
FOCLASA 2007

Comparing Three Coordination Models:
Reo, ARC, and RRD

Carolyn Talcott1

SRI International
Menlo Park, CA 94025, USA

Marjan Sirjani2

University of Tehran and IPM
Tehran, Iran

Shangping Ren3

Illinois Institute of Technology
Chicago, IL 60616, USA

Abstract

Three models of coordination—Reo, Actors-Roles-Coordinators (ARC), and Reflective Russian Dolls (RRD)—are com-
pared and contrasted according to a set of coordination features. Mappings between their semantic models are defined. Use
of the models is illustrated by a small case study.

Keywords: coordination model, semantics, Reo, Actor, Role, Reflective Russian Dolls

1 Introduction

Coordination is becoming an increasingly important paradigm for systems design and im-
plementation. With multiple languages and models for coordination emerging it is inter-
esting to compare different models and understand their strengths and weaknesses, find
common semantic models and develop mappings between formalisms. This will help us to
gain a deeper insight into coordination concepts and applications, and also to establish a set
of features/criteria for defining and comparing coordination models. In this paper, we com-
pare and contrast three coordination models: Reo [4], Actors-Roles-Coordinators (ARC)
[20], and Reflective Russian Dolls (RRD) [17]. These three models cover a wide spectrum

1 Email: clt@cs.stanford.edu
2 Email: Marjan.Sirjani@cwi.nl
3 Email: ren@iit.edu. This work is in part supported by NSF under grant CNS 0431832.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:clt@cs.stanford.edu
mailto:Marjan.Sirjani@cwi.nl
mailto:ren@iit.edu

Talcott, Sirjani, and Ren

of communication mechanisms and coordination strategies and serve as a good sample set
for our study. Other models to consider in future comparison studies include: Linda [13]
and its mobile extension, Lime [19], Klaim[18] and its stochastic extension [11].

Reo is a channel-based exogenous coordination model for component composition. In
Reo, complex connectors are compositionally built out of simpler ones. The simplest con-
nectors are channels with well-defined behaviors. These connectors are represented graph-
ically as circuits. Similar to electronic circuits, connectors show how distributed coordi-
natees are connected 4 . The emphasis in Reo is on the connectors, and the coordination
and communication patterns which they impose on the components, but not on the compo-
nents which are the coordinatees. Compositional semantics of Reo circuits can be given by
Timed Data Streams (TDS) [8] and by constraint automata [9]. Constraint automata can
also be used for analyzing and model checking Reo systems.

ARC uses the separation of concern principle to partition coordination into two dis-
joint categories, i.e., intra-role and inter-role coordination, and uses roles and coordinators,
respectively, to abstract these behaviors. The coordinatees in the ARC model are actors,
entities that interact by asynchronous message exchange. Coordination is through message
time-space manipulations which are transparent to the coordinatees. Reasoning in the ARC
system is based on message dispatches in time (when) and space (to whom).

RRD is a model of reflective distributed object computation. It uses reflection and
hierarchical structure to provide a general layered coordination model. Each layer (meta-
object) controls the communication and the execution of objects in the layer below. Policy-
based RRD (PBRD) is a restricted form of RRD in which communication control is spec-
ified by declarative policies. As for ARC the objects being coordinated are actor-like ob-
jects. The semantics of RRD coordinators and coordinatees is interaction semantics [23,12]
which is compositional both horizontally (composing object or coordinated object config-
urations) and vertically (composing coordinators and coordinatees).

The remainder of the paper is organized as follows. In Section 2, we spell out the fea-
tures to be compared and contrasted. Section 3 describes the three models and compares
them according to the listed features. Section 4 describes representations in the three mod-
els of a simple coordination task. In Section 5 we make a step towards a common semantic
foundation for the three models. Conclusions and future work are discussed in Section 6.

2 Coordination Features

Coordination languages and models are being developed to address the problem of manag-
ing the interactions among concurrent and distributed processes. The underlying principle
is separation of computations by components and their interactions [14,3]. In our study of
the three chosen models of coordination we considered a number of features (dimensions
in the design space) including those summarized below.
Computation model. Is communication message-, event-, or channel-based? Is it syn-

chronous or asynchronous? Is state localized or is there a shared global memory? Is the
state space discrete, continuous, or hybrid?
Control. Is the coordinator in control or is it a passive information store (control oriented
versus data oriented coordination)? Do the coordinated components have explicit actions

4 We use the term coordinatee through the text by which we mean the entities being coordinated.

2

Talcott, Sirjani, and Ren

for effecting the coordination?
Semantic model. How is the semantics of components and/or coordinators specified?

An operational semantics could be given as a state transition system, such as automata or
rewrite systems. Denotational semantics might be expressed in terms of observable events,
traces/streams, or signals.
Modularity and Compositionality. An important issue is compositionality of system

descriptions and semantics at all levels, both vertically and horizontally. Does the model
provide mechanisms for structuring or modularizing coordination activities?
Specification. Coordination models typically focus on how a coordinator achieves its

goals. But how are the goals specified? How can you decide if a coordinator achieves
its goals? Examples of different kinds of goals include: serializing requests to a compo-
nent; ensuring a given group communication semantics; ensuring atomicity of a group of
messages; providing fault tolerance; and balancing resource usage, quality and timeliness.
Analyzability. An important and often ignored aspect of specifications is analyzability. To
what degree do different coordination models support analyzability, verification of certain
properties? And how?

