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Abstract—For large open and distributed real-time appli-
cations, coordination constraints among concurrent, spatially
distributed and autonomous entities can be complex. The
Actor-Role-Coordinator (ARC) model we developed earlier [1]
introduced the concept of roles which are abstractions of
behaviors that are to be coordinated. Each role’s behaviors
may be shared by many concurrent entities, or played by
many actors. Based on the role concept, coordination activities
in large systems are partitioned into inter-role and intra-role
coordinations to mitigate the coordination complexity. This
paper focuses on coordination primitives and the composition
of these primitives in forming more complex intra-role and
inter-role coordination constraints. In particular, we define two
primitive coordination operators, i.e., precede (�t) and select
(Dp), and use them to express temporal and spacial (with
respect to actor system’s behavioral space) coordination con-
straints among concurrent and autonomous actors. We further
provide an operational semantics for these operators under
the ARC model and provide case studies to illustrate their
expressiveness in specifying complex coordination constraints.

Keywords-Actor model; Actor-Role-Coordinator model; co-
ordination; coordination constraints; coordination operators;
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I. INTRODUCTION

For large open distributed and real-time applications, there
are often many concurrent asynchronous and distributed
entities, and they communicate with each other through
messages. Due to the dynamicity and openness of these
applications, it is impetuous to assume synchrony among
these entities. However, the virtue of real-time applications,
on the other hand, requires certain temporal orders, or more
generally, requires coordination constraints being enforced
among these autonomous and concurrent entities.

Traditional approaches often embed these requirements
inside implementation languages, operating systems, or sys-
tem architectures, rather than treat coordination constraints
as independent and first class entities at programming lan-
guage level. One of the drawbacks of such approaches is
that any modification of coordination constraints may require
changes of the application’s programming implementations,

or the supporting run-time environment, such as operating
systems, or system architectures.

The base of our model is build upon the belief that how
to implement a functionality and when/where to execute
the functionality are orthogonal. Computational entities
implements the how, while when and where to execute
the functionality is defined by coordination constraints
which are encapsulated in coordination entities. As how
and when/where are orthogonal, good programming models
should ensure implementation transparency among the two
orthogonal classes, i.e., among computational entities and
coordination entities.

In the Actor-Role-Coordinator (ARC) model, the Actor
model [2], [3] is used to model distributed and concurrent
computation. Under the Actor model, each actor encap-
sulates a single thread of computation. It has states and
communicates with other actors in the system by asyn-
chronous messages. The Actor system only guarantees that a
message sent by an actor will eventually be processed by its
receiving actor. The only coordination constraints inherent
in the Actor system is the causal order [4]. The ARC model
adds a coordination layer (role and coordinator) on top of the
actor system and externally enforces coordination constraints
through manipulations of actor message dispatch time and
dispatch location. As the Actor model is a pure asynchronous
system model and does not assume any message delivery
time, such message manipulations are transparent to actors
and hence enable us to program computation (actors) and
coordination (roles and coordinators) independently.

For large open distributed and real-time applications, co-
ordination requirements among concurrent and autonomous
entities can be complex. One of the challenging issues
arises: is there a small set of primitive coordination oper-
ators through which or through their composition complex
coordination requirements can be represented? This question
is motivated by the existence of functionally completed logic
operations. In logic domain, logical propositions can be
complex, however, these complex propositions in fact can
be represented by a small set of simple, but functionally
completed logic operations, such as the set {∧,¬}. In



this paper, we propose two coordination operators, i.e.,
precede (�t) which constraints the quantitative temporal
order among two computational events, and select (Dp)
which constraints the actors in their behavioral space, and
study their compositions.

The rest of paper is organized as follows: for self-
containment, Section II briefly discusses the ARC model
upon which our current work is built. Section III introduces
the two primitive coordination operators and studies their
properties and compositions. Section IV gives formal opera-
tional semantics for the two coordination operators under the
ARC model. Section V discusses related work. We conclude
in Section VI.

II. THE ACTOR-ROLE-COORDINATOR (ARC) MODEL

For self-containment, this section gives a brief overview
of the ARC model, detailed discussion of the model and its
implementation can be found in [1] and [5], respectively. As
the model name indicates, there are three distinctive types
of entities in the model, i.e., the actors, roles and coordina-
tors. The actors encapsulate asynchronous, autonomous and
concurrent computation, while the roles and coordinators
encapsulate coordination constraints to be enforced upon
the computation entities, i.e., the actors. The following
subsections summarize the functionalities and properties of
these three types of entities.

