel functions, i.e.,

GaussKernelA and GaussKernelB to calculate (15) and (16),

respectively. It is worth pointing out that in the main process,

we cannot calculate (16) until the calculation of (15) is

completed. Algorithm 1 and Algorithm 2 show the detailed im-

plementation for function GaussKernelA and GaussKernelB,

respectively.

The inputs to both function GaussKernelA and GaussKer-
nelB are the same, which are

• The augmented matrix augMatrixGPU in GPU mem-

ory.

• The number of rows n in matrix augMatrixGPU .

• The kth Gauss forward elimination step.

Algorithm 1 GAUSS ELIMINATION CUDA KERNEL A

Input: Augmented matrix in GPU memory:

augMatrixGPU , number of rows in matrix

augMatrixGPU : n, the Gauss forward elimination

step: k.

1: i← blockIdx.x× blockDim.x+ threadIdx.x
2: j ← blockIdx.y ∗ blockDim.y + threadIdx.y
3: if i == k and j > k and j < n + 1 and

augMatrixGPU [k × (n+ 1) + k] �= 0.0 then
4: augMatrixGPU [k × (n + 1) + j]

← augMatrixGPU [k × (n + 1) + j]/
augMatrixGPU [k × (n+ 1) + k]

5: end if

A brief explanation of Algorithm 1 is as follows. In Algo-

rithm 1, the augmented matrix is first expanded by row, and it

is stored in an one-dimentional array augMatrixGPU . The

index number of the element in the one-dimentional array is

i×(n+1)+j, where i, j, and (n+1) refers to the row number,

column number, and total number of columns in augmented

matrix 1, respectively.

In Line 1 and Line 2, the type of CUDA built-in varaibles,

i.e., blockIdx, blockDim, and threadIdx, is dim3 2. The blockIdx
refers to the block index in the grid, and blockDim denotes

the block dimension, and threadIdx refers to the thread index.

From Line 3 to Line 5, the algorithm performs the operation

shown in (15).

The explanation of Algorithm 2 is similar to Algorithm 1.

The main difference between Algorithm 2 and Algorithm 1

is that Algorithm 2 implements (16) (See Line 4), while

Algorithm 1 implements (15).

1In Algorithm 2 and Algorithm 3, the augmented matrix is stored in the
same way.

2dim3 is a vector type and it is defined based on unit3. dim3 is equivalent
to the struct structure which consists of three unsigned int variables.
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Algorithm 2 GAUSS ELIMINATION CUDA KERNEL B

Input: Augmented matrix in GPU memory:

augMatrixGPU , number of rows in matrix

augMatrixGPU : n, the Gauss forward elimination

step: k.

1: i← blockIdx.x ∗ blockDim.x+ threadIdx.x
2: j ← blockIdx.y ∗ blockDim.y + threadIdx.y
3: if i > k and i < n and j > k and j < n + 1 and

augMatrixGPU [k × (n+ 1) + k] �= 0.0 then
4: augMatrixGPU [i × (n + 1) + j] ←

augMatrixGPU [i × (n + 1) + j]−
augMatrixGPU [i × (n + 1) +
k]×augMatrixGPU [k × (n+ 1) + j]

5: end if

Algorithm 3 GAUSS FORWARD ELIMINATION

Input: Augmented matrix in GPU memory:

augmentMatrix, number of rows in matrix

augmentMatrix: n.

1: cudaMalloc((void**)&aguMatrixGPU,
sizeof(float)× n× (n+ 1))

2: cudaMemcpy2D(aguMatrixGPU, sizeof(float) ×
(n + 1), aguMatrix, sizeof(float) ×
(n + 1), sizeof(float) × (n + 1),
n, cudaMemcpyHostToDevice)

3: dim3 blockDim(22, 22)
4: dim3 gridDim((n+blockDim.x−1)/blockDim.x, (n+

1 + blockDim.y − 1)/blockDim.y)
5: for k ← 0 to n− 1 do
6: GaussKernelA <<< gridDim, blockDim >>>

