
Improving Operation Time Bounded Mission Critical
Systems’ Attack-Survivability through Controlled

Source-Code Transformation

Alban Vignaux, Arnaud Auguste,
Bogdan Korel, and Shangping Ren∗

Dept of CS, Illinois Institute of Technology
Chicago, IL 60616

{avignaux, aauguste, korel, ren}@iit.edu

Kevin Kwiat
Cyber Science Branch

Air Force Research Laboratory
Rome, NY 13441

kwiatk@rl.af.mil

ABSTRACT
Mission critical systems often operate for limit time durations. For
these systems, we subscribe to the notion that provisioning of se-
curity can be based on the expected duration of a system’s mission.
In this paper, we present a simple and safe K−variant approach to
improve time-based mission critical systems’ attack-survivability
and provide formal analysis about K−variant system’s attack sur-
vivability under M memory-based attack attempts. Our theoretical
analysis supported by extensive simulations and a case study pro-
vide good evidences that the proposed approach may be in improv-
ing system’s attack-survivability.

Categories and Subject Descriptors
D.2.2 [Software]: Software Engineering

General Terms
Security, Reliability

Keywords
Mission Critical Systems, Time-Bound, Attack Survivability, N-
Version Programming, K-Variant, Source Code Transformation

1. INTRODUCTION
N-Version programming emerged in the 1970’s as a way to tol-

erate design and implementation faults in software. In particular,
when a software fault is encountered during a program execution,
the unaffected version will be able to provide computer systems
with the ability to regain its initial operating capability.

As we know, technology attacks [8] often exploit programming
errors or vulnerabilities that are accidentally or intentionally (life
cycle attacks) introduced by software builders. N-Version program-
ming is a useful defense strategy against such unanticipated or unimag-
inable (zero-day) technology attacks where concurrent, diverse, in-
dividually correct, and functionally equivalent programs are gen-
erated ahead of time to rapidly replace programs that have been
∗This research is supported in part by NSF under grants CNS
0746643, CNS 1018731, and CNS 1035894.
Approved for Public Release; Distribution Unlimited: 88ABW-
2011-4498 dated 18 August 2011

Copyright 2011 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
SIN’11, November 14–19, 2011, Sydney, Australia.
Copyright 2011 ACM 978-1-4503-1020-8/11/11 ...$10.00.

successfully attacked. It provides coverage for design flaws, al-
gorithm weaknesses, misconfigurations, scripting attacks, and data
attacks. N-Version programming-enabled diversity invalidates the
attacker’s assumptions about targeted systems and thus blocks or
disrupts cyber technology attacks. The most widely adopted state-
of-the-art in synthetic diversity techniques to combat cyber attacks
are: instruction set randomization [15, 19], address space random-
ization [23, 6], stack space randomization [6, 7], DLL base random-
ization [5], heap randomization [6, 7], encrypted instructions [17],
calling sequence diversity [28], and system call renaming, to name
a few. While being focused mainly on memory attacks, these tech-
niques have nevertheless achieved success and are well accepted in
the cyber defense community.

Software variations can be introduced at different phases of soft-
ware development life cycle. However depending on the phase cho-
sen, the final cost of the solution is different. The earlier in the
life cycle the variations are introduced, the larger the variation and
the cost. Hence, from reliability perspective, N-version at higher
level of the software development stack is preferred [14]. How-
ever, from software engineering perspective, high level variations
are much more expensive — any modification at one version could
trickle a chain of reactions, including source code change. Even
at the source code level, uncontrolled N-version is also difficult to
verify and maintain their functional equivalences. We believe that
such unfavorable reality is not due to N-version programming con-
cept, rather, it is due to how the variants are introduced. Source
code transformations have to be simple and the scope of modifica-
tions should be limited to avoid the introduction of new flaws in the
program.

For mission critical systems, such as battle field control systems,
the operation time is often rather short comparing to general pur-
pose systems, such as web servers. However, during the short pe-
riod, they need to be highly reliable and available even in the pres-
ence of austere malicious attacks. We subscribe to the notion that
provisioning of security can be based on the expected duration of
a system’s mission. This is in contrast to the “fortress mentality”
with its insistence upon impenetrable protection. Over a decade
ago, Winn Schwarau [22] argued against such unattainable perfec-
tion when he conceptualized time-based security. To “stand the test
of time” in Winn’s sense means not to build, at the onset, a perfectly
secure system that repels all attacks; instead, sufficient security re-
sources are devoted to nullify attacks upon the system’s weaknesses
before those attacks can completely manifest. We therefore take the
stance that if system weaknesses may be unavoidable, then system
resources can be added so that damage due to those weaknesses
can be avoided. Avoidance occurs as long as necessary to ensure
the system’s mission. We base our avoidance strategy on the mis-
sion’s time-bound and then proceed with the necessary resource
provisioning.