A. Actors

Actors in the ARC model are the same as the one
defined in the Actor model [2], [3]. In particular, actors
are single-threaded active objects. They communicate with
each other only through asynchronous messages. Each actor
has a mailbox where the received and yet to be processed
messages are buffered. Actors have states and behaviors. The
actor’s current state and behavior decide how it processes
messages dispatched on its active thread. The actor’s state
and behavior can only be changed by the actor itself while
processing a message. The active threads within actors
continuously process messages whenever their mailboxes are
not empty. There are only three primitive operations each
actor can perform, i.e., create new actors, send messages
to other actors whom the sender knows the address of,
and while processing a message, an actor can also perform
become upon which the actor assumes a new state and a
new behavior. All these operations are atomic. Therefore,
we treat these operations as instantaneous events. The only
order inherent in the Actor model is the causal order and the
only guarantee provided by the model is that messages sent
by actors will eventually be processed by their receiving
actors. Other synchronization and coordination constraints
for the purpose of quality of services hence need to be
externally enforced. Roles and coordinators are to enforce
such constraints.

B. Roles and Coordinators

Roles and coordinators in the ARC model constitute the
coordination layer. Roles are introduced as behavior ab-
stractions to mitigate coordination scalability and complexity
issues inherent in large open distributed applications. With
the introduction of roles, coordination is partitioned into
two categories, i.e., inter-role coordination and intra-role
coordination, which are the responsibility of coordinators
and roles, respectively. Fig. 1 illustrates the layered structure
of the ARC model.

Figure 1. The Actor Role and Coordinator (ARC) Model

As shown in Fig. 1, the separation of concerns is apparent
in the relationships among the layers. The actor layer is
dedicated to computational behaviors and is oblivious to
the coordination enacted in the role and coordinator layers.
The roles and coordinators constitute the coordination layer
responsible for imposing coordination constraints among ac-
tors. The coordinator layer is oblivious to the actor layer and
is dedicated to inter-role coordination. The role layer bridges
the actor layer and the coordinator layer and may therefore
be viewed from two perspectives. From the perspective of a
coordinator, a role enables coordination of a set of actors
that share the static descriptions of an abstract behavior
associated with the role without requiring the coordinator
to have fine-grained knowledge of the individual actors that
play the role. From the perspective of an actor, a role
is an active coordinator that transparently manipulates the
messages sent and received by the actor.

Roles and coordinators themselves can be viewed as
meta actors and react to meta messages and actor events
which are the occurrences of actors executing create, send,
or become. The role meta actors are able to observe and
manipulate messages in the actor layer. All events and
message manipulations associated with an initial triggering



event or meta messages are indivisible and atomic, with no
intermediate states visible across or within the three layers.
Since the role and coordinator meta actors are state-based
objects, the coordination policies within an application may
adapt over time.

C. Inter-role and Intra-role Coordination constraints

Inter-role coordination constraints restrict abstract behav-
iors in temporal and actor behavioral space domains, while
intra-role coordination constraints enforce the temporal and
spacial (with respect to actor behavioral space) order upon
actors which carry out the distributed computation.

We use a simplified robotic hand example to help un-
derstand the differences and relationships between inter-role
and intra-role coordination constraints. Consider two robotic
hands transferring an object from its left hand to its right
hand and we assume each hand may have many fingers. If we
use actors to model individual fingers, the left hand and the
right hand are two different roles. The inter-role constraint
for transferring an object from the left hand to the right hand
is that the left hand must release the object before the right
hand grasps the object; while the intra-role constraint for
left hand is that all fingers must simultaneously release the
object.

As we can see from this example, although the coordina-
tees of inter-role and intra-role coordinations are different,
both constraints are to enforce certain orders among a
selected set of actions.

The next section is to define two coordination operations
and study their expressiveness under the ARC model.