(aguMatrixGPU, n, k);
7: GaussKernelB <<< gridDim, blockDim >>>

(aguMatrixGPU, n, k);
8: end for
9: cudaMemcpy2D(aguMatrix, sizeof(float) ×

(n + 1), aguMatrixGPU , sizeof(float) ×
(n + 1), sizeof(float) × (n + 1)
, n, cudaMemcpyDeviceToHost)

10: cudaFree(aguMatrixGPU)

A brief explanation of Algorithm 3 is as follows. Line 1

allocates GPU memory for the augmented matrix aguMa-
trixGPU. In Line 2, the augmented matrix is copied from CPU

memory to GPU memory by CUDA memory copy function

cudaMemcpy2D. Line 3 and Line 4 set CUDA thread structure.

The dimension of each block is 22× 22, namely, each block

consists of 484 threads (a block can have up to 512 threads

in CUDA). In each grid, it consists of ((n + blockDim.x −
1)/blockDim.x) × ((n + blockDim.x − 1)/blockDim.x)
blocks. The reason we use (n+blockDim.x−1)/blockDim.x
to represent the dimension of grid is to ensure the number

of blocks in each grid is an integer. From Line 5 to Line

8, the main process repeatly invokes CUDA kernels, i.e.,

GaussKernelA and GaussKernelB, to eliminate the augmented

matrix. In Line 9, the eliminated augmented matrix is copied

from GPU memory to CPU memory by the same CUDA

memory copy function cudaMemcpy2D. Line 10 releases GPU

memory allocated for the augmented matrix.

B. Compute Bus Admittance Matrix
The diagonal element Yii in the bus admittance matrix Y is

called self-admittance, and its value is equal to the summation

of the admitance of the branches which connect to the bus i.
While the non-diagonal element Yij (i �= j) is called mutual
admittance, and its negative value is equal to the admittance

of branch which connects to both bus i and j.
Based on the branch information (the starting bus identifier,

ending bus identifier, branch equivalent admittance), we can

calculate bus admittance matrix. In the bus admittance matrix,

each element is independent and can be calculated separately.

We define CUDA kernel function computeAdmittanceMatrixK-
ernel to calculate the bus admittance matrix in parallel. For

grounded branches, i.e., the identifier of the starting bus is

equal to the identifier of the ending bus, we only need to

calculate the element in the bus admittance matrix whose row

number and column number is equal to the identifier of the

starting bus, and its value is equal to its original value plus the

branch equivalent admittance. For ungrounded branches, we

need to calculate four elements in the bus admittance matrix.

The four elements are

• The element whose row number and column number are

equal to the identifier of the starting bus, and the value of

this element is equal to its original value plus the branch

equivalent admittance.

• The element whose row number and column number are

equal to the identifier of the ending bus, and the value of

this element is equal to its original value plus the branch

equivalent admittance.

• The element whose row number is equal to the starting

bus identifier, and its column number is equal to the

identifier of the ending bus, and the value of this element

is equal to the negtive branch equivalent admittance.

• The element whose row number is equal to the ending bus

identifier, and its column number is equal to the identifier

of the starting bus, and the value of this element is equal

to the negative branch equivalent admittance.

The input data for calculating CUDA kernel in bus admit-

tance matrix is

• Number of branches l.
• Starting buses’ identifiers array startNumV ectorGPU

in GPU memory.

• Ending buses’ identifiers array endNumV ectorGPU in

GPU memory.

• Branch equivalent admittance array

branchAdmittanceV ectorGPU in GPU memory.

The procedure of calculating GPU parallel bus admittance

matrix is as follows.

• Allocate GPU memory for bus admittance matrix, starting

buses’ identifiers array, end buses’ identifiers array, and

branch equivalent admittance array.
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• Copy bus admittance matrix, starting buses’ identifiers ar-

ray, ending buses’ identifiers array, and branch equivalent

admittance array from CPU memory to GPU memory.

• Call CUDA kernel function computeAdmittanceMatrixK-
ernel to calculate bus admittance matrix.

