
Actor-eUML for Concurrent Programming

Kevin Marth and Shangping Ren

Illinois Institute of Technology
Department of Computer Science

Chicago, IL USA
martkev@iit.edu

Abstract. The advent of multi-core processors offers an opportunity
to increase the usage of Executable UML. Researchers are advocating
the division of software systems into a productivity layer and an effi-
ciency layer to shield mainstream programmers from the complexities
of parallelism. Such separation of application and platform concerns is
the foundation of Executable UML. To leverage this opportunity, an ap-
proach to Executable UML must address the complexity of the UML
standard and provide a formal model of concurrency. In this paper, we
introduce the Actor-eUML model and formalize the mapping between
actors in the Actor model and Executable UML agents (active objects)
by unifying the semantics of actor behavior and the hierarchical state
machine (HSM) semantics of Executable UML agents. The UML treat-
ment of concurrency is simplified, and the Actor model is extended to
enable a set of actor behaviors to specify the HSM for an Executable
UML active class.

1 Introduction

Multi-core processors have entered the computing mainstream, and many-core
processors with 100+ cores are predicted within this decade. The increasing
hardware parallelism and the absence of a clear software strategy for exploiting
this parallelism have convinced leading computer scientists that many practicing
software engineers cannot effectively program state-of-the-art processors [8]. We
believe that a basis for simplifying parallel programming exists in established
software technology, including the Actor model [1] and Executable UML. The
advent of multi-core processors has galvanized interest in the Actor model, as
the Actor model has a sound formal foundation and provides an intuitive parallel
programming model. To leverage the Actor model, software systems should be
specified in a language that provides first-class support for the Actor model and
exposes its rather abstract treatment of parallelism. A leading parallel research
program has advocated dividing the “software stack” into a productivity layer
and an efficiency layer [7]. Parallel concerns are addressed in the efficiency layer
by expert parallel programmers, and the productivity layer enables mainstream
programmers to develop applications while being shielded from the parallel hard-
ware platform. This separation of application concerns (productivity layer) and
platform concerns (efficiency layer) is the foundation of Executable UML.

O. De Troyer et al. (Eds.): ER 2011 Workshops, LNCS 6999, pp. 312–321, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Actor-eUML for Concurrent Programming 313

Fortunately, the Actor model and Executable UML are readily unified. In this
paper, we introduce the Actor-eUML model and formalize the mapping between
actors in the Actor model and agents (active objects) in Executable UML by uni-
fying the semantics of actor behavior and the hierarchical state machine (HSM)
semantics of Executable UML agents. Simply stated, an Executable UML agent
is an actor whose behavior is specified as a HSM. To facilitate the definition of
unified semantics for Actor-eUML, we simplify the UML treatment of concur-
rency and extend the Actor model to enable a set of actor behaviors to specify
the HSM for an Executable UML active class. Section 2 presents an overview
of the Actor-eUML model. Section 3 presents the operational semantics of the
Actor-eUML model. Section 4 concludes the paper.

2 Overview of the Actor-eUML Model

2.1 Related Work

The separation of application and platform concerns is embodied in the Model-
Driven Architecture (MDA) [5]. Executable UML uses profiles of the Unified
Modeling Language [11] to support the MDA and enable the specification of an
executable platform-independent model (PIM) of a software system that can be
translated to a platform-specific implementation (PSI) using a model compiler.
Several approaches to Executable UML exist [4][6][9], and each approach enables
a software system to be specified using the following process.

• The software system is decomposed into domains (concerns).
• Each domain is modeled in a class diagram using several classes.
• Each class has structural and behavioral properties, including associations,

attributes, operations, and a state machine.
• A formal action language is used to specify the implementation of operation

methods and state machine actions.

In both xUML [4] and xtUML [9], only simple state machines are supported,
and many HSM features are not available. In contrast, all standard UML HSM
features are supported in Actor-eUML, with the exception of features that imply
concurrency within a HSM. The foundational subset for Executable UML models
(fUML) [12] precisely specifies the semantics of the UML constructs considered
to be used most often. As such, the fUML specification does not address all state
machine features and explicitly does not support state machine features such as
call events, change events, and time events.