III. COORDINATION OPERATIONS UNDER THE ARC
MODEL

As we have mentioned in earlier sections, the underly-
ing computational model that the ARC model built upon
is an asynchronous model, i.e., the Actor model, which
only guarantees the causal order. For applications with
QoS requirements, such as real-time requirements, more
restrictive orders and stronger guarantees are needed. In this
section, we introduce two primitive coordination operators,
i.e., precede (�t) which constraints the quantitative temporal
order among two computational events, and select (Dp)
which constraints the actors in their behavioral space, and
study their properties and compositions.

A. Terms and Notations

Before we present the two coordination operators, we first
introduce a few terms and notations that are used throughout
the paper.

1) Actor Behavior and Behavioral Space: Actor behav-
iors decide what type of messages an actor is able to process.
An actor may have many different behaviors. However, at
any given point in time, it can only manifest one behavior.
For example, if we consider a wheel of a car as an actor,

the wheel may “turn-right”, “turn-left” or “stop”. However,
at any given time instance, it can only perform one and
only one action. Wheel:turn-right defines the behavior of
the wheel actor, i.e., the wheel actor processes the turn-right
message. More specifically, Definition 1 formally defines the
actor behavior.

Definitions 1 (Actor Behavior): An actor behavior is de-
noted as [A :: M ], where A is the actor’s unique name
representing the state of the actor, and M is an message
instance the actor A processes.

�
The execution of the actor behavior [A :: M ] means that

the message M is dispatched on the thread of actor A where
it is processed. As message processing in the Actor model
is atomic, we hence treat actor behaviors as instantaneous.

Definitions 2 (Actor Behavior Space): Given an actor
system (A), M is the message set that all the actors in A
can process, the actor behavior space (B) of the system A
is define as

B = {[A :: M ] | A ∈ A, and M ∈M} ∪ {>,⊥} (1)

where > indicates the initial behavior when the system
starts, and ⊥ indicates when the system terminates.

�
Actor messages are processed in time. To obtain the time

instances at which an actor executes a specific behavior, we
define a time function T to project a specific actor behavior
to the time domain.

Definitions 3 (Actor Behavior Time Function): The actor
behavior time function T : B→ R≥0, where B is the actor
behavior space of a given actor system, and R≥0 is non-
negative real number set.

T ([A :: M ]) = t ∈ R≥0 (2)

and T (>) = 0, T (⊥) = inf .
�

B. Temporal Constraint Operator: Precede

In the Actor model, as both actors and communications
are asynchronous, no order assumptions are made among
actors, implicit or explicit, other than that the causal order
is obeyed by the actor system. In this subsection, we
introduce a temporal coordination operator proceed which
quantitatively constraints actor behaviors in the time domain.
It is worth pointing out that we assume that all the actors
share the same global wall-clock time.

Definitions 4 (Precede Operator: �t): The precede op-
erator constrains quantitative temporal relationship be-
tween two behavior sets. {[A11 :: M11], · · · , [A1n ::
M1n}] �t {[A21 :: M21], · · · , [A2m :: M2m]} requires
that max{T ([A2j :: M2j ])} − max{T ([A1i :: M1i])} = t,
where T is defined in Definition 3, t ≥ 0, 1 ≤ i ≤ n,
and 1 ≤ j ≤ m. As a syntactic sugar, we use T ([A2 ::



M2]) − T ([A1 :: M1]) = t, when the sizes of the behavior
sets both equal to 1.

�
There are three special cases with respect to the value

t associated with the constraint, i.e., when t = 0, t is not
specified, or t = inf . We discuss each in detail.
Case 1: when t = 0 (�0)

A behavior precedes another by a time quantity of zero
amount indicates that the two involved behavior must happen
simultaneously. It is worth pointing out that as actor systems
are asynchronous, there is no guarantee that behaviors of
different actors will happen at the “exact” same wall-clock
time point. We use the word “simultaneously” to indicate
that the happenings of the behaviors are atomic and no inter-
medium states are visible. Hence the commonly encountered
synchronization constraint becomes a special case of the
quantitative precede constraint. As a syntactic sugar, we
define syn operator.

Definitions 5 (Syn Operator):

syn([A1 :: M1], [A2 :: M2]) ≡
[A1 :: M1] �0 [A2 :: M2] (3)

�
Case 2: when t is not specified (�)

When the qualitative time amount is not specified,
the precede constraint defines a precedence order
between the involved two behaviors. For instance,
[A1 :: M1] � [A2 :: M2] only restricts that [A1 :: M1]
happens before [A2 :: M2].