3 Three Models of Coordination

Figure 1 gives a graphical impression of the Reo, ARC, and (policy-based) RRD. In the
following each model is described in more detail, then we give a feature-wise comparison.

(a) Reo

Policy
Rule 1
Rule 2

(b) PBRD

(c) ARC

Fig. 1. Three Different Coordination Models

3

Talcott, Sirjani, and Ren

3.1 Reo

Reo is an exogenous coordination language based on a calculus of channel composition. A
channel is an abstract communication medium with exactly two ends and a constraint that
relates the flow of data at its ends. A channel represents a primitive interaction (protocol),
explicitly represented as a binary constraint. There are two types of channel ends, source-
end where data enters into the channel, and sink-end where data leaves the channel. A
channel can have two sources, two sinks, or a source and a sink. The channel relation can
be defined by users which allows an open-ended set of different channel types, each with
its own policy for synchronization, buffering, ordering, computation, data retention/loss,
etc.

Channels are connected to make a circuit by joining channel ends together to form
nodes. A node is a source node if all of its channel ends are source ends. It is a sink node
if channel ends are sink ends. Otherwise it is a mixed node. A component can write data
items to a source node that it is connected to. The write operation succeeds only if all
(source) channel ends coincident on the node accept the data item, in which case the data
item is written to every source end coincident on the node. A source node, thus, acts as a
replicator. A component can obtain data items, by a take operation, from a sink node that
it is connected to. A take operation succeeds only if at least one of the (sink) channel ends
coincident on the node offers a suitable data item; if more than one coincident channel end
offers suitable data items, one is selected nondeterministically. A sink node, thus, acts as
a nondeterministic merger. A mixed node nondeterministically selects and takes a suitable
data item offered by one of its coincident sink channel ends and replicates it into all of its
coincident source channel ends. The source or sink nodes which are the interfaces of a
component and its environment are called (input or output) ports. Mixed nodes cannot be
used as ports and are not available for other components to connect to. Assuming a Reo
connector as a component, we may talk about ports of a connector.

Constraint automata are proposed in [7,9] as a compositional semantics of Reo. The
automata-states stand for the possible configurations (e.g., the contents of the FIFO-
channels of a Reo-connector) while the automata-transitions represent the possible data
flow and its effect on these configurations. For each transition of a constraint automata
there is a set of names which are fired and an expression showing the data constraint of that
transition.

3.2 Actor-Role-Coordinator (ARC) Model

The main design goal of the Actor-Role-Coordinator (ARC) model is to facilitate open
distributed embedded (ODE) system design and development. The intrinsic properties of
ODE systems are: large scale, dynamic configuration, and limited resources but stringent
multi-dimensional Quality of Service (QoS) requirements. Hence, beyond traditional syn-
chronization of functional activities among large scale and dynamic embedded entities, the
ARC model also provides a way to coordinate non-functional behaviors when different
QoS requirements may not be concurrently satisfiable.

ARC is a role-based coordination model where a role is a static abstraction for a set
of behaviors that underlying actors share. The dynamic aspect of the role is to coordinate
its members. This type of coordination is called intra-role coordination. The intra-role
coordination is achieved through message rerouting and reordering among actors within

4

Talcott, Sirjani, and Ren

the role. The coordination among different roles, i.e., inter-role coordination, on the other
hand, is done by coordinators. Coordinators constrain roles’ coordination behavior which
eventually affects message dispatch time and location. However, actors and coordinators
are transparent to each other. Hence, the dynamicity inherent in the embedded entities are
hidden from the coordinators.

From the coordinatee perspective, coordination is exogenous and is distributed among
roles and coordinators. In the same way as actors react to messages, roles and coordina-
tors react to events. Both computation entities (actors) and coordination entities (roles and
coordinators) emit events when their public states change. Conceptually, events are broad-
cast and the system guarantees event delivery atomicity among all entities interested in the
events. Based on observed events and the coordination invariants it is to maintain, a role
not only makes decisions concerning its membership, but also makes decisions on message
delivery time and location within the member set. The coordination invariants are a com-
position of intra-role constraints and inter-role constraints. The inter-role constraints are
stored in distributed coordinators. If different coordinators have overlapping coordinatees,
i.e., roles, the conjunction of the constraints from different coordinators must be satisfied.
A similar situation exists for roles if an actor belongs to multiple roles. Partitioning the
set of actors and minimizing the overlap of constraints between coordinators can greatly
reduce the complexity of an ARC system.

3.3 Reflective Russian Dolls (RRD)

Reflective Russian Dolls (RRD) [17] is a model of distributed object reflection based on
rewriting logic. The model combines logical reflection with a structuring of distributed ob-
jects as nested configurations of meta-objects (a la Russian Dolls) that can reason about and
control their sub-objects. In this formalism, a coordinator is an object with a distinguished
attribute that holds a nested configuration of objects and messages. The nested configura-
tion itself could consist of base-level objects or coordinators each with their configuration
of coordinated objects. The rewrite rules that specify the behavior of a coordinator object
control delivery of messages in its contained configuration as well as specifying how peer
to peer messages are processed. Messages are taken from output of a sender object, or
input to a receptionist from an external object, or possibly created. These messages can
be immediately delivered to the designated receiver (placed in the input of a local object
or put in the outgoing mail for an external object), delivered to another receiver, modified,
reordered, replicated, or dropped.