In this paper, we present a simple and safe approach that blends

183

the attractive variation features of N-Version programming with
memory-based diversity to improve time-bounded mission critical
systems attack survivability. In particular,

• we introduce memory-based diversity (K−variants) through
controlled source code transformation;

• we provide theoretic analysis on the attack-survivability of a
system with K−variants and under M attack attempts;

• we conduct extensive simulations to validate the effective-
ness of the proposed approach and the theoretic analysis;

• we also provide a case study which not only supports our
theoretical findings, but also may be viewed as a proof of
concept for the K-variant paradigm presented in this paper.

The rest of the paper is organized as following: Section 2 uses an
example to motivate the research. We formally define the problem
the paper is to address in Section 3 and provide theoretic analysis in
Section 4. The memory-based simple and safe source code trans-
formation and experimental evaluations are presented in Section 5
and Section 6, respectively. We discuss related work in Section 7
and finally conclude the paper in Section 8.

2. MOTIVATING EXAMPLE
To motivate our research, consider a small program given in Fig-

ure 1:

void F(int index, int value) {
int buffer[10];
buffer[index] = value;
... };

main() {
int x, i;
...
read(i, x);
if ((i > 0) && (i =< 10)) F(i,x);
... };

Figure 1: Original Program

This program has a buffer-overflow vulnerability. i.e., when the
attacker enters the value of input variable i = 10, then because
of incorrect guard at the if-statement the buffer-overflow occurs in
function F(). This buffer-overflow will most likely cause a crash
of the program, or be exploited by the attacker. However, if we
introduce some unused memory in the neighborhood of the buffer,
then the buffer-overflow occurs only in the redundant/unused mem-
ory that has no impact on the behavior of the program. Figure 2
shows a modified program of Figure 1 in which we introduce a
dummy buffer (int dummy_buffer[5]) in function F(). This
dummy buffer prevents the successful attack of crashing the sys-
tem for input value of i = 10. Notice that the introduction of
this extra redundant memory in function F() does not change the
functionality of the program.

void F(int index, int value) {
int dummy_buffer[5];
int buffer[10];
buffer[index] = value;
... };

main() {
int x, i;
read(i, x);
if ((i > 0) && (i =< 10)) F(i, x); };

Figure 2: Transformed Program by Adding a Dummy Buffer

In this example, we have applied a simple behavior preserving
source-code transformation to the program of Figure 1, by insert-
ing a dummy buffer. The resulting transformed program of Figure 2
is semantically equivalent to the original program. In this paper, the
transformed program is referred to as a variant of the original pro-
gram. The goal of this research is to investigate ways of behavior
preserving source-code based transformations which can be applied
to the original program to minimize the chances of successful at-
tacks on the system consisting of the original program and one or
more of its variants (K-variants) within a given time-frame. Ideally,
a successful attack on the original program should not be success-
ful when it is applied on the transformed variant(s). As a result,
the attacker needs to spend more time and resources during the at-
tack not only on the original program but also on its K variants.
This additional time for the attacker may increase the chances of a
successful completion of the mission by at least one of its variants.

By using different behavior preserving transformations in differ-
ent places in the source code, we can automatically generate a large
number of variants of the original program. Before a mission crit-
ical system is launched, K variants are randomly selected for the
mission, i.e., a different set of variants is used for each mission.
This may reduce the chances of successful attacks for subsequent
missions.

However, the behavior preserving source-code based transfor-
mations must be simple and safe, where by a safe transformation
we mean a transformation that does not introduce any side-effects
to the original program. By a simple transformation we mean a
transformation that does not require any additional transformations
(changes) in order to ensure the semantic equivalence. For ex-
ample, the transformation of Figure 2 is a simple transformation
because adding a dummy buffer does not require any additional
changes to the source code. On the other hand, a transformation
that, for example, changes a name of a variable may require many
changes in the source code where the variable is referenced. Such
a complex transformation may not be safe because it requires many
additional changes in the source code. As a result, a significant
effort for retesting of such variants may be required.

In summary, the idea of our approach is to automatically restruc-
ture an existing body of source code of an original program without
changing its external behavior by applying a series of small behav-
ior preserving transformations that may result in a different internal
program behavior during the attacks.

3. PROBLEM FORMULATION
In this section, we formally define the problem the paper is to

address. It is worth pointing out that the intend of this paper is not
to investigate how to prevent attacks, rather to develop a simple,
less expensive, but effective software approach to enhance mission
critical systems’ operation time in the presence of attacks. We focus
on memory exploitation attack in this paper.

System Model
We assume that to increase a mission critical system’ availabil-
ity and reliability in a hostile environment, K different variants
(V0, V1, · · · , VK−1) of the system’ software modules operate con-
currently. These K variants are transformations from an initial ver-
sion V0 by using memory-based simple semantic preserving source-
code transformations.

Attack Model
We assume the best case scenario for the attacker. In particular,

• The attacker is aware of the existences of all K−variants.

• The attacker makes all attack attempts concurrently on all
K− variants.