Case 3: when t = inf (�inf)
The semantics that a behavior must happen infinitely long

before another behavior in fact disables the second behavior
from happening. In other words, [A1 :: M1] �inf [A2 ::
M2] means actor A1’s processing the message M1 disables
message M2 being dispatched on actor A2.

Based on the definition, the transitivity property of the
precede operator becomes evident, i.e.,

Property 1 (Transitive Property):

([A1 :: M1] �t1 [A2 :: M2]) ∧ ([A2 :: M2] �t2 [A3 :: M3])
−→ [A1 :: M1] �t1+t2 [A3 :: M3] (4)

�

C. Behavioral Space Coordination Constraint Operator:
Select

An actor behavior space as given in Definition 2 defines
all the possible behaviors an actor system may have during
the lifetime of its execution. We define a coordination
operator select (Dp) to describe a selection of participants
in a coordinated group, where p is the selection criteria,
represented by a logic expression.

As an example, consider a building instrumented with
many smoke detectors at different locations and different

floor levels. The requirement that if any of the smoke
detectors has triggered an alarm, the fire door at the level
where the alarm is located shall be closed in fact involves
two selections, the selection of smoker detectors and the
selection of fire doors.

Definitions 6 (Select Operator: Dp): Given a set of be-
haviors in an actor system, B = {>, [A1 :: M1], · · · , [Ai ::
Mi], · · · , [An :: Mn],⊥}, Dp(B) is function defined as
Dp : 2B −→ B. Dp(B) = [Aj :: Mj ] indicates that
[Aj :: Mj ] ∈ B, and [Aj :: Mj ] satisfies the selection criteria
p. When p = true, it is omitted from the notation.

�
The definition of the select operator seems rather weak

and does not provide much information other than that a
behavior in a behavior group is selected to participate in
a coordinated activities. In fact, the loosely defined select
operator provides the intra-role coordinators, i.e., the roles,
a powerful tool to select appropriate member actors to fulfill
inter-role coordination without hard wiring to specific actors.
The fire door and smoke detector scenario described above
gives an example.

With the select operator, the coordination between smoke
detectors and fire doors can be expressed as below:

Dp1(SD) �t Dp2(FD) (5)

where, SD and FD are smoker detectors and fire doors
behavior spaces, p1 and p2 are selection criteria for the
detector and door, respectively.

As it can be seen, when we use door-role and detector-role
to categorize two groups of actors, i.e., doors and detectors,
respectively, the inter-role precedence constraint built upon
the intra-role coordination operation select becomes rather
static, and does not depend on which detector triggers an
alarm.

The select operator selects only one behavior from a given
group, multiple selections can be done through iteratively
use of the select operator. For instance, formula 6 non-
deterministically selects two elements from a given behavior
group B:

{Dp(B)} ∪ {Dp(B− {Dp(B)})} (6)

where − represents set subtractions.
Similar to introducing the syn operator as a syntactic sugar

for convenience purpose, we introduce multiple selection
operator Dnp .

Definitions 7 (Multiple Selection Operator: Dnp ):

Dnp (B) = {bi | bi ∈ B, 0 ≤ i ≤ n, n ≤ |B|, p(bi) = True}

where |B| is the cardinality of the behavior set B. When all
behaviors that satisfy p are chosen, we use all in the place
of n. Furthermore, when p = True, we omit it from the
notation.

�



In the smoke detector example, if we would like to prevent
false alarm caused by smoke detector malfunction, and
require two smoke detectors simultaneously set on alarm
before a fire door is closed, we can easily express the
coordination requirement as shown below:

syn(D2
p1(SD)) �t Dp2(FD) (7)

Before we complete this section, we give a few examples
to illustrate the use of these operators, and show their
expressiveness.

D. Examples

In this subsection, we use a lighting system as an example
to illustrate the use of proposed coordination operators.

Example: Consider a building with three rooms,
room1, room2 and room3. Room1 and room2 have
two lights, a1 and a2 in room1, and a3 and a4 in
room2, while room3 has only one light a5. All the
lights work independently and they can be turned
on, off, or glittering. Furthermore, each light has
a property to indicate if it is of an energy-saving
type.