RRD provides a very general coordination mechanism. In [21] a special form of RRD
called policy based coordination (PBRD) was introduced. Here each coordinator has two
additional required attributes: a policy attribute, and a policy state attribute, that maintains
processing state. In this case the rewrite rules interpret the policy attribute, selecting a
message to process and specifying what to do with it. Simple policies include ordering
of message delivery, serializing requests, and recording a history of events. Policy lan-
guages can be simple tables, automata, or expressive functional languages. An example of
PBRD coordination is the Policy And GOal based Distributed Architecture (PAGODA) for
specifying systems of autonomous agents [24,22].

5

Talcott, Sirjani, and Ren

3.4 Feature Analysis

Computation model. Reo is a channel based language. Channels may be either syn-
chronous or asynchronous. A channel is called synchronous if the pairs of operations on
its two ends can only succeed atomically; otherwise it is called asynchronous. There is
no shared global memory. Both ARC and RRD are based on the actor model of compu-
tation [1,16,2] with the coordinated objects being actors and the coordinators being meta-
actors. Actors encapsulate their state and thread of control and communicate by asyn-
chronous message passing. Meta-actors control the communication semantics of their base
level actors.

Control. Coordination is imposed by a Reo circuit on connected components by de-
termining when data can be accepted on input ports and when it can be taken from output
ports, blocking components attempting write or read until the operation is available. The
decision to connect to a port is made by the coordinatee, but once connected the coordinatee
has no control over how the data is routed.

In the ARC model, role meta-actors intercept and control the delivery of base level
messages. Formally, each base level action generates events that must be handled by the
appropriate role before further base-level computation can take place. Role and coordinator
meta-actors also communicate by events. The base-level actors have no active role in the
coordination. However, roles are aware of the higher level coordinator and participate ac-
tively in their coordination. A novel aspect is that individual actors in a role are transparent
to the coordinator layer. In the RRD model, coordination is exogenous at all levels. At each
level, lower-level objects execute as if there were no coordination layer.

The actor model has a built in notion of communication / message delivery. This is
modified by coordinators in ARC and RRD using reflective mechanisms. In contrast, Reo
components have individual behavior but there is no built in communication semantics for
collections of components. This is provided by Reo connectors.

Semantics. Reo has an operational semantics given by constraint automata (CA) [9]
and a denotational semantics based on Timed Data Streams (TDS) [8,6]. In CA, states rep-
resent Reo configurations and transitions encode maximally-parallel stepwise evolution.
Transition labels show maximal sets of active nodes and sets of data constraints. Timed
data streams model the possible flows of data on connector ports, assigning a time to each
interaction (input or output of a data element). The semantics of ARC coordinators,
roles and actors is given by the composition of a state transition system that allows con-
current transitions and a concurrent constraint system that restricts the order and location
of certain transitions. The operational semantics of RRD coordinators and components is a
rewriting logic system, a state transition system that allows concurrent transitions. The de-
notational semantics is a set of interaction paths—sequences of interactions, both peer-peer
and object-metaobject. It is derived from the event partial order generated by executions of
the rewriting semantics. The relationship between timed data stream and interaction path
semantics is discussed in Section 5.

Modularity and Compositionality. In Reo, more complicated connectors are made
out of simpler ones. Nodes can be hidden by putting a box around a Reo connector, giving
the connector a well-defined interface and making it a reusable entity. Both the CA and
the TDS semantics are compositional—the behavior of a system can be constructed from
the behavior of its constituents. The behavior of components as well as connectors can be

6

Talcott, Sirjani, and Ren

given using CA or TDS, and so, we may have the behavior of the whole system as a CA or
a TDS.

The key structuring mechanism of ARC is the notion of role, with overall coordination
layered on top of the per role coordination. ARC semantics is compositional when certain
restrictions are obeyed by the configuration of roles and coordinators, i.e., neither roles nor
coordinators share coordinatees.

The essence of RRD is the nested hierarchical structure of coordinators. This struc-
ture is preserved by basic composition operations. Event based semantics and interaction
semantics are compositional both for pure actor systems and reflective systems—the se-
mantics of a composition of objects and coordinators can be computed from the semantics
of the parts (see [23,12]).

Specification. A Reo circuit may be specified by a constraint automaton. Then this
constraint automaton can be compared with the constraint automaton obtained as opera-
tional semantics of a Reo circuit to check (bi)simulation or language equivalence. Tempo-
ral logics for specifying properties of Reo circuits are presented in [6], [10], and [15], with
main focus on real-time, reconfiguration, and model checking, respectively.

In ARC there are two types of coordination constraints, namely intra- and inter-role
constraints. For intra-role constraints, we use guarded action to specify when a message
should be re-routed to another destination within the group, or re-ordering within an actor
in order to satisfy the coordination constraints. In contrast, inter-role constraints are a set of
boolean properties that the roles being coordinated must satisfy. Requirements for PBRD
coordinators have been specified by informal constraints on the resulting interactions of the
coordinated actors (see [21,22]). Behaviors of specific ARC and PBRD coordinators can
be specified in rewriting logic. No formal logic has been developed or adapted to date for
either ARC or PBRD.