• Each attack attempt takes Tattack time.

184

• For the time duration (Tsys) in which the system operates,
an attacker can make at most M = Tsys/Tattack attack at-
tempts.

• By a successful attack we mean that the attacker is able to
crash all variants within the M attempts; if at least one vari-
ant survives all M attacks, it is considered as an unsuccessful
attack.

• Attacks are random and the attack address is uniformly dis-
tributed within a given memory space.

Notations
To simplify the discussion, we first introduce the notations that are
used in the paper.

• N = the size of the memory potentially under attack. We
assume that the size of the memory under attack is the same
for all K−variants.

• n = the size of the vulnerable memory and it is located
within the memory under attack and n ≤ N . We assume
that a memory unit at some address is vulnerable if its mod-
ification by the attacker causes a failure of the variant under
attack.

• r = the percentage of vulnerable memory with respect to
the total memory under attack for a given variant, i.e., r =
n
N
100%

• M = maximum number of attack attempts an attacker can
make.

• K = number of software variants a system has.

• Pu(K,M) = the probability that an attacker fails to crash
all the K− variants with M attempts. Such an attack is con-
sidered as an unsuccessful attack. We consider Pu(K,M)
as a measure of the survivability of the system under attack.

• Ps(K,M) = the probability that an attacker successfully
crashes all the K− variants after maximal number of M at-
tempts, i.e., the probability of the successful attack.

• O(addr, i, j) = a Boolean value that indicates whether vul-
nerable memories of variant i and j overlap at address addr.
O(addr, i, j) = 1 when there is an overlap; otherwise, its
value is zero.

Problem Formulation
Under the system and the attack models presented above, we for-
mally define the problem we are to address:

PROBLEM 1. Given a mission critical system with executable
software memory size N and vulnerable memory size n, assume
K−variants are created through simple semantic preserving source
code transformations and operate concurrently with their initial
version, can the new system survive M attacks from malicious at-
tackers? In other words, what is Pu(K,M) under the given system
and attack models?

�

4. SYSTEM SURVIVABILITY ANALYSIS
In this section, we formally analyze the influence of different

factors on the attack survivability for the K−variant approach pre-
sented in this paper for mission critical systems.

Consider two program variants V0 and V1, where V1 is obtained
through a program transformation discussed in Section 2, i.e., add-
ing a dummy buffer. The two variants’ memory spaces are shown
in Figure 3.

Figure 3: Memory Space for Two Variants

It is not difficult to see that, with only one version, i.e., V0, the
probability of an unsuccessful attack after M attempts (or the sys-
tem’s survivability of M attack attempts) is given below:

Pu(1,M) = (1− n

N
)M (1)

When a new variant (V1) is introduced, depending on the locations
of the vulnerable memory of V0 and V1, the probability of unsuc-
cessful attacks can be different when the relationship between of
the two variants’ memories changes. We discuss each case in de-
tail:

Case 1: the vulnerable memory space of V1 is the same as in
V0. In this case, the probability of an unsuccessful attack after M
attempts is given below (2):

Pu(2,M) = Pu(1,M) = (1− n

N
)M (2)

Case 2: The vulnerable memory space of V1 is different from
V0, but there is an overlap of size m. However, the vulnerable
memory space in V1 is within the memory under attack as shown
in Figure 3.

Pu(2,M) = 2(1− n

N
)M − (1− 2n−m

N
)M (3)

Case 3: The vulnerable memory space of V1 does not overlap
with the vulnerable memory space of V0, i.e., m = 0, but it is
within the memory under attack. We have

Pu(2,M) = 2(1− n

N
)M − (1− 2n

N
)M (4)

Case 4: The vulnerable memory space of V1 is outside the mem-
ory under attack. Clearly, the probability of unsuccessful attack is
1, i.e.,

Pu(2,M) = 1 (5)

Case 5: The vulnerable memory space of V1 does not overlap
with the vulnerable memory space of V0, and is only partially with
size q within the memory under attack. In this case, the unsuccess-
ful probability is:

Pu(2,M) = (1− n

N
)M + (1− q

N
)M − (1− n+ q

N
)M (6)

Case 6: The vulnerable memory space of V1 is different from but
overlap with the vulnerable memory space of V0 and it is only par-
tially with size q inside the memory space under attack as shown in
Figure 4. It is not difficult to see that this is the most general case
from which Case 1 to Case 5 can be derived. The most general
form of unsuccessful attack probability, i.e., attack survivability, is

185

given by (7):

Pu(2,M) = (1− n

N
)M+(1− m+ q

N
)M

− (1− n+ q

N
)M (7)

Figure 4: Memory Space for Two Variants when Partial Vul-
nerable Space Is Outside the Attack Range

Figure 5 demonstrates the influence of the dummy buffer size on
the attack survivability based on the theoretical model presented by
formula (7) when there are two variants and the maximum number
of attack attempts (M) allowed is 50. From the figure, it is clear
that for a given number of attack attempts, if the dummy buffer
size is large enough, the system’s survivability approaches to 1.
Furthermore, as the vulnerable memory ratio, i.e., r, increases, in
order to have high survivability, we have to introduce larger size of
dummy buffer.