The Actor-eUML model has a formal concurrency model (the Actor model),
while existing approaches to Executable UML lack a formal treatment of con-
currency beyond the operational requirement for the modeler and/or the model
compiler to synchronize the conceptual threads of control associated with active
class instances. Some HSM features, such as deferring certain messages when
an actor is in a given state, have been implemented in actor-based program-
ming languages using reflective mechanisms that modify the behavior of the
mail queue for an actor [10], but these actor-based languages lack full-featured
HSM support.



314 K. Marth and S. Ren

2.2 Hierarchical State Machines in Actor-eUML

The Actor-eUML model promotes HSM usage because state-based behavior is
fundamental to object-based programming. Hierarchical states facilitate pro-
gramming by difference, where a substate inherits behavior from superstates
and defines only behavior that is specific to the substate. A design invariant
can be specified once at the appropriate level in a state hierarchy, eliminat-
ing redundancy and minimizing maintenance effort. Standard UML supports a
variant of Harel statecharts [3] that enables behavior to be specified using an
extended HSM that combines Mealy machines, where actions are associated with
state transitions, and Moore machines, where actions are associated with states.
Actor-eUML supports internal, external, local, and start transitions as specified
in standard UML and provides the following support for events and states.

Events. As in the Actor model, agents in Actor-eUML communicate using only
asynchronous message passing. A message received by an agent is dispatched to
its HSM as a signal - a named entity with a list of parameters. Actor-eUML
supports three kinds of HSM events:

• a signal event that occurs when a signal is dispatched,
• a time event that occurs when a timer expires after a specified duration, and
• a change event that occurs when a Boolean expression becomes true.

Events are processed serially and to completion. Although there can be massive
parallelism among agents, processing within each agent is strictly sequential.

States. A state in an Actor-eUML HSM has several features: an optional name,
entry actions, exit actions, transitions, deferred events, and a nested state ma-
chine. Entry actions and exit actions are executed when entering and exiting
the state, respectively. Deferred events are queued and handled when the state
machine is in another state in which the events are not deferred. A state in a
state machine can be either simple or composite. A composite state has a nested
state machine.

In standard UML, a composite state can have multiple orthogonal regions,
and each region has a state machine. Orthogonal regions within a composite
state introduce concurrency within a HSM, since the state machine within each
region of a composite state is active when the composite state is active. Stan-
dard UML also supports a do activity for each state that executes concurrently
with any do activity elsewhere in the current state hierarchy. The Actor model
avoids concurrency within an actor. To align with the Actor model, Actor-eUML
does not allow concurrency within a HSM and consequently does not support
do activities or orthogonal regions. In practice, orthogonal regions are often
not independent and share data. The UML standard states that orthogonal re-
gions should interact with signals and should not explicitly interact using shared
memory. Thus, replacing orthogonal regions in Actor-eUML by coordinated peer
agents is appropriate.



Actor-eUML for Concurrent Programming 315

2.3 Simplified Concurrency in Actor-eUML

To align the Actor-eUML model with the Actor model, it is necessary to elim-
inate HSM features that introduce concurrency within an active object, but
additional simplification is required to complete the alignment. The treatment
of concurrency in standard UML is heterogeneous and complex. An active object
(i.e. agent) has a dedicated conceptual thread of control, while a passive object
does not. The calls to operations for active classes and passive classes can be
either synchronous or asynchronous, and it is possible to combine operations and
a state machine when defining the behavior of an active class. An active object
in standard UML can be either internally sequential or internally concurrent,
depending upon whether it has a state machine and whether the state machine
uses operation calls as state machine triggers. A passive object can also be either
internally sequential or internally concurrent, since each operation of a passive
class is defined to be sequential, guarded, or concurrent.