• Copy the obtained bus admittance matrix from GPU

memory to CPU memory.

• Release the memory allocated for bus admittance matrix,

starting buses’ identifiers array, end buses’ identifiers

array, and branch equivalent admittance array.

C. Gauss-Seidel Solver

For (6) and (7), when calculating the voltage and reactive

power of a bus, the data needed for summation operations is

fixed and independent. Therefore, summation operations can

be performed separately. In our work, we define a CUDA

kernel function GaussSumKernel to perform the summation

operations in parallel. The input data includes

• Total number of buses n.

• Number of PQ buses m.

• Current bus identifier i.
• Bus voltage array voltageMagnitudeV ectorGPU in

GPU memory. Assume the current number of iteration is

(k+1), and then the 1st to the (i−1)the buses’ voltages

are obtained by the (k+1)th iteration, and the remaining

buses’ voltages, i.e., the ith to nth buses’ voltage are

obtained by the kth iteration.

• The row i, i.e., admittanceV ectorGPU , of the bus

admittance matrix in GPU memory. It is worth pointing

out that when calculating the voltage or reactive power of

bus i, we only need the data in row i in bus admittance

matrix. Therefore, we only transmit row i from CPU to

GPU to save time.

The output is a summation array sumGPU which contains

two elements: the first element is the summation value needed

when calculating the bus voltage; the second element is the

summation value needed when calculating the reactive power.

For PQ bus, there is no need to calculate reactive power,

therefore, the second element in array sumGPU is 0.

The procedure of calculating GPU parallel Jacobian matrix

is as follows.

• Allocate GPU memory for bus voltage array, bus admit-

tance matrix, and summation array.

• Copy bus voltage array and bus admittance matrix from

CPU memory to GPU memory.

• Call CUDA kernel function GaussSumKernel to calculate

the summation value needed by the Gauss-Seidel itera-

tion.

• Copy the obtained summation array from GPU memory

to CPU memory.

• Release the memory allocated for bus voltage array, bus

admittance matrix, and summation array.

D. Newton-Raphson Solver

The main computation cost in the Newton-Raphson iteration

comes from two parts, i.e., Jacobian matrix calculation and

linear equations solving. The discussion regarding solving

linear equations is given in Section V-A. In this subsection,

we discuss the parallel implementation of Jacobian matrix

calculation.

Suppose there are n buses in the power system, and the

number of PQ buses is m. In the Newton-Raphson (polar form)

solver, the order of Jacobian matrix J is (n+m− 1), and it

can be presented as

J =

(
H N
K L

)
(17)

where the order of matrix H , N , K, and L is (n − 1),
(n− 1)×m, m× (n− 1), and m, respectively. Although the

calculation approaches of these four sub-matrices are different,

all of them contains first partial derivatives. In our work, we

define CUDA kernel function compuateJacobianMatrixKernel
to calculate the Jacobian matrix in parallel. For each element

in the Jacobian matrix, we use one of the eight formulas (18)-

(25) to calculate its value.

Jij = −UiUj(Gij sin δij −Bij cos δij)

i = 1, · · · , n− 1; j = 1, · · · , n− 1; i �= j
(18)

Jij = Ui

n∑
k=1
k �=i

Uk(Gik sin δik −Bik cos δik)

i = 1, · · · , n− 1; i = j

(19)

Jij = −UiUj′(Gij′ cos δij′ +Bij′ sin δij′)

i = 1, · · · , n− 1; j = n, · · · , n+m− 1;

i �= j; j′ = j − n+ 1

(20)

Jij = −Ui

n∑
k=1
k �=i

Uk(Gik cos δik +Bik sin δik)− 2U2
i Gii

i = 1, · · · , n− 1; i = j
(21)

Jij = Ui′Uj(Gi′j cos δi′j +Bi′j sin δij)

i = n, · · · , n+m− 1; j = 1, · · · , n− 1;

i �= j; i′ = i− n+ 1

(22)