Analyzability. Compositionality means that coordinators and coordinatees can be
analyzed separately in any of the models. For Reo, regular model checking approaches can
be adapted for constraint automata [15,10]. ARC’s analyzability lies in the satisfiability and
schedulability of composed inter-role and intra-role constraints. Although the satisfiability
and schedulability in general are undecidable, certain techniques, such as graph theory,
can be applied to identify infeasible situations. Furthermore, if the roles and coordinators
are well partitioned, the complexity of constraint analysis can be reduced. The Maude
rewriting logic language provides search and model-checking functions that can be used to
analyze RRD systems. Use of policies expressed in restricted form can make coordinators
easier to analyze.

4 Car Factory Case Study

In this section we look at how each of the three models addresses a particular coordination
problem, namely coordinating different jobs in a factory. This example is taken from [20].

4.1 Specification

There are three factory jobs (called roles in [20]) to be coordinated: an assembler and
some number of wheel and chassis producers. The requirements for job components (role
players) are the following.

7

Talcott, Sirjani, and Ren

• An assembler receives car requests from a buyer, and parts (wheel or chassis) from pro-
ducers. For each car request, it sends four part requests to wheel producers and one to a
chassis producer. When four wheels and a chassis have been received it sends a car reply
to a buyer.

• A wheel producer receives wheel requests and sends wheel replies.
• A chassis producer receives chassis requests and sends chassis replies.

The car factory system has one assembler, a, one chassis producer, c, and n wheel
producers, w1, . . . , wn. The assembler knows the chassis producer and one or more wheel
producers, each producer (wheel or chassis) knows the assembler 5 . The assembler is the
only receptionist (the only actor that can receive messages sent from outside the system).
The requirements for the factory coordinator are

1. The ratio of chassis to wheel deliveries to the assembler is 1 : 4.

2. The 1 + 4 parts are delivered atomically.

3. Work is uniformly distributed amongst the wheel producers.

In the following subsections factory coordinators are described in Reo, ARC and RRD.

4.2 Reo Factory

Assembler

W1 W2 Wn Chassis

oo

Dispatcher

Request

1 2 3 4 5 6

Receiver

Sequencer

Car

Fig. 2. Factory example using Reo

The actors—assembler, wheel producers, and chassis producers—are modeled as com-
ponents. By putting an unbounded FIFO where an actor is connected to a Reo circuit,
the inherent non-blocking and asynchronous behavior of actors is kept unchanged (i.e.,

5 In the actor setting one actor must ‘know’ another in order to send a message. In a channel based setting, ‘knows’ means
sending on a suitable port.

8

Talcott, Sirjani, and Ren

Reo connectors cannot block the actors when actors are sending messages). A Reo circuit
to coordinate these actors that satisfies the three requirements is shown in Figure 2. Us-
ing boxes, we may distinguish two modules: request dispatcher and part receiver in the
Reo circuit, which we call as Dispatcher and Receiver, respectively. The Dispatcher sends
chassis requests to the chassis producer and incorporates a round-robin policy in sending
requests to “four out of n” wheel producers (to satisfy Requirement 3). The produced parts
(messages) go from the producer actors to the Receiver. A Sequencer is used in the Re-
ceiver to send the parts atomically to the Assembler, satisfying Requirements 1 and 2. The
Reo circuit has been mapped to constraint automata where it was shown that the require-
ments are satisfied (the constraint automaton is not included in this paper for the lack of
space).

4.3 ARC Factory

γA(busy = false) :

P1 : [εa.receive(carReq)]

if (busy == true) reroute (carReq , a, α⊥A
(t)) else (busy = true);

P2 : [εa.send(buyer ,car)] busy = false;

γW (x = 0) :

P1 : [εw.send(a,wheel)]

if (w ∈ γW ∧ w 6= α⊥W
(t)) become (γW (x + +));

tell (X = x) → w.out (a,wheel) 2

ask (X 6= x) → reroute (wheel , a, α⊥W
(t));

P2 : [εA.send(buyer ,car)] become (γW (x = 0));

P3 : [εwi.receive(wheelReq)]

if (∃j, 1 ≤ j ≤ n, s.t., |µwj | = min
1≤k≤n

|µwk
|) reroute (wheelReq , wi, wj);

θ(X : Y = 4 : 1) :

[εγW .become (γW (x=0)) ∪ εγC .become (γC(y=0))] become (θ(X : Y = 4 : 1))

Fig. 3. Factory example using ARC

The ARC specification of the car factory coordination is shown in Figure 3. γA, γW ,
and θ denote the assembler role, wheel role, and the coordinator, respectively. 6 Expres-
sions of the form [εaction] denote events that trigger role and coordinator’s coordination
actions, A 2 B denotes that either A or B will take place; and | µα | represents the size of
actor α’s mail box. The intra-role coordination for the assembler role is to ensure that if
its member actor is busy (represented by the role’s state variable busy), the role will buffer
further incoming requests by rerouting them to its sink actor, α⊥A

. If there is a deadline t

associated with the request, the message will be tagged with t. Upon observing the assem-
bler actor finishing a car, the role resets its busy state to false. The wheel role has a state

6 As the chassis role has similar behavior to the wheel role, we omit its discussion.

9

Talcott, Sirjani, and Ren

variable x, initially 0, that tracks the number of wheels produced since the last delivery to
the assembler. The wheel role not only synchronizes with the chassis role through the co-
ordinator by the primitive tell and ask operations to ensure a 4:1 ratio, but also reroutes
wheel requests to ensure that they are evenly distributed. The coordinator specifies the
inter-role coordination requirement. In this example, it ensures that wheel role and chassis
role’ productivity must be a 4:1 ratio.