It is apparent that the multiple interacting characteristics of the features
of active and passive classes add complexity to the treatment of concurrency
in standard UML. The treatment of concurrency in existing Executable UML
approaches (including fUML) is simpler, but it is still possible to have multiple
threads of control executing concurrently within an agent. Actor-eUML further
streamlines the treatment of concurrency.

• A passive class can define only synchronous, sequential operations.
• A passive object is encapsulated within one agent, and an agent interacts

with its passive objects only through synchronous operation calls.
• Agents interact only through asynchronous signals sent to state machines.
• An active class can define operations, but a call to an agent operation is

simply notation for an implicit synchronous signal exchange with the agent.

A call to an agent operation sends a signal with the same signature to the HSM
for the agent and blocks the caller until the signal is processed and a reply signal
is received. Thus, any communication with an agent is a signal event that is
interleaved serially with other HSM events in the thread of control for the agent.
This treatment of agent interaction ensures that agents are internally sequential
and avoids the complexities of concurrent access to the internal state of an agent.
With these simplifications, the Actor-eUML concurrency model aligns with the
Actor model and is safer than multi-core programming models that require the
programmer to explicitly synchronize concurrent access to shared memory.

2.4 Actors in Actor-eUML

The Actor model [1] is a formal theory of computation and concurrency based on
active, autonomous, encapsulated objects that communicate exclusively through
asynchronous message passing. The Actor model has a sound mathematical foun-
dation but is also influenced by implementation concerns and the laws of physics.
The Actor model acknowledges that messages can encounter bounded but in-
determinate delays in transmission and can therefore be delivered out of order.



316 K. Marth and S. Ren

Fig. 1. An Actor in the Actor Model [1]

As illustrated in Fig. 1, in response to each message received from its abstract
mailbox (external queue), an actor X can:

• create a finite number of new actors,
• send a finite number of messages to other actors, and
• select the behavior used to process the next message.

The Actor model is characterized by inherent concurrency among actors. An
actor is allowed to pipeline the processing of messages by selecting the behavior
used to process the next message and actually dispatching the next message for
processing before the processing of the current message has completed. However,
pipelined actor behaviors cannot share internal state, and the Actor model does
not require message pipelining. The ability to pipeline messages is not compatible
with HSM semantics, as the exit and entry actions for a transition must execute
before the next transition can be triggered, so actors in the Actor-eUML model
that realize HSM behavior do not attempt message pipelining. However, other
actors in the Actor-eUML model can use message pipelining.

An actor can send messages to its own mailbox, but a message an actor
sends to itself is interleaved with messages received from other actors and is
not guaranteed to be the next message dispatched. This consideration and the
requirement that an actor consume a message with each behavior change lead
to a continuation-passing style that uses cooperating auxiliary actors to process
a single client message. This style of programming adds conceptual overhead
for programmers who find it confusing and adds implementation overhead that
cannot always be eliminated by smart compilers and sophisticated schemes aimed
at minimizing the performance impact of actor creation and communication.



Actor-eUML for Concurrent Programming 317

Fig. 2. An Actor in the Actor-eUML Model

The Actor-eUML model retains the essence of the pure Actor model while
adding capabilities that simplify actor programming and enable HSM behavior
to be expressed directly and conveniently. As illustrated in Fig. 2, the actor
interface to its abstract mailbox has been extended with two internal queues:
a working queue (queuew) for internal messages used while processing a single
external message, and a defer queue (queued) used to defer messages based on
the current state in a HSM. The external queue (queuee) that receives messages
sent to an actor has been retained. When a message is dispatched from queuee,
the message is moved to queuew and then dispatched for processing by the next
behavior. As the behavior executes, messages can be added to queuew. When the
behavior completes, the message at the head of queuew is dispatched to the next
behavior. If the queuew is empty when a behavior completes, the next message
is dispatched from queuee. A message dispatched from queuew can be deferred
to queued. The messages in queued are moved to queuew to revisit them.