Figure 5: Attack Survivability vs Dummy Buffer Size

As can be seen from Figure 5 all three curves have some similar-
ities, i.e., they have two flat parts. In fact, the first flat parts of the
curves are for the case where there is no memory overlapping be-
tween variants with respect to the vulnerable memory. The second
flat part in these curves for which Pu = 1 represents the situation
where the vulnerable memory in the second variant is shifted out-
side of the attack range. These results clearly demonstrate that from
the theoretical point of view it should be sufficient to introduce only
one additional variant provided that the dummy buffer shifts the
whole vulnerable memory outside of the “attacker’s reach”. This
may work for some types of attacks, but for many other types, the
memory under attack is the whole memory in the system. There-
fore, it is not possible to shift out completely the vulnerable mem-
ory. However, it is possible to improve the probability of an unsuc-
cessful attack (i.e., improve the attack survivability) by introducing
dummy buffers at different places of a program so that the vulner-
able memories in different variants do not overlap totally.

With K−variants, the best scenario for defender is that the vul-
nerable memory of different variants do not overlap with each other.

Under this case, the system’s attack survivability Pu(K,M) =
1− Ps(K,M), where Ps(K,M) is given by (8):

Ps(K,M) = K ×
M−K+1∑

i=1

(1− K × n

N
)i−1(

n

N
)

× Ps(K − 1,M − i) (8)

where Ps(0,M) = 1, Ps(K, 0) = 0, and we assume N ≥ K ×n.
Based on equation (8), Figure 6 shows the relationships between

the number of variants and Pu with respect to different vulnera-
ble memory ratio r assuming there is no memory overlap between
variants. From the figure, it is not difficult to see that the program’s
inherent vulnerability r has a significant influence on the number
of variants needed to achieve a specific attack-survivability.

Figure 6: Survivability vs Number of Variants with Respect to
Vulnerable Memory Ratio r

On the other hand, based on equation (8), Figure 7 shows the re-
lationships between the number of variants and Pu with respect to
different maximum numbers of attack attempts assuming the vul-
nerable memory ratio r = 2.5%. It is not difficult to see that the
maximal duration of the attack, represented by M , has a significant
influence on the number of variants needed to achieve a specific
attack-survivability.

Figure 7: Survivability vs Number of Variants with Respect to
Number of Attack Attempts M

These results suggest that the vulnerable memory space for dif-
ferent variants should not overlap, or at least the overlap should
be minimized between variants. With our approach, as random
dummy buffers of different size are introduced in different places
of the source code of the system, the attacker may not know ex-
actly where the vulnerable memory spaces for the next variants are
exactly located. As a result, the survivability of the K−variant
system may significantly increase.

5. CREATING K-VARIANTS THROUGH SIM-
PLE AND SAFE SOURCE CODE TRANS-
FORMATION

As we discussed in the previous section, the challenge is to iden-
tify simple and safe source code transformations that may (1) min-
imize the vulnerable memory overlaps between variants and/or (2)

186

reduce the vulnerable memory size in variants. Transformations
with such properties should enhance the survivability. In this sec-
tion, we present three simple source code transformations that hope-
fully may reduce the memory overlap: (1) adding a dummy buffer(s),
(2) dummy heap request(s), and (3) changing the order of heap-
memory requests. Not every source code transformation, e.g., trans-
formations used in refactoring, is appropriate for enhancing surviv-
ability of the K−variant system. For example, a transformation
that changes a name of a function has no effect on survivability.
The research challenge is to identify a set of transformations that
may significantly reduce the chances of a successful attack within a
given time-frame. The major advantage of source code transforma-
tions is that it gives an user some degree of control over generation
of types of variants, as opposed to other methods, e.g., randomiza-
tion, where the user has not much control over generated variants.

5.1 T1 - Adding dummy buffers and variables
This transformation consists in adding extra buffer (or a variable)

declarations within the source code, like in the following example:

/* Original Variant */
int vulnerable_function(char * s){
char dest[20];
strcpy(dest, s);}

/* Transformed Variant */
int vulnerable_function(char * s){
char dummy_variable[100];
char dest[20];
strcpy(dest, s);}

This transformation helps to protect against buffer overflow as
it adds more memory, depending on the size of the dummy buffer,
between the vulnerable buffer and the return address of the func-
tion. Thus the input necessary to exploit the vulnerability is not
the same. This type of transformations can easily be supported by
a tool. Such a tool needs to identify potential places in the source
code that may be vulnerable for an attack, i.e., guarding the return
address, identifying vulnerable buffers (e.g., buffers used by unsafe
functions). The dummy buffers can be added to "protect" local or
global buffers/variables.