4.4 RRD Factory

A PBRD factory coordinator has the form

[FC : Factory | {_},
policyState: (pending,wQ), policy: FactoryPolicy,

| in: iQ, out: oQ, in-a: aQ, out-x: xQ,
up-a: auQ, dn-a: adQ, up-c: cuQ, dn-c: cdQ,
up-w1: w1uQ, dn-w1: w1dQ, ..,up-wk: wkuQ, dn-wk: wkdQ]

The coordinatees have been replaced by message queue attributes representing their inter-
faces: up-a corresponds to the output queue of the assembler, a, dn-a corresponds to
its input queue. Similarly for other up/dn attributes. In addition the coordinator exposes
interfaces in-a for input to the assembler, and out-x for replies to external actors. A
PBRD policy state consists of a queue of messages,pending, and a wheel actor queue,
wQ. There are rules that unconditionally read messages from the input in-a and up inter-
face queues and place them in pending (tagged with the interface name). There are five
rewrite rules for the policy, FactoryPolicy.

r1. if pending has at least 4 wheel replies and at least 1 chassis reply addressed to the
assembler a, remove 4 wheel replies and 1 chassis reply from pending and deliver
them to a (put them in dn-a)

r2. if pending has a car request, deliver it to a

r3. if pending has a wheel request for some w, deliver it to the next wheel in wQ and rotate
wQ

r4. if pending has a chassis request, deliver it to c

r5. if pending has a car reply put it in out-x

It is easy to see from the policy rules that the PBRD Factory coordinator satisfies the three
requirements. In particular the only parts messages delivered to the assembler are by rule
r1, and each delivery consists of 4 wheels and a chassis, thus guaranteeing the 4:1 ration
(requirement 1) and atomicity (requirement 2). The only requests delivered to wheel actors
are by rule r3, which uses a round robin policy, thus guaranteeing uniform load distribution
(requirement 3) in the sense of the number of requests to any two wheel actors differ by
at most 1 at any time. We have described a single level PBRD Factory coordinator. It is
also possible to structure the coordination using a level of Role coordinators and an overall
coordinator, emulating the ARC approach.

4.4.1 Discussion.
Although the three models use different basic coordination primitives, there is a clear cor-
respondence in the organization. Requirement 1-2 are addressed by the Reo Sequencer

10

Talcott, Sirjani, and Ren

module, by the ARC coordinator rule plus the wheel rule P1, and by the PBRD rule r1.
Requirement 3 is addressed by the Reo Dispatcher module, the ARC wheel role (P3) and
the PBRD rule r3.

5 Semantic Foundations

In addition to comparing coordination models according to qualitative features, one can
consider when coordinators represented in the different models are equivalent. For this
purpose a common semantic foundation is needed. For the present, we focus on coordi-
nating actor-like communication, that is asynchronous message passing. We assume an
unbounded FIFO buffer at each connection point between a component and a Reo connec-
tor. We also assume Reo components send messages—pairs consisting of a target name
and a data element 7 . Under these conditions we establish mappings between the TDS
semantics of Reo components and connectors [8,6] and the Interaction Semantics of actors
and meta actors [23,12].

5.1 Basic Definitions

We first define the two semantic domains and some auxiliary notation and give a small
example.
Sequences. Following the Reo convention, we assume sequences are infinite and can thus
be treated as functions from the natural numbers to the domain of sequence elements. We
write s(i) for the ith element of sequence s.
Timed Data Streams (TDS). A TDS over a set E is a pair (a, α) where a is a sequence

with elements from E and α is a monotonically increasing sequence with elements from
the non-negative reals. The semantics of a Reo connector with m ports is a set of m tuples
of timed data streams, one for each port (i.e. an m-ary relation) 8 .
Interaction Paths (IP). Given a set of object identities O, a data domain D, and a set

of interfaces IF = {φ1, . . . φm}, an interaction is a triple (φ, o, d) where (o, d) is a mes-
sage, with target o and contents d. An interaction path is a sequence of interactions. The
semantics of an RRD coordinator is a set of interaction paths corresponding to its possible
sequences of interactions.

The projection, π(θ, φ), of an interaction path, θ, onto an interface φ is the subsequence
of elements of θ with interface φ (preserving order). The function ix(θ, φ)(j) returns the
index of the jth element of π(θ, φ) in θ. Thus if ix(θ, φ)(j) = n, then θ(n) = (φ, o, d) for
some (o, d), and there are j occurrences of interactions with interface φ in θ before n (since
sequence indices start at 0). Given a correspondence φi to port i and letting E = O ×D,
the projection π(θ, φi) corresponds to the data stream on port i, and the function ix(θ, φi)
corresponds to the relative temporal ordering of events on port i.
Example. Consider the simple example of a coordination requirement to ensure that input
to a receiver component alternates between data sent from two senders. A Reo connector
meeting this requirement would have three ports, two for input from the senders and one for
output to the receiver. The alternator semantics for the Reo connector is a relation AltTDS

7 Although communication of Reo components is “untargeted”, nothing prevents a connector from using information in the
data to direct it. Dually, although actor messages are targeted, a coordinator in ARC or RRD may redirect it.
8 These tuples are usually represented as a pair of tuples, one for input and one for output ports.