Assuming all the lights are off when the lighting system
starts, we study the following coordination scenarios:

1) All lights in room1, a1 and a2, glitter simultaneously.
2) The light a5 in room3 glitters every 5 time units, and

glitters for 3 times.
3) The lights in all three rooms with energy-saving prop-

erty must be turned on within 5 time units, but the
order in which they are turned on can be arbitrary.

4) In each room, all lights must be turned on within 5
time units. However, if there are both energy-saving
and non-energy-saving lights, the energy-saving lights
must be turned on before the non-energy-saving one.

5) There are two light glitters in room2. We require that
the two glitters come from two different lights.

6) There are two light glitters in room2. We require that
the two glitters come from the same light, but we do
not care which light the glitters come from.

7) The two lights in room1 may take action of turning
on or glittering, we require that 2 time unit after the
room1’s two lights take their actions, a light in room2
and a light in room3 must be simultaneously turned
on.

If we model the lights as actors, these actors accept three
types of messages, i.e., turn-on (Mon), turn-off (Moff ),
and glitter (Mglr). The actor behavior space of the lighting
system in the building can hence be given by the following:

B ={[a1 :: Mon], [a1 :: Moff ], [a1 :: Mglr ], · · · ,
[a5 :: Mon ], [a5 :: Moff ], [a5 :: Mglr ]}

The lighting system’s behavior space, B, can be further
partitioned into different small actor behavior spaces based

on different criteria, or role abstraction. If we take the
location of actors into consideration, we have behavior space
for each room, i.e., Br1, Br2 and Br3, where

Br1 ={[a1 :: Mon], [a1 :: Moff ], [a1 :: Mglr], [a2 :: Mon],
[a2 :: M2], [a2 :: Mglr]},

Br2 ={[a3 :: Mon], [a3 :: Moff ], [a3 :: Mglr], [a4 :: Mon],
[a4 :: M4], [a4 :: Mglr]},

Br3 ={[a5 :: Mon], [a5 :: Moff ], [a5 :: Mglr]}

Clearly, if we partition the behavior space based on a
different abstraction, such as on the type of messages, we
have different subset of behavior space as following:

BMon
= {[a1 :: Mon], [a2 :: Mon], · · · , [a5 :: Mon]},

BMoff
= {[a1 :: Moff ], [a2 :: Moff ], · · · , [a5 :: Moff ]},

BMglr
= {[a3 :: Mglr], [a2 :: Mglr], · · · , [a5 :: Mglr]}

The role in the ARC model in fact defines these individ-
ual behavior spaces. These subspaces are partitions of the
system’s behavior space. In particular, we have

Bri
∩ Brj

= φ, if i 6= j

BMi
∩ BMj

= φ, if i 6= j

B = Br1 ∪ Br2 ∪ Br3
B = BMon

∪ BMoff
∪ BMglr

1) All lights in room1, i.e., a1 and a2, glitter simultane-
ously.

syn({[a1 :: Mglr], [a2 :: Mglr]}) (8)

or, it can also be represented by

syn(Dall(Br1 ∩ BMglr
)) (9)

The representation of (8) directly binds two spe-
cific actors. Hence, if the number of lights in the
room changes, the constraint specified will have to
make corresponding change. The representation of (9)
(which is based on the role, or behavioral space) is,
on the other hand, oblivious to such changes.

2) The light a5 in room3 glitters every 5 time units, and
glitters for 3 times.

[a5 :: Mglr,1] �5 [a5 :: Mglr,2] �5 [a5 :: Mglr,3]
�inf D(Br3 ∩ BMglr

) (10)

The coordination constraint (10) disables any glittering
in room3 after the light has glittered for 3 times.

3) The lights in all three rooms with energy-saving prop-
erty must be turned on within 5 time units, but the
order in which they are turned on can be arbitrary.

> �5 D
all
p (BMon) (11)

where p is the criteria for energy saving property.



4) In each room, all lights must be turned on within 5
time units. However, if there are both energy-saving
and non-energy-saving lights, the energy-saving lights
must be turned on before the non-energy-saving one.

> �5 D
all
true(BMon)∧

Dall
p (BMon) � Dall

¬p(BMon) (12)

where p is the criteria for energy saving property.
5) There are two light glitters in room2. We require that

the two glitters come from two different lights.