Issues that need to be determined when using such transforma-
tions are:

• How many dummy buffers shall be inserted into a variant(s),

• Where the dummy buffers should be inserted, and

• What are the sizes of dummy buffers

For each variant, different number of dummy buffers (of different
sizes) can be inserted in different places of the source code. This
generation of variants can be done randomly or semi-randomly,
where the user can influence some of these factors, e.g., indicating
potential places where dummy buffer insertions should be made.

5.2 T2 - Dummy heap requests
The purpose of this type of transformation is to insert redundant

heap memory between heap memory spaces that are used by the
system. For example, in the code below in the transformed vari-
ant a redundant heap memory request is inserted dummy_buf =
malloc(sizeof(char) ∗ 100);. As a result, a dummy buffer is in-
serted between the heap memory space pointed by sensitive_data
pointer and dest pointer.

/* Original Variant */
int vulnerable_function(char * s){
char * sensitive_data;
char * dest;

sensitive_data = malloc(sizeof(char)*100);
dest = malloc(sizeof(char)*20);
strcpy(dest, s);}

/* Transformed Variant */
int vulnerable_function(char * s){
char * sensitive_data;
char * dest;
char * dummy_buf;

sensitive_data = malloc(sizeof(char)*100);
dummy_buf = malloc(sizeof(char)*100);
dest = malloc(sizeof(char)*20);
strcpy(dest, s);
free dummy_buf;}

This is a relatively simple transformation and it can be easily
supported by a tool. Potentially such dummy heap memory re-
quests can be done before or after each “actual” heap memory re-
quest. Similar issues that need to be determined when using such
transformations are:

• How many dummy heap memory need to be inserted into a
variant(s),

• Where the dummy heap memory should be inserted, and

• What are the size of dummy heap memory requests

One of the issues that may need to be considered when using
such a transformation are memory leaks. One needs to determine
if unused heap memory needs to be returned to the heap. If a suffi-
cient heap memory is available to run the system, then the memory
leak is an acceptable side effect of increased survivability. How-
ever, if memory leaks are not acceptable, we have to release the
memory allocated to prevent memory leaks. The transformation
has to dispose the dummy allocated memory in every independent
path of the function. This may be more complex than transforma-
tion T1, however, this transformation is still quite simple.

Another issue is that the frequencies of dummy memory requests
may need to be controlled, e.g., when the heap memory requests
are in a loop. In such a case, the number of dummy heap requests
may be controlled by a conditional statement, e.g., the following
statement can be inserted:

if random_request()
dummy_buf = malloc(sizeof(char)*100);

where each time when the if-statement is executed, the random
function random_request() decides if the dummy heap memory
request should be made or not.

5.3 T3 - Changing the order of heap-memory
requests

The purpose of this type of transformations is to change the order
of heap requests as shown in the code below.

/* Original Variant */
int vulnerable_function(char * s){
char * sensitive_data;
char * dest;
sensitive_data = malloc(sizeof(char)*100);
dest = malloc(sizeof(char)*20);
strcpy(dest, s);}

/* Transformed Variant */
int vulnerable_function(char * s){
char * sensitive_data;

187

char * dest;
dest = malloc(sizeof(char)*20);
sensitive_data = malloc(sizeof(char)*100);
strcpy(dest, s);}

This last transformation seems easy but needs extra precaution
because new sort of problems can arise from this modification. As
an example, between the old and new location of the memory al-
location, some code can directly reference this variable. If this is
not a case, then this transformation can be safely used. However,
for a general case this type of transformation still requires more
investigation.

6. CASE STUDY
The goal of this case study is to investigate the effectiveness of

source code transformations (extra memory injections) discussed
in this paper on the potential reduction of successful attacks for all
K−variants within a given time-frame. In particular, we are to (1)
evaluate the relationship between the number of surviving variants
and the size of dummy buffers that are transformed into the initial
variants, and (2) evaluate the number of attempts needed to have a
successful attack. By a successful attack we mean that the attacker
is able to compromise all K−variants. If there is one variant that is
not compromised within a given time-frame, the attack is consid-
ered un-successful.

Case Study Settings
In this case study we have concentrated on the buffer overflow vul-
nerabilities. We have selected several programs for this study. For
each program we have inserted some buffer-overflow vulnerabili-
ties. Notice that it is assumed that these vulnerabilities are not de-
tected during the regular testing/QA process. For each program we
have created three variants by using source code transformations
(i.e., injecting extra memory) discussed in this paper. In addition,
we assume that an attacker can concurrently attack all the variants.
In order to obtain statically significant results, each random attack
is repeated 1,000 times. The time-limit is measured by the number
of allowed random attacks (probes).