The additional internal queues enable a single actor to completely process a
client message without creating and communicating with auxiliary actors and
also facilitate the expression of HSM behavior. Each state in a HSM is mapped
to an actor behavior, and a signal is delegated from the current state to its
parent state by adding the signal to queuew and then selecting the behavior for
its parent state as the next behavior. A sequence of start, entry, and exit actions
is executed during a state transition by adding specialized messages to queuew
and then selecting the behavior of the next state in the sequence. A signal that is
deferred in the current state is added to queued. Deferred messages are revisited
after a state transition by moving the messages from queued to queuew.



318 K. Marth and S. Ren

3 Actor-eUML Semantics

The Actor-eUML model defines the following actor primitives, where B is a
behavior, M is a message, and V is a list of parameter values. The call B(V)
returns a closure, which is a function and a referencing environment for the non-
local names in the function that binds the nonlocal names to the corresponding
variables in scope at the time the closure is created. The closure returned by the
call B(V) captures the variables in V, and the closure expects to be passed M as
a parameter when called subsequently.

• actor-new(B, V): create a new actor with initial behavior B(V).
• actor-next(Ai, B, V): select B(V) as the next behavior for actor Ai.
• actor-send(Ai, M): send M to the tail of queuee for actor Ai.
• actor-push(Ai, M): push M at the head of queuew for actor Ai.
• actor-push-defer(Ai, M): push M at the head of queued for actor Ai.
• actor-move-defer(Ai): move all messages in queued to queuew for actor Ai.

The {actor-new, actor-next, actor-send} primitives are inherited from the
Actor model, and the {actor-push, actor-push-defer, actor-move-defer}
primitives are extensions to the Actor model introduced by the Actor-eUML
model. When transforming a PIM to a PSI, a model compiler for an Actor-
eUML implementation translates the HSM associated with each active class to a
target programming language in which the actor primitives have been embedded.

At any point in a computation, an actor is either quiescent or actively process-
ing a message. The term actor4(Ai, Q, C, M) denotes a quiescent actor, where
Ai uniquely identifies the actor, Q is the queue for the actor, C is the closure used
to process the next message dispatched by the actor, and M is the local memory
for the actor. The queue Q is a 3-tuple 〈Qe, Qw, Qd〉, where Qe is the external
queue where messages sent to the actor are received, Qw is the work queue used
when processing a message M dispatched by the actor, and Qd is used to queue
messages deferred after dispatch. At points in a computation, a component of
Q can be empty and is denoted by Q⊥. The term actor5(Ai, Q, C⊥, M, E � S)
denotes an active actor and extends the actor4 term to represent a computation
in which statement list S is executing in environment E. An active actor has a
null C, denoted by C⊥.

A transition relation between actor configurations is used to define the Actor-
eUML operational semantics, as in [2]. A configuration in an actor computation
consists of actor4, actor5, and send terms. The send(Ai, M) term denotes a
message M sent to actor Ai that is in transit and not yet received. The specifi-
cation of structural operational semantics for Actor-eUML uses rewrite rules to
define computation as a sequence of transitions among actor configurations.

Rules (1) and (2) define the semantics of message receipt. A message M sent
to actor Ai can be received and appended to the external queue for actor Ai

when the actor is quiescent (1) or active (2). The send term is consumed and
eliminated by the rewrite. The message receipt rules illustrate several properties
explicit in the Actor model. An actor message is an asynchronous, reliable, point-
to-point communication between two actors. The semantics of message receipt



Actor-eUML for Concurrent Programming 319

are independent of the message sender. Each message that is sent is ultimately
received, although there is no guarantee of the order in which messages are
received. A message cannot be broadcast and is received by exactly one actor.

send(Ai, M) actor4(Ai, 〈Qe, Qw, Qd〉, C, M)
−→ actor4(Ai, 〈Qe:M, Qw, Qd〉, C, M) (1)

send(Ai, M) actor5(Ai, 〈Qe, Qw, Qd〉, C⊥, M, E � S)
−→ actor5(Ai, 〈Qe:M, Qw, Qd〉, C⊥, M, E � S) (2)