D (Br2 ∩ BM3) � D(Br2 ∩ BM3 − {b}) (13)

where b = D(Br2 ∩ BM3)
6) There are two light glitters in room2. We require that

the two glitters come from the same light, but we do
not care which light the glitters come from.
We define a function F : B → A to extract cor-
responding actor(s) for a given actor behavior, and
function I : A→ N to extract the unique identifier for
a given actor. With the two supporting functions, the
coordination requirement can be represented as (14).

D (Br2 ∩ BMglr
) � Dp(Br2 ∩ BMglr

) (14)

where is the property given below:

p : I(F(Br2 ∩ BMglr
)) = I(F(D(Br2 ∩ BMglr

))

The predicate p requires that the actor identifier from
the second select must be the same as the one chosen
from the first select.

7) The two lights in room1 may take action of turning
on or glittering, we require that 2 time unit after the
room1’s two lights take their actions, a light in room2
and a light in room3 must be simultaneously turned
on.

D2 (Br1 ∩ (BMon
∪ BMglr

))
�2 syn{D(Br2 ∩ BMon

),D(Br3 ∩ BMon
)} (15)

As we can see from these exercises that complex co-
ordination constraints can be concisely represented by the
two proposed coordination operators, i.e., precede and se-
lect. Furthermore, the concept of roles, or behavior spaces,
enables more static and flexible constraint representations
that are resilient to changes at the lower computation layer.

Next section, we provide formal semantics for the two
operators.

IV. OPERATIONAL SEMANTICS OF Precede AND Select
UNDER THE ARC MODEL

Before we give the operational semantics for the proposed
two coordination operators, we first introduce configurations
that are used to define an ARC system’s operational se-
mantics. A configuration captures the system’s state and the

system’s operational semantics is given by the configuration
transitions. The notations are adopted from the Actor model.

Definitions 8 (Actor Configuration):
An actor configuration contains an actor map α, and

multi-set of messages, µ. It is represented as:

〈〈α | µ〉〉 (16)

�
where the actor map α maps an actor’s unique identifier to
its current state and corresponding behavior.

Definitions 9 (Role Configuration):
A role configuration contains a set of actors playing the

role, αγ , the role itself, γ, and a multi-set of messages
stored in the mailboxes of the actors playing the role, µγ . It
is denoted as:

〈〈αγ , γ | µγ〉〉 (17)

�

A. Operational Semantics for Precede (�t)
Based on the specification of t, we have four different

system transitions as below.

Case 1: when two behaviors must be executed simultane-
ously, i.e, t = 0 (�0).〈〈

α1, · · · , αiγ1 , · · · , α
j
γ2
, · · · , αn, γ1, γ2, · · · , γm | µ,miγ1 ,m

j
γ2

〉〉
[αiγ1 :: miγ1 ] �0 [αjγ2 :: mjγ2 ]
−−−−−−−−−−−−−−−−−−−−−→

〈〈
α1, · · · , αiγ1 [miγ1 ], · · · , αjγ2 [mjγ2 ], · · · , αn, γ1, γ2, · · · , γm | µ

〉〉
(18)

Case 2: when the second behavior is disabled, i.e., t =
inf (�inf).〈〈

α1, · · · , αiγ1 , · · · , α
j
γ2
, · · · , αn, γ1, γ2, · · · , γm | µ,miγ1 ,m

j
γ2

〉〉
[αiγ1 :: miγ1 ] �inf [αjγ2 :: mjγ2 ]
−−−−−−−−−−−−−−−−−−−−−−→

〈〈
α1, · · · , αiγ1 [miγ1 ], · · · , αjγ2 , · · · , α

n, γ1, γ2, · · · , γm | µ
〉〉

(19)

Case 3: when only qualitative temporal precedence is
required, i.e., t is not specified (�).

In this case, the intermediate state becomes visible to the
outside world while the first behavior is executed. In other
words, from system configuration perspective, we will see
one message is dispatched on its destination actor, while the
other may still remain in its mail-queue.

〈〈
α1, · · · , αiγ1 , · · · , α

j
γ2
, · · · , αn, γ1, γ2, · · · , γm | µ,miγ1 ,m

j
γ2

〉〉
[αiγ1 :: miγ1 ] � [αjγ2 :: mjγ2 ]
−−−−−−−−−−−−−−−−−−−−→

〈〈
α1, · · · , αiγ1 [miγ1 ], · · · , αjγ2 , · · · , α

n, γ1, γ2, · · · , γm | µ,mjγ2
〉〉
(20)



Case 4: when quantitative temporal precedence is required,
i.e., 0 ≤ t ≤ inf (�t).