Case Study Results

Figure 8: Probability of unsuccessful attacks vs dummy buffer
size

Figure 8 plots the probability change 1 of unsuccessful attacks
when the dummy buffer size increases for one of the programs.
As we can see from the figure that the probability of unsuccess-
ful attacks, i.e., the system’s survivability, slightly increases as the
dummy buffer size increases until the dummy buffer size reaches
to 70 when the system’s survivability sharply reaches 54% for a
buffer size of 85. This is due to the program variant 2 and 3 becom-
ing more resilient to random attack. The vulnerable space shrinks
as the dummy buffer size increases. Finally with a dummy buffer
1The mean value is used in calculating the probability of unsuc-
cessful attacks for each buffer size.

size of 80 the two variants are no longer vulnerable. This trend was
observed in all programs under investigation.

Figure 9 depicts the relations between the number of attacks
needed to compromise individual variants compared to the size of
the dummy buffer for different variants for one of the program un-
der study.

Figure 9: Number of attempts compared to dummy buffer size

We can observe that for this program variant V 1 is not very use-
ful as the maximum number of attempts needed to break the sys-
tem is low and steady all along the experience. However for the
last two variants, as the dummy buffer size increases the vulnerable
area decreases and so the maximum number of attempts needed to
compromise the system reachs 100, i.e., the maximum allowed.

The results of the small case study confirm that the memory
based small transformations can significantly enhance the surviv-
ability of the K-variant system.

7. RELATED WORKS
In this section, we discuss related work from three different as-

pects, namely, security of mission critical systems, N-version pro-
gramming, and specific buffer overflow protections.

Security of critical system
For mission critical systems, such as battle field control systems,
the operation time is often rather short comparing to general pur-
pose systems, such as web servers. They are also limited by physi-
cal constraints, such as space and size constraints. The short opera-
tion time and physical constraints often inhibit the system’s ability
to repair themselves during mission time. But on the other hand,
similar to general purpose systems, critical systems are also prone
to many types of errors. Furthermore, due to its criticality and short
operation time, a mission critical system often faces higher proba-
bility of transient failures [18].

To deal with problems of reliabilities, modern critical systems
incorporate fault-tolerant techniques to get a more robust system
protected against faults. Fault tolerance does not aim at removal of
all vulnerabilities in a program, rather at ensuring that these vulner-
abilities do not affect the correct execution of the program. Thus,
a software unit is fault-tolerant if it can continue delivering the re-
quired service, i.e., supply the expected outputs with the expected
timeliness, despite the presence of fault-caused errors within the
system itself. Getting a high degree of tolerance in a program in
not easy. Errors need to be detected with the most possible brevity,
and the propagation of erroneous information through the system
have to be avoided [20].

Research studies have pointed out that most system vulnerabili-
ties detected are due to bad programming habits [2]. For instance,
fail to preserve SQL query structure or constrain operations within

188

the bounds of a memory buffer, improper access control, hard-
coded password, etc, belong to the category. Attackers can often
easily take advantages of these weaknesses and cause system to
crash or even take the control of the system. Buffer overflow, in
particular, is an program anomaly where a program, while writ-
ing data to a buffer, overruns the buffer’s boundary and overwrites
adjacent memory. It is currently one of the most common vulnera-
bilities and be maliciously exploited by attackers.

To date, many attack techniques have been developed to ex-
ploit memory errors: stack smashing attacks [1], return-to-libc at-
tacks [11], format-string attacks [25], data modification attacks,
heap overflow attacks [16], integer overflow attacks [9], to name
a few. Many counter-attack techniques have emerged from system
security community to prevent systems from becoming victims of
such exploits [24, 12]. However, because these preventive mea-
sures are generally applied, they neglect the specific constraints
placed upon the attackers and defenders.

Our work aims at improving the security of a specific type of
mission critical systems of which the operation time is bounded.
The implication of such time bound is that attackers have a limited
time to exploit a weakness in the program.

N-version programming
Currently, one of the main technique for achieving fault tolerance is
N-version programming, a technique based on diversity which aims
at employing several alternate versions of a program, all respond-
ing to the same given specification. Basically, it consists of exe-
cuting multiple versions of the same application in parallel; each
receives identical inputs and each produces its version of the re-
quired outputs. The outputs are collected and submitted to a de-
cision algorithm that selects the output to be used by the system.
Some methodologies have been proposed to effectively apply the
N-version programming technique to software systems [4, 21].

Unfortunately, the N-version programming methods often lead
to a growth of costs (men power, time and space, and other re-
sources) and a higher complexity in terms of design and programma-
bility [3]. The different versions must have maximal independence
of design and implementation. It implies the use of diverse algo-
rithms, programming languages, compilers, design tools, and im-
plementation techniques, etc. It can also imply the employment of
independent (noninteracting) programmers or designers, with di-
versity in their training and experience. Moreover, implementa-
tion of N-version fault-tolerant software requires special support
mechanisms that need to be specified, implemented, and protected
against failures. For example, a decision algorithm required for the
approach is itself difficult to implement [10]. Finally, maintenance
of a N-version program remains a challenging issue: a single mod-
ification could affects all versions.