Rules (3) and (4) define the semantics of message dispatch. In rule (3), the
quiescent actor Ai with non-empty Qe and empty Qw initiates the dispatch of
the message M at the head of Qe by moving M to Qw. In rule (4), the quiescent
actor Ai completes message dispatch from Qw and becomes an active actor by
calling the closure C to process M in the initial environment Ec associated with
C. The message dispatch rules enforce the serial, run-to-completion processing of
messages and the demand-driven relationship between Qe and Qw in the Actor-
eUML model. An actor cannot process multiple messages concurrently, and a
message is dispatched from Qe only when Qw is empty.

actor4(Ai, 〈M:Qe, Q⊥, Qd〉, C, M) −→ actor4(Ai, 〈Qe, M, Qd〉, C, M) (3)

actor4(Ai, 〈Qe, M:Qw, Qd〉, C, M)
−→ actor5(Ai, 〈Qe, Qw, Qd〉, C⊥, M, EC � (call C M)) (4)

Rules (5), (6), and (7) define the semantics of the actor-new, actor-next, and
actor-send primitives, respectively. In rule (5), the active actor Ai executes the
actor-new primitive to augment the configuration with an actor4 term that
denotes a new actor An with empty Q, uninitialized local memory (M⊥), and
initial behavior closure C = B(V). In rule (6), the active actor Ai executes the
actor-next primitive to select its next behavior closure C = B(V) and becomes
a quiescent actor. In rule (7), the active actor Ai executes the actor-send prim-
itive to send the message M to actor Aj , where both i = j and i �= j are
well-defined.

actor5(Ai, Q, C⊥, M, E � actor-new(B, V); S)
−→ actor5(Ai, Q, C⊥, M, E � S) actor4(An, 〈Q⊥, Q⊥, Q⊥〉, C, M⊥) (5)

actor5(Ai, Q, C⊥, M, E � actor-next(Ai, B, V); S)
−→ actor4(Ai, Q, C, M) (6)

actor5(Ai, Q, C⊥, M, E � actor-send(Aj , M); S)
−→ actor5(Ai, Q, C⊥, M, E � S) send(Aj , M) (7)



320 K. Marth and S. Ren

Rules (8), (9), and (10) define the semantics of the actor-push,
actor-push-defer, and actor-move-defer primitives, respectively.

actor5(Ai, 〈Qe, Qw, Qd〉, C⊥, M, E � actor-push(Ai, M); S)
−→ actor5(Ai, 〈Qe, M:Qw, Qd〉, C⊥, M, E � S) (8)

actor5(Ai, 〈Qe, Qw, Qd〉, C⊥, M, E � actor-push-defer(Ai, M); S)
−→ actor5(Ai, 〈Qe, Qw, M:Qd〉, C⊥, M, E � S) (9)

actor5(Ai, 〈Qe, Qw, Qd〉, C⊥, M, E � actor-move-defer(Ai); S)
−→ actor5(Ai, 〈Qe, Qw:reverse(Qd), Q⊥〉, C⊥, M, E � S) (10)

The actor primitives intrinsic to the Actor-eUML model are the foundation for
other abstractions useful in realizing an implementation of HSM behavior. The
following HSM abstractions are typically defined as macros in the target pro-
gramming language. The HSM abstraction macros implement HSM behavior
using exclusively the Actor-eUML primitives actor-push and actor-next and
the internal work queue Qw, in combination with parameter passing between ac-
tor behaviors. The HSM abstraction macros facilitate a direct translation from
a HSM specification to its implementation.

• The HSM-state-start macro realizes the start transition for a state.
• The HSM-state-entry macro realizes the entry actions for a state.
• The HSM-state-exit macro realizes the exit actions for a state.
• The HSM-state-reset macro returns the HSM to its current state prior to

delegating a signal up the HSM hierarchy without consuming the signal.
• The HSM-state-next macro delegates a signal to a superstate.
• The HSM-state-transition macro realizes a local or external transition

from a source state to a target state.
• The HSM-state-transition-internalmacro realizes an internal transition

in a state.