This is a more complicated case in which a timer is
needed. When the precedent behavior is executed, it sets
the timer for the amount required. When the timer reaches
0, it immediately triggers the second behavior. Therefore,
two system configuration transitions are involved as given
in (21) and (22).

〈〈
α1, · · · , αiγ1 , · · · , α

j
γ2
, · · · , αn, γ1, · · · , γm, τ | µ,miγ1 ,m

j
γ2

〉〉
[αiγ1 :: miγ1 ] �t [αjγ2 :: mjγ2 ]
−−−−−−−−−−−−−−−−−−−−→

〈〈
α1, · · · , αiγ1 [miγ1 ], · · · , αjγ2 , · · · , α

n, γ1, · · · , γm, τ [t] | µ,mjγ2
〉〉

(21)

〈〈
α1, · · · , αiγ1 , · · · , α

j
γ2
, · · · , αn, γ1, γ2, · · · , γm, τ [t] | µ,mjγ2

〉〉
syn(τ [t] = 0, [αjγ2 :: mjγ2 ])
−−−−−−−−−−−−−−−−−−−→

〈〈
α1, · · · , αiγ1 , · · · , α

j
γ2

[mjγ2 ], · · · , αn, γ1, γ2, · · · , γm, τ | µ
〉〉

(22)

B. Operational Semantics for Select (Dp)
The operational semantics of the select (Dp) operator

performed by the roles is given the following interpretation.
The selection criteria of the Dp operator, p, is a role state
dependent propositional function, and its selection space
is the behavior space of the role’s member actors . For a
given role γ, if [A :: M ] ∈ Bγ , p(γ, [A :: M ]) = True,
and [A :: M ] is selected, i.e., Dp(Bγ) = [A :: M ], then
the behavior [A :: M ] is either constrained by a inter-role
coordination constraint imposed by a coordinator, or the
execution of the behavior disables the rest of the behaviors
that satisfy the same selection criteria p. Formula (23) gives
its operational semantics.

〈〈
α1
γ , · · · , αiγ , · · · , αjγ , · · · , αnγ , γ[Dp] | µγ ,miγ , · · · ,mjγ

〉〉
pi≤l≤j(γ, α

l
γ ,m

l
γ) = true

−−−−−−−−−−−−−−−−−−−→

〈〈
α1
γ , · · · , αiγ , · · · , αlγ · · · , αjγ , · · · , αnγ , γ | µγ

〉〉
(23)

Disabling a behavior is done by permanently removing the
message without dispatching the message to its destination
actor.

As we can see from the formal definition of select,
the selection from qualified message dispatching is not
predetermined, and it is rather arbitrary. The decision is to
minimize unnecessary hard-wires and maximize the flexibil-
ity to accommodate the dynamic nature of the open systems.

V. RELATED WORK

Coordination models can be categorized into two classes,
i.e., control-driven (also called dataflow-driven) and data-
driven. A broad survey on coordination models and lan-
guages can be found in [6], [7]. In data-driven models such
as Linda and its extensions [8], coordination tends to be
endogenous and embedded within computational entities.
In control-driven models, coordination tends to be exoge-
nous and isolated from computational entities. ABT [9],
ROAD [10], IWIM, and CoLaS [11] are examples of control-
driven coordination models. Hybrid approaches such as tuple
centres and ReSpecT [12] combine the data-driven and
control-driven models.

Reo [13], [14], [15], [16] is built on IWIM and ABT
models. The abstract communication medium is a channel
with exactly two ends and a constraint that relates the flow
of data at its ends. Channels are connected to make a circuit
by joining channel ends together to form nodes. The coor-
dination in Reo is abstracted as a Reo circuit specified by a
constraint automaton [13], while in the PBRD [17] model,
coordinations are described as informal rule specifications on
the resulting interactions of coordinated actors. A detailed
comparison among the ARC, Reo and PBRD model can be
found in [18].

Some control-driven models, such as ROAD, CoLaS,
and Finesse [19], target the scalability issues of open dis-
tributed systems through group-based coordination models.
Most current role-based coordination models are based on
organizational concepts, where roles abstract coordination
behaviors among participants that play the roles. Role-based
coordination models are surveyed in [20].