Different from N-version programming, the software K−variants
we propose can be obtained from the initial version of a program
by simple and safe source-code transformations. Comparing to N-
version programming, our source code transformation is easier to
implement and has less costs in terms of programmability, efforts,
and execution time.

Buffer Overflow Protection
StackGuard and ProPolice
StackGuard [13] is an extension added to the GCC compiler to de-
tect and thwart stack smashing buffer overflows. The effect is trans-
parent and the flow of a program is kept. However, the stack frame
is modified with the add of so called ’canary’ value between the
control data and the buffer. It is initialized after the control val-
ues (saved registers, frame pointer, return address) are saved and
checked right before the control values are restored [27]. Later,
ProPolice appears as an enhancement of the StackGuard protection.

It differs by protecting more than the return address: all registers
saved in the function prologue are also protected.

StackGuard is limited to one type of attack: stack smashing. It
may not be effective in preventing other types of attacks. The idea
of StackGuard is similar to transformation T1 which introduces
dummy buffers in the source code whereas StackGuard introduces
extra memory during compilation. However, transformation T1 is
more general because it is not limited only to stack memory. In ad-
dition, transformations T2 and T3 provide other ways of protection
related to the heap memory that are not supported by StackGuard.
Finally, StackGuard users have a very limited control during the
process of generation of different variants of the system as opposed
to our approach that provides a higher level of diversity between
variants.

Address space randomization
Another way to prevent systems from memory errors is memory ad-
dress space randomization. This technique randomly arranges the
positions of key data areas of a process’s address space [23], such
as the base of the executable, the position of libraries, the heap,
and the stack. It aims at preventing the attackers from using the
same attack code to exploit the same flaw in multiple randomized
instances of a single software program by making it more difficult
for the attacker to understand the structure of the program and to
predict target addresses. In practical terms, randomization ensures
that an attack that succeeds once may not succeeds a second time on
the same program (a failed attempt typically making the program
crash). This technique is particularly effective against large-scale
attacks [5]. To date, different mechanisms, such as PaX ASLR
(Address Space Layout Randomization) [26], implement this tech-
nique.

An approach to achieve address space randomization is address
obfuscation [5]. It is a program transformation technique in which
absolute locations of all code and data, and the relative distances
between different data items are randomized. This can be realized
through a combination of different transformations:

• Randomize the base address of memory regions (base ad-
dress of the stack/the heap, starting address of dynamically-
linked libraries, locations of routines and static data in the
executable)

• Permute the order of variables/routines (order of local vari-
ables in a stack frame, order of static variables, order of rou-
tines in shared libraries or in the executable)

• Introduce random gaps between objects (random padding into
stack frames, random padding between variables in the static
area, gaps between routines and jump instruction to skip over
the gaps)

As a result, the program’s code is modified so that each time it is
executed, the virtual addresses of the code and data of the program
are randomized. This technique allows to protect a program against
a wide range of attacks that exploit memory errors, and can easily
be applied without modifying its source code. Even if it is quite ef-
fective, it can introduce runtime overheads and remains vulnerable
to some specifics attacks.

Address obfuscation aims at randomizing code and data location
at binary level. Different from address obfuscation, our approach
allows source code level modification which gives application de-
veloper more control on the transformation processes.

8. CONCLUSION
Mission critical systems have more constraints than a general

purpose system. Their execution is time limited and they have to
remain available and reliable during this short operation period. As
all software systems, they may contain some weaknesses and may

189

be prone to attacks. Buffer overflow is one of the most common
vulnerability that can be found and can be maliciously exploited by
hackers.

In this paper, we developed a method that suits for critical sys-
tems’ requirements (i.e. high reliability during a short operation
time) and is easy to implement. By introducing dummy buffer in
the source code of our program, we are able to modify the memory
space structure so that an exploit which works on a version of a pro-
gram does not work on another version. This technique has many
advantages: it makes the modified system more robust against at-
tacks: a hacker needs to spend more time to exploit several variants
of a program rather than a single one, which is the most important
factor in a critical system (where run time is limited). It is simple
in terms of programmability and does not change the semantic of
the program. Since modifications are made at code source level,
it provides more control on the transformation process than a ran-
domization of address space at a binary level.

However, this paper only lays the foundation of a new concept
and there are still many questions yet to be answered. First, it would
be interesting to determine what is the best position for adding
dummy buffer in the source code, in order to get the best reliability.
Second, clearly allocating more memory space in a program may
lead to overheads. The question is how to get the best balance be-
tween security and performance when using this technique. Third,
currently, the approach is for handling memory-related attacks, can
the method be extended to different types of attacks? Addressing
these issues is our immediate next research step.

9. REFERENCES
[1] M. G. Andrea Cugliari. Smashing the stack in 2010. PhD

thesis, Politecnico di Torino, 2010.
[2] G. Antoniol. Search based software testing for software

security: Breaking code to make it safer. In Proc. of the IEEE
International Conference on Software Testing Verification
and Validation Workshops ICSTW 09, 2009.