The actor-push-defer and actor-move-defer primitives implement deferred
signals within a HSM, and the actor-send primitive is used to send an asyn-
chronous signal from the HSM for an agent to the HSM for a target agent.

A reference implementation of the Actor-eUML model and the associated
HSM abstraction macros has been developed in Common Lisp, confirming that
a direct and efficient realization of the model is practical. A C++ implementation
of the Actor-eUML model is also in development and will be the target language
for a model compiler, enabling software engineers to specify Executable UML
models oriented to the problem space that abstract the programming details of
the Actor-eUML model in the solution space. However, the mapping from the
UML agents in the problem space to the Actor-eUML actors in the solution space
is direct, reducing the semantic distance between a UML specification and its
realization and ensuring that UML specifications are founded on a formal model
of concurrency that provides a logically sound and intuitive basis for reasoning
about parallel behavior and analyzing run-time performance.



Actor-eUML for Concurrent Programming 321

4 Summary and Conclusion

The advent of multi-core processors signaled a revolution in computer hardware.
We believe that it is possible to program multi-core and many-core processors by
using an evolutionary approach that leverages established software technology,
notably the Actor model and Executable UML. The Actor model has a sound
formal foundation and provides an intuitive and safe concurrent programming
model. Executable UML consolidates and standardizes several decades of experi-
ence with object-based programming. Unifying the Actor model and Executable
UML in the Actor-eUML model provides a concurrency model that exploits
massive inter-agent parallelism while ensuring that agent behaviors retain the
familiarity and simplicity of sequential programming. The HSM is the founda-
tion of agent behavior in Actor-eUML. The Actor-eUML model streamlines the
UML concurrency model, eliminates HSM features that imply intra-agent con-
currency, and introduces conservative extensions to the structure and behavior
of message dispatch in the Actor model. A definition of the operational seman-
tics of the actor primitives provided by the Actor-eUML model was presented,
and a reference implementation of the Actor-eUML model is available.

References

1. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

2. Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: A Foundation for Actor Com-
putation. Journal of Functional Programming, 1–72 (1997)

3. Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Science of Com-
puter Programming 8(3), 231–274 (1987)

4. Mellor, S.J., Balcer, S.J.: Executable UML: A Foundation for Model-Driven Ar-
chitecture. Addison-Wesley, Reading (2002)

5. Mellor, S.J., Kendall, S., Uhl, A., Weise, D.: MDA Distilled. Addison-Wesley, Read-
ing (2004)

6. Milicev, D.: Model-Driven Development with Executable UML. Wiley, Chichester
(2009)

7. Patterson, D., et al.: A View of the Parallel Computing Landscape. Communica-
tions of the ACM 52(10), 56–67 (2009)

8. Patterson, D.: The Trouble with Multi-Core. IEEE Spectrum 47(7), 28–32 (2010)
9. Raistrick, C., Francis, P., Wright, J., Carter, C., Wilkie, I.: Model Driven Archi-

tecture with Executable UML. Cambridge University Press, Cambridge (2004)
10. Tomlinson, C., Singh, V.: Inheritance and Synchronization with Enabled Sets.

SIGPLAN Notices 24(10), 103–112 (1989)
11. Object Management Group: UML Superstructure Specification, Version 2.1.2,

http://www.omg.org/docs/formal/07-11-02.pdf

12. Object Management Group: Semantics of a Foundational Subset for Executable
UML Models (fUML), Version 1.0, http://www.omg.org/spec/FUML

 http://www.omg.org/docs/formal/07-11-02.pdf
http://www.omg.org/spec/FUML

	Actor-eUML for Concurrent Programming
	Introduction
	Overview of the Actor-eUML Model
	Related Work
	Hierarchical State Machines in Actor-eUML
	Simplified Concurrency in Actor-eUML
	Actors in Actor-eUML

	Actor-eUML Semantics
	Summary and Conclusion
	References