Jij = −Ui′

n∑
k=1
k �=i′

Uk(Gi′k cos δi′k +Bi′k sin δi′k)

i = n, · · · , n+m− 1; i = j; i′ = i− n+ 1

(23)

Jij = −Ui′Uj′(Gi′j′ sin δi′j′ −Bi′j′ cos δi′j′)

i = n, · · · , n+m− 1; j = n, · · · , n+m− 1;

i �= j; i′ = i− n+ 1; j′ = j − n+ 1

(24)

Jij = −Ui′

n∑
k=1
k �=i′

Uk(Gi′k sin δi′k −Bi′k cos δi′k) + 2U ′2i Gi′i′

i = n, · · · , n+m− 1; i = j; i′ = i− n+ 1
(25)
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In these formulas, Gij and Bij refer to real part and

imaginary part, respectively, of the bus admittance matrix

element whose row number is i and column number is j, Ui

and δij refer to voltage magnitude and voltage angle of the

bus i, respectively. The selection of the formula is based on

element’s row number i and column number j.

The input data includes

• Total number of buses n.

• Dimention of the Jacobian matrix r.

• Bus voltage array voltageMagnitudeV ectorGPU in

GPU memory.

• Bus voltage angle array voltageAngleV ectorGPU in

GPU memory.

• The real part admittanceMatrixRealGPU of the bus

admittance matrix in GPU memory.

• The imaginary part admittanceMatrixImaginaryGPU
of the bus admittance matrix in GPU memory.

The procedure of calculating GPU parallel Jacobian matrix

is as follows.

• Allocate GPU memory for Jacobian matrix, the real and

imaginary part of the bus admittance matrix, bus voltage

array and bus voltage angle array.

• Copy Jacobian matrix, the real and imaginary part of the

bus admittance matrix, bus voltage array and bus voltage

angle array from CPU memory to GPU memory.

• Call CUDA kernel function compuateJacobianMatrixK-
ernel to calculate Jacobian matrix.

• Copy the obtained Jacobian matrix from GPU memory

to CPU memory.

• Release the memory allocated for Jacobian matrix, the

real and imaginary part of the bus admittance matrix,

bus voltage array and bus voltage angle array.

E. P-Q Decoupled Solver

The P-Q decoupled solver is a simplified version of the

Newton-Raphson solver, i.e., it ignores the calculation of Ja-

cobian matrix. Hence, the computation cost of P-Q decoupled

solver is solving linear equations. In Section V-A, we have

already explained the parallel implementation of solving linear

equations, we will not restate the procedure in this section.

VI. PERFORMANCE EVALUATION

This paper implemented these three sequential and parallel

power flow solvers using C and CUDA on Windows operating

system. A PC workstation with Intel i3-2100 CPU at 3.10GHz

and 2G RAM runs the sequential solvers and works as the host

for GPU. A NVIDIA GeForce GTS 450 GPU with 192 CUDA

cores is used to compute parallel power flow solvers. We use

standard IEEE9, IEEE30, IEEE118, and IEEE300 systems,

and an actual running power system from Shandong Province

as the benchmark to evaluate the GPU speedup of the three

power flow solvers and compare the performances of the three

parallel power flow solvers. Table II gives the number of bus

and branches each of the benchmark system. The sequential

solver’s runtime on CPU, parallel solver’s runtime on GPU,

and speedup of Gauss-Seidel solver, Newton-Raphson solver

and P-Q decoupled solver are shown Table III, Table IV,

and Table V, respectively. In the power flow solving process,

the iteration error is set to 10−5, and the maximum iteration

number is set to 100.