11

Talcott, Sirjani, and Ren

on TDS triples where

((a1, α1), (a2, α2), (a3, α3)) ∈ AltTDS

just if for i ∈ Nat

a3(2i) = a1(i), a3(2i + 1) = a2(i), α1(i) < α3(2i), and α2(i) < α3(2i + 1).

A PBRD coordinator meeting this requirement has interfaces φ1, φ2 for messages sent
by two sender objects, say o1, o2, and an interface φ3 for messages to be delivered to a
receiver object, o3. The interaction semantics for a PBRD alternator are the interaction
paths that satisfy Altio where

θ ∈ Altio ⇔ π(θ, φ3)(2i) = π(θ, φ1)(i) ∧ π(θ, φ3)(2i + 1) = π(θ, φ2)(i)∧
ix(θ, φ1)(i) < ix(θ, φ3)(2i) ∧ ix(θ, φ2)(i) < ix(θ, φ3)(2i + 1)

Thus, if we identify π(θ, φi) with ai and ix(θ, φi) with αi we see that the two relations
correspond.

5.2 Factory Specification

Having introduced the semantic model, we can make the Factory Coordinator requirements
more mathematically precise as constraints on the interaction paths θ of the coordinator se-
mantics. We let m, i, j, i′, j′, j1, . . . range over the natural numbers. The interfaces are
(a, in), (a, out) (assembler communication with customers), (a, up), (a, dn) (assembler
output/input), (c, up), (c, dn) (chassis output/input), and (wi, up), (wi, dn) (ith wheel out-
put/input), for 1 ≤ i ≤ n.
Requirements 1, 2. Given that interaction paths are infinite, the notion of ratio of de-

liveries is not so simple to define. Thus requirements 1 and 2 are reformulated as: if any
part is delivered to the assembler, the remaining parts of the 1 + 4 set are delivered in a
sequence that is not interleaved with any other deliveries. Namely, there is a function g

mapping numbers to sequences of numbers such that if θ(m) = ((a, dn), p) where p is
chassis or wheel (a part delivered to the assembler) then m ∈ g(m) = [j1, j2, j3, j4, j5]
where j1 < j2 < j3 < j4 < j5 and {d (∃1 ≤ k ≤ 5)θ(jk) = ((a, dn), d)} consists
of one chassis and four wheels. If θ(m′) = ((a, dn), p′) then either g(m) = g(m′) or
g(m) ∩ g(m′) = ∅. For other m, g(m) is the empty sequence.
Requirement 3. Uniform distribution of requests to wheel producers can be interpreted

in at least two ways, one is essentially round-robin scheduling, the other is balancing the
pending requests for each producer. These differ if the wheel producers have different
production rates. The following formalizes the round-robin interpretation. If θ(m) =
((wi, dn), wheel) (a wheel request delivered to wheel producer wi), and m is the index in
θ of the jth wheel delivery, then i = j mod n.

5.3 Mappings between TDS and IP

We define functions tds2ip mapping timed data streams to sets of interaction paths, and
ip2tds mapping interaction paths to sets of timed data streams. The mapping of data se-
quences is one-to-one. The fact that the images of these mappings are sets is due to the

12

Talcott, Sirjani, and Ren

fact that for each stream or path there are a number of streams/paths that are equivalent in
the sense that they represent different temporal views of the same underlying execution.
We characterize the temporal views by ordering constraints and show that related streams
satisfy the same ordering constraints.

We let D, O, IF be a data domain, set of object identifiers, and a set of m interfaces as
above. We let τ = ((ai, αi) 1 ≤ i ≤ m) be a TDS tuple over E = O×D for a connector
with m ports, and let θ be an interaction path over IF,O,D.

To define the mappings it is convenient to introduce the notion of stage in a TDS. The
nth stage of data transmission of τ , S(τ)(n), is defined using auxiliaries J(τ)(n, i)—the
index of the remaining tail of αi after the nth global time point and N(τ)(n)—the set of
ports active at the nth global time point as follows.

J(τ)(0, i) = 0

N(τ)(n) = {i αi(J(τ)(n, i) ≤ αl(J(τ)(n, l)) for 1 ≤ l ≤ m}
J(τ)(n + 1, i) = J(τ)(n, i) + if i ∈ N(τ)(n) then 1 else 0

S(τ)(n) = {(i, J(τ)(n, i)) i ∈ N(τ)(n)}

Thus (i, j) ∈ S(τ)(n) if data flows on the ith port at the nth global time point,
αi(J(τ)(n, i)). Note that if (i, j) ∈ S(τ)(n), (i′, j′) ∈ S(τ)(n), n < n′, and (i′′, j′′) ∈
S(τ)(n′) then αi(j) = αi′(j′) < αi′′(j′′). Furthermore for any 1 ≤ i ≤ m and any j,
there is some n such that (i, j) ∈ S(τ)(n), and if (i′, j′) ∈ S(τ)(n′) with n < n′ then
αi(j) < αi′(j′).