Many recent researches have focused on application spe-
cific coordination problems. For instance, Fok et.al. [21]
proposed a new service provisioning based middle-ware
to collaborate heterogeneous devices in wireless sensor
networks. Similarly, in order for software developer to
adjust to ad hoc, heterogeneous, and changing hardware
architecture, Bouhadiba et.al. [22] proposed the notion of
“contract” and associated it with a component-based descrip-
tion framework to describe complex hardware behaviors. An
event-based coordination model [23] extends the CEAOP
by modeling coordination of concurrent adaptation rules as
explicit contexts to be applied in context-aware applications.
A coordination model to manage collaborative real-time
editing work is proposed in [24]. A visual dataflow language
tailored towards mobile applications is presented [25] as a
separate coordination language to express the interactions
among mobile components that operate on data streams.

The focus of this paper is to define a small set of co-
ordination operators that are capable of expressing complex
coordination constraints among autonomous, concurrent and
asynchronous entities in distributed and open systems.



VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed two basic coordination
operators, i.e., precede (�t) and select (Dp) and further used
examples to illustrate the expressiveness of these operators
in forming more complex coordination constraints. The
precede operator in essence controls the scheduling order
of message dispatches among actors; and the select operator
corresponds to a decision control over which actor a message
is dispatched to. We feel these two coordination operations
together with first order logic operations are functionally
complete with respect to expressing coordination constraints.
However, the formal proof of its completeness, or finding a
counter-example that indicates its insufficiency, is yet to be
done and will be our future research focus.

ACKNOWLEDGMENT

The research is supported by NSF CAREER Award (CNS
0746643) and CNS 1035894.

REFERENCES

[1] S. Ren, Y. Yu, N. Chen, K. Marth, P. Poirot, and L. Shen,
“Actors, Roles and CoordinatorsA Coordination Model for
Open Distributed and Embedded Systems,” in Coordination
Models and Languages. Springer, 2006, pp. 247–265.

[2] G. Agha, “Actors: a model of concurrent computation in
distributed systems,” AITR-844, 1985.

[3] G. Agha, P. Thati, and R. Ziaei, “Actors: a model for reason-
ing about open distributed systems,” in Formal methods for
distributed processing. Cambridge University Press, 2001,
p. 176.

[4] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Commun. ACM, vol. 21, no. 7, pp. 558–
565, 1978.

[5] N. Chen and S. Ren, “Building a coordination framework
to support behavior-based adaptive checkpointing for open
distributed embedded systems,” in Proceedings of the 40th
Annual Hawaii International Conference on System Science,
2007.

[6] G. Papadopoulos and F. Arbab, “Coordination models and
languages,” Advances in Computers, vol. 46, pp. 329–400,
1998.

[7] F. Arbab, “Composition of Interacting Computations,” Inter-
active Computation, pp. 277–321, 2006.

[8] G. Picco, A. Murphy, and G. Roman, “LIME: Linda meets
mobility,” in Proceedings of the 21st international conference
on Software engineering. ACM, 1999, pp. 368–377.

[9] F. Arbab, “Abstract behavior types: A foundation model for
components and their composition,” in Formal Methods for
Components and Objects. Springer, 2003, pp. 33–70.

[10] A. Colman and J. Han, “Coordination systems in role-based
adaptive software,” in Coordination Models and Languages.
Springer, 2005, pp. 63–78.

[11] J. Cruz and S. Ducasse, “A group based approach for coor-
dinating active objects,” Coordinatio Languages and Models,
pp. 15–15, 1999.

[12] A. Omicini, “Formal ReSpecT in the A&A perspective,”
Electronic Notes in Theoretical Computer Science, vol. 175,
no. 2, pp. 97–117, 2007.

[13] C. Baier, M. Sirjani, F. Arbab, and J. Rutten, “Modeling com-
ponent connectors in Reo by constraint automata,” Science of
Computer Programming, vol. 61, no. 2, pp. 75–113, 2006.

[14] S. Tasharofi and M. Sirjani, “Formal modeling and con-
formance validation for WS-CDL using Reo and CASM,”
Electronic Notes in Theoretical Computer Science, vol. 229,
no. 2, pp. 155–174, 2009.
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