TABLE II
POWER SYSTEM PARAMETERS

System Bus Count Branch Count
IEEE9 9 9

IEEE30 30 41
IEEE118 118 186
IEEE300 300 357
Shandong 974 1449

TABLE III
EXECUTION TIME AND SPEEDUP OF GAUSS-SEIDEL SOLVER

System CPU Runtime(s) GPU Runtime(s) Speedup
IEEE9 0.0001 0.3276 0.0003

IEEE30 0.002 0.7051 0.0028
IEEE118 0.023 3.2963 0.007
IEEE300 0.3428 7.2992 0.047
Shandong 1.2147 19.603 0.062

TABLE IV
EXECUTION TIME AND SPEEDUP OF NEWTON-RAPHSON SOLVER

System CPU Runtime(s) GPU Runtime(s) Speedup
IEEE9 0.0015 0.0094 0.1596

IEEE30 0.0098 0.0094 1.0426
IEEE118 0.3132 0.1997 1.5684
IEEE300 4.689 2.6848 1.7465
Shandong 583.831 10.881 53.656

TABLE V
EXECUTION TIME AND SPEEDUP OF P-Q DECOUPLED SOLVER

System CPU Runtime(s) GPU Runtime(s) Speedup
IEEE9 0.0047 0.0047 1.0

IEEE30 0.0081 0.0125 0.648
IEEE118 0.1137 0.117 0.9718
IEEE300 1.5107 1.1606 1.3017
Shandong 148.974 5.5068 27.0527

We repeat the experiments under each scenario for ten times

and take the average of the ten execution times as the final

execution time for comparison. The speedup is sequential exe-

cution time divided by parallel execution time. The comparison

of three parallel power flow solvers is plotted in Fig. 1. As

can be seen from the figure that the speedup of Gauss-Seidel

decoupled solver is almost coincident with the abscissa. In

other words, it is very small, close to zero. From Fig. 1, we can

also see that the Newton-Raphson solver has the best speedup,

Gauss-Seidel solver performs the worst, and P-Q decoupled

solver is in the middle. Due to the frequent data transmission

between CPU and GPU, the parallel runtime is larger than

sequential runtime of Gauss-Seidel solver. Furthermore, both

speedup and speedup differences of all the solvers increase

with the system size increases.
As can be seen from Fig. 1 that when the system size is

larger than 300, the speedup increases dramatically. Although
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we do not know exactly why the speedup surge happens at size

300, we believe the turning point is application dependent. Our

future work will further investigate this.

Fig. 1. Speedup Comparison

In addition, compared to the theoretical speedup obtainable

by different algorithms when communication and memory

access costs are not taken into consideration (Table I), there is

still a big gap between the empirically obtained speedup and

the theoretical potential speedup.

VII. CONCLUSION

This paper has discussed three parallel implementations of

power flow solvers on GPU, i.e., Gauss-Seidel solver, Newton-

Raphson solver, and P-Q decoupled solver, and compared the

speedups of these three different methods. The parallel Gauss-

Seidel solver parallelizes the summation process of each

iteration, while for Newton-Raphson solver, we parallelize the

Jacobian matrix computation when transforming non-linear

equations to linear equations, and using Gauss elemination

slover to solve the linear equations. The P-Q decoupled solver

is a simplified version of Newton-Raphson solver, where

Gauss elimination solver used solve linear equations is paral-

lelized on GPU. We use four IEEE standard power systems and

one actual running power system from Shangdong Province

to evaluate and compare the speedups of three parallel power

flow solvers. The results show that Newton-Raphson solver

has the best speedup, Gauss-Seidel solver performs the worst,

and P-Q decoupled solver is in the middle. According to the

results, both speedup and speedup differences of all the solvers

increase with the system size increases.

Although the empirical results have shown clear speedup

when we transition the power flow slover on GPU, there

is sitll a big gap between the obtained speedups and their

potentials. One of the reasons is that in our theoretical analysis,

we assumed there is no communication and memory access

time cost, but in practice, such cost is not negligible. Our

immediate next work is to study the equation distribution

strategy so that the communication among different cores on

GPU is minimized and hence further improves the speedups.

Furthermore, as both the bus admittance matrix and Jacobian

matrix of Newton-Raphson solver are sparse matrices, we can

use sparse matrix technology to reduce the execution time

and save memory usage. In addition, we will study different

applications and investigate the speedup turning point.
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