We restrict attention to semantic relations defining coordinator behavior to those spec-
ified by a (possibly infinite) set of timing constraints of the form t(i, j) < t(i′, j′)
and a set of constraints on the data streams. τ satisfies t(i, j) < t(i′, j′) (written
τ |= t(i, j) < t(i′, j′)) just if αi(j) < αi′(j′) and θ satisfies t(i, j) < t(i′, j′) (written
θ |= t(i, j) < t(i′, j′)) just if ix(θ, φi)(j) < ix(θ, φi′)(j′). A set of constraints is satisfied
if each element is satisfied. Here we do not further restrict the form of data constraints.
Each TDS tuple, τ , or IP, θ, defines a set of temporal constraints, C(τ) or C(θ), character-
izing its temporal view such that τ |= C(τ) and θ |= C(θ).

C(τ) = {t(i, j) < t(i′, j′) (∃n < n′)((i, j) ∈ S(τ)(n) ∧ (i′, j′) ∈ S(τ)(n′))}
C(θ) = {t(i, j) < t(i′, j′) ix(θ, φi)(j) < ix(θ, φi′)(j′)}.

In a TDS tuple it is possible that more than one port is active at a given time, i.e.
S(τ ′)(n) has more than one element for some n. Following [5], we interpret this as mean-
ing that the two communications could have occurred in either order rather than requiring
strict synchrony. We write τ ′ ∼ τ if τ ′ has the same ports and underlying data streams as
τ , S(τ ′)(n) is a singleton for each n, and τ ′ |= C(τ). Note that τ ′ ∼ τ implies that τ ′

satisfies any of the considered temporal and data constraints that τ does. By the non-zeno
assumption for TDS, there are many such τ ′, each obtained by adding/subtracting small
amounts to times at appropriate points in τ guided by the sets S(τ)(n).

To simplify the treatment of multiple ‘simultaneous’ communications we generalize
interaction paths to sequences of multisets of interactions. A generalized interaction path
stands for a (possibly infinite) set of interaction paths, each obtained by choosing some
order for the elements of each multiset.

13

Talcott, Sirjani, and Ren

To define tds2ip we first define tds2ipg from timed data streams to a generalized in-
teraction paths, then tds2ip(τ) is the set of interaction paths represented by tds2ipg(τ).
tds2ipg(τ)(n) is the set of interactions that occur at the nth time point from the set of time
streams of τ .

tds2ipg(τ)(n) = {(φi, ai(j)) (i, j) ∈ S(τ)(n)}
ip2tds(θ) is the set of tuples of TDS such that the data part of the jth tuple component is
the projection of θ onto the jth interface, and the time part is a monotonically increasing
time sequence such that the ordering between interactions of θ is preserved.

ip2tds(θ) = {((π(θ, φi), αi) 1 ≤ i ≤ m)

(∀1 ≤ i, i′ ≤ m)(∀j, j′)(ix(θ, φi), j) < ix(θ, φi′ , j
′) ⇒ αi(j) < αi′(j′))

Lemma. The mappings between TDS and IP satisfy the following.

(1) θ ∈ tds2ip(τ) ⇒ θ |= C(τ) ∧ τ ∈ ip2tds(θ) ⇒ τ |= C(θ)

(2) θ ∈ tds2ip(τ) ⇒ (∃τ ′ ∈ ip2tds(θ))(τ ′ ∼ τ)

(3) τ ∈ ip2tds(θ) ⇒ {θ} = tds2ip(τ)

Thus we see that we can move between the two forms of semantics preserving essential
information.
Proof Sketch. For (1), assume θ ∈ tds2ip(τ) and (t(i, j) < t(i′, j′) ∈ C(τ)) then by

the definition of C(τ) let n < n′ such that (i, j) ∈ S(τ)(n) ∧ (i′, j′) ∈ S(τ)(n′). If
θ∗ = tds2ipg(τ), then ix(θ∗, φi)(j) = n, ix(θ∗, φi′)(j′) = n′ and θ∗ |= (t(i, j) < t(i′, j′)
as does any flattening of θ∗. Now assume τ ∈ ip2tds(θ) and (t(i, j) < t(i′, j′) ∈ C(θ)).
Then ix(θ, φi)(j) < ix(θ, φi′)(j′) and by definition of ip2tds , αi(j) < αi′(j′). For (2),
the linearizing map used to obtain θ from tds2ipg(τ) can be used to transform τ to a linear
form τ ′ ∼ τ satisfying the mapping conditions. For (3), note that S(τ)(n) is a singleton
for any n.

6 Conclusions and Future Work

Each of the models is clearly highly expressive. The Reo model is more mature, with sev-
eral formal semantics and tools for analysis. Reo is closer to being a programming model,
while RRD focuses on more abstract specifications. The ARC model is aimed at coordi-
nation of resource usage and QoS goals while RRD has focused on logical communication
constraints, as has much of the Reo work. All three models provide for user definable
coordination behavior, but in different ways: channel behavior (Reo), coordinator events
(ARC), coordinator rewrite rules (RRD). Although channels and messages seem very dif-
ferent operationally, denotationally they have similar semantics.