[3] A. Avizienis. The n-version approach to fault-tolerant
software. IEEE Trans. Softw. Eng., 11:1491–1501, December
1985.

[4] A. Avizienis. The methodology of n-version programming.
In Proc. of Software Fault Tolerance, pages 23–46, 1995.

[5] E. Bhatkar, D. C. Duvarney, and R. Sekar. Address
obfuscation: an efficient approach to combat a broad range
of memory error exploits. In Proc. of the 12th USENIX
Security Symposium, pages 105–120, 2003.

[6] S. Bhatkar. Defeating memory error exploits using
automated software diversity. PhD thesis, NY, USA, 2007.
AAI3337612.

[7] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient
techniques for comprehensive protection from memory error
exploits. In Proc. of the 14th Conference on USENIX
Security Symposium - Volume 14, pages 17–17, 2005.

[8] K. P. Birman and F. B. Schneider. The monoculture risk put
into context. IEEE Security and Privacy, 7(1):14–17, 2009.

[9] blexim. Basic integer overflows.
http://www.phrack.org/issues.html?issue=60&id=10#article.

[10] S. S. Brilliant, J. C. Knight, and N. G. Leveson. The
consistent comparison problem in n-version software. IEEE
Transactions on Software Engineering, 15:1481–1485, 1989.

[11] c0ntext. Bypassing non-executable-stack during exploitation
using return-to-libc.
http://www.infosecwriters.com/text_resources/pdf/return-to-
libc.pdf.

[12] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. Pointguard :

Protecting pointers from buffer overflow vulnerabilities. In
Proc. of the 12th Usenix Security Symposium, 2003.

[13] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang. Stackguard:
Automatic adaptive detection and prevention of
buffer-overflow attacks. In Proc. of the 7th USENIX Security
Symposium, pages 63–78, 1998.

[14] S. Fitzpatrick, C. Green, S. Westfold, J. McDonald, and
A. Coglio. Using software generation and for cyber-defense.
In Survivability in Cyberspace, 2011.

[15] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering
code-injection attacks with instruction-set randomization. In
Proc. of the 10th ACM Conference on Computer and
Communications Security, pages 272–280, NY, USA, 2003.

[16] F. Lindner. A heap of risk. http://www.h-
online.com/security/features/A-Heap-of-Risk-747161.html,
2006.

[17] M. Milenković, A. Milenković, and E. Jovanov. Using
instruction block signatures to counter code injection attacks.
SIGARCH Comput. Archit. News, 33:108–117, 2005.

[18] T. S. Perraju, S. P. Rana, and S. P. Sarkar. Specifying fault
tolerance in mission critical systems. In Proc. of the 1996
High-Assurance Systems Engineering Workshop, HASE ’96,
pages 24–30, Washington, DC, USA, 1996. IEEE Computer
Society.

[19] G. Portokalidis and A. D. Keromytis. Fast and practical
instruction-set randomization for commodity systems. In
Procceedings of the 26th Annual Computer Security
Applications Conference, pages 41–48, NY, USA, 2010.

[20] B. L. C. Ramos. Challenging malicious inputs with fault
tolerance techniques.
https://www.blackhat.com/presentations/bh-europe-
07/Luiz_Ramos/Whitepaper/bh-eu-07-luiz_ramos-WP.pdf,
2007.

[21] R. J. Rodriguez and J. Merseguer. Integrating Fault-Tolerant
Techniques into the Design of Critical Systems. In
ISARCS’10: Proc. of the 1st International Symposium on
Architecting Critical Systems, volume 6150 of Lecture Notes
in Computer Science, pages 33–51. Springer, 2010.

[22] W. Schwartau. Time-Based Security: Practical and Provable
Methods to Protect Enterprise and Infrastructure, Networks
and Nation. Interpact Press, 1999.

[23] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu,
and D. Boneh. On the effectiveness of address-space
randomization. In Proc. of the 11th ACM Conference on
Computer and Communications Security, CCS ’04, pages
298–307, 2004.

[24] P. Silberman and R. Johnson. A comparison of buffer
overflow prevention implementations and weaknesses.
http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-
silberman/bh-us-04-silberman-paper.pdf,
2004.

[25] K. suk Lhee and S. J. Chapin. Buffer overflow and format
string overflow vulnerabilities. Software: Practice and
Experience, 33:423–460, 2002.

[26] T. P. Team. Documentation of the pax project.
http://pax.grsecurity.net/docs/.

[27] P. Wagle and C. Cowan. Stackguard: Simple stack smash
protection for gcc. In Proc. of the GCC Developers Summit,
pages 243–255, 2003.

[28] D. W. Williams, W. Hu, J. W. Davidson, J. Hiser, J. C.
Knight, and A. Nguyen-Tuong. Security through diversity:
Leveraging virtual machine technology. IEEE Security &
Privacy, 7(1):26–33, 2009.

190