There are a number of topics for future work. Preliminary work indicates that Reo
specifications as CA can be used as a policy language for PBRD and that ARC can be
embedded fairly naturally into RRD. These mappings need to be worked out in detail.
The full generality of rewriting logic and RRD make it difficult to give simple mappings
from RRD to Reo or ARC. Logics for specification and reasoning about coordination are
of great interest. Do the logics developed for Reo work more generally? Are new logics
needed to express end-to-end properties emerging from coordination? An important topic is

14

Talcott, Sirjani, and Ren

developing methods to combine coordination rules for different concerns: communication
constraints, timing, resource usage, etc., and to assure safe composition.

References
[1] Agha, G., “Actors: A Model of Concurrent Computation in Distributed Systems,” MIT Press, 1986.

[2] Agha, G., I. A. Mason, S. F. Smith and C. L. Talcott, A foundation for actor computation, Journal of Functional
Programming 7 (1997), pp. 1–72.

[3] Arbab, F., What do you mean, coordination?, in: Bulletin of the Dutch Association for Theoretical Computer Science,
NVTI , 1998, pp. 11 – 22.

[4] Arbab, F., Reo: A channel-based coordination model for component composition, Mathematical Structures in Computer
Science 14 (2004), pp. 329–366.

[5] Arbab, F., A behavioral model for composition of software components, L’Objet 12 (2006), pp. 33–76.

[6] Arbab, F., C. Baier, F. de Boer and J. Rutten, Models and temporal logics for timed component connectors, in: IEEE
International Conference on Software Engineering and Formal Methods (2004), pp. 198–207.

[7] Arbab, F., C. Baier, J. J. Rutten and M. Sirjani, Modeling component connectors in Reo by constraint automata (extended
abstract), in: FOCLASA’03, ENTCS 97, 2003, pp. 25–46.

[8] Arbab, F. and J. Rutten, A coinductive calculus of component connectors, in: WADT’02, LNCS 2755, 2002, pp. 34–55.

[9] Baier, C., M. Sirjani, F. Arbab and J. Rutten, Modeling component connectors in reo by constraint automata, Science
of Computer Programming 61 (2006), pp. 75–113.

[10] Clarke, D., Reasoning about connector reconfiguration ii: Basic reconfiguration logic, in: FSEN05, Electronic Notes in
Theoretical Computer Science, 2005.

[11] De Nicola, R., J. Katoen, D. Latella and M. Massink, Towards a logic for performance and mobility, in: 3rd Workshop
on Quantitative Aspects of Programming Languages, QAPL05 (2005), pp. 132–146.

[12] Denker, G., J. Meseguer and C. L. Talcott, Rewriting semantics of distributed meta objects and composable
communication services, in: Third International Workshop on Rewriting Logic and Its Applications, ENTCS 36 (2000).

[13] Gelernter, D., Generative communication in linda, TOPLAS 7 (1985), pp. 80–112.

[14] Gorrieri, R. and C. Hankin, Theoretical aspects of coordination languages (foreword), in: Theoretical aspects of
coordination languages, TCS 192, 1998, pp. 163–165.

[15] Klüppelholz, S. and C. Baier, Symbolic model checking for channel-based component connectors, in: FOCLASA’06,
2006.

[16] Mason, I. A. and C. L. Talcott, Actor languages their syntax, semantics, translation, and equivalence, Theoretical
Computer Science 220 (1999), pp. 409 – 467.

[17] Meseguer, J. and C. L. Talcott, Semantic models for distributed object reflection, in: European Conference on Object-
Oriented Programming, ECOOP’2002, LNCS 2374, 2002, pp. 1–36, invited paper.

[18] Nicola, R. D., G. Ferrari and R. Pugliese, KLAIM: A kernel language for agents interaction and mobility, IEEE
Transactions on Software Engineering 24 (1998), pp. 315–330.

[19] Picco, G., A. Murphy and G.-C. Roman, LIME: Linda meets mobility, in: 21 Int. Conf. on Software Engineering, 1999,
pp. 368–377.

[20] Ren, S., Y. Yu, N. Chen, K. Marth, P.-E. Poirot and L. Shen, Actors, roles and coordinators: a coordination model for
open distributed and embedded systems, in: Coordination Models and Languages, LNCS 4038, 2006, pp. 247–265.

[21] Talcott, C., Coordination models based on a formal model of distributed object reflection, in: 1st International Workshop
on Methods and Tools for Coordinating Concurrent, Distributed and Mobile Systems (MTCoord 2005), 2005.

[22] Talcott, C., Policy-based coordination in pagoda: A case study, in: 2nd International Workshop on Methods and Tools
for Coordinating Concurrent, Distributed and Mobile Systems (MTCoord 2005), 2006.

[23] Talcott, C. L., Composable semantic models for actor theories, Higher-Order and Symbolic Computation 11 (1998),
pp. 281–343.

[24] Wirsing, M., G. Denker, C. Talcott, A. Poggio and L. Briesemeister, A rewriting logic framework for soft constraints,
in: Sixth International Workshop on Rewriting Logic and Its Applications, ENTCS (2006).

15

	Introduction
	Coordination Features
	Three Models of Coordination
	Reo
	Actor-Role-Coordinator (ARC) Model
	Reflective Russian Dolls (RRD)
	Feature Analysis

	Car Factory Case Study
	Specification
	Reo Factory
	 ARC Factory
	RRD Factory

	Semantic Foundations
	Basic Definitions
	Factory Specification
	Mappings between TDS and IP

	Conclusions and Future Work
	References

