Use Two-Level Rejuvenation to Combat Software Aging and Maximize Average Resource Performance

Chunhui Guo, Hao Wu, Xiayu Hua, Douglas Lautner, Shangping Ren Email: {cguo13, hwu28, xhua, dlautner}@hawk.iit.edu, ren@iit.edu

Illinois Institute of Technology

August 24, 2015

- 2 Resource Model and Problem Formulation
- 3 Resource Supply Analysis
 - 4 Average Resource Performance Maximization
- 5 Rejuvenation Strategy Impact Factors
- 6 Conclusion and Future Work

Outline

Introduction

- 2 Resource Model and Problem Formulation
- 3 Resource Supply Analysis
- 4 Average Resource Performance Maximization
- 5 Rejuvenation Strategy Impact Factors
- 6 Conclusion and Future Work

Software aging is a well-known phenomenon and has two effects:

- failure rate increase
- performance degradation

Software rejuvenation is a preventive and proactive maintenance solution for handling system aging effects.

- Rejuvenation Models: four-state model [Huang et al., 1995], two-level model [Koutras and Platis, 2011]
- Handle Failure Rate Increase: maximize reliability [Guo et al., 2015] and availability [Koutras and Platis, 2011]
- Handle Performance Degradation: *P*²-resource model with one-level rejuvenation [Hua et al., 2015]

< ロ > < 同 > < 回 > < 回 >

Figure: Aging Effect of Matrix Multiplication Time on Cellphone

Chunhui Guo (IIT)

Resource Model with Two-Level Rejuvenation

PResource Model and Problem Formulation

- 3 Resource Supply Analysis
- 4 Average Resource Performance Maximization
- 5 Rejuvenation Strategy Impact Factors
- 6 Conclusion and Future Work

Due to aging, the resource performance decreases with time.

We assume $f(t) = 1 - a \times t$, where *a* is a constant and $0 \le a < 1$.

If a = 0, the resource's performance does not degrade.

The resource can perform two-level rejuvenations

- Cold Rejuvenation: $f(t_0 + \Phi_C) = 1$
- Warm Rejuvenation: f(t₁ + Φ_W) = f_s × p, where f_s denotes the resource performance after previous rejuvenation and 0
- Time Cost: $\Phi_C > \Phi_W$

Resource Rejuvenation Pattern

- Rejuvenation Threshold: $f(t) \le r$, where $0 \le r < 1$
- Rejuvenation Pattern: n (n ∈ N) warm rejuvenations followed by one cold rejuvenation
- Periodic Rejuvenations: repeatedly rejuvenated by the pattern with period Π (rejuvenation hyperperiod)

• Max *n*:
$$N_{max} = \lfloor \log_p r \rfloor$$

$\boldsymbol{R} = (f(t), r, p, \Phi_W, \Phi_C, n)$

- *f*(*t*): resource performance function
- *r*: resource performance threshold to rejuvenate
- *p*: resource performance restore factor of a warm rejuvenation
- Φ_W : warm rejuvenation time cost
- Φ_C : cold rejuvenation time cost
- *n*: number of warm rejuvenations before a cold rejuvenation

$$f_{\rm ave} = S_L/L$$

where L is system longevity and S_L is total resource supply within L.

< ∃ > < ∃

< A >

Problem Definition

Given a resource $R(f(t), r, p, \Phi_W, \Phi_C, n)$, decide *n* that maximizes the average resource performance, i.e., f_{ave} , within its operational interval [0, L].

Strategy

- First, we analyze the total resource supply S_L with a given n.
- Second, we present the MAX-AVE-PERFORMANCE algorithm to determine the optimal *n* with respect to maximizing average resource performance.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 2 Resource Model and Problem Formulation
- 3 Resource Supply Analysis
- 4 Average Resource Performance Maximization
- 5 Rejuvenation Strategy Impact Factors
- 6 Conclusion and Future Work

A b

- B- 6-

- First, we analyze the resource supply S_Π within a rejuvenation hyperperiod Π.
- Second, we formalize the total resource supply S_L within the system longevity L on the basis of S_Π.

Resource Supply within Rejuvenation Hyperperiod П

Figure: Resource Supply Analysis

Resource Supply within System Longevity L

• Case 1 (
$$L$$
 mod $\Pi = 0$): $S_L = S_{\Pi} \cdot \frac{L}{\Pi}$

• Case 2 ($L \mod \Pi \neq 0$): $S_L = S_{\Pi} \cdot \lfloor \frac{L}{\Pi} \rfloor + S_R$

• Case 2.1 (I_R ends during a rejuvenation): $S_R = \sum_{i=1}^{7} S_i$

• Case 2.2 (I_R ends when the resource is available): $S_R = \sum_{i=0}^{j-1} S_i + \int_{f^{-1}(p^{j-1})+I_R - \sum_{i=0}^{j-1} I_i - (j-1)\Phi_W}^{f^{-1}(p^{j-1})+I_R - \sum_{i=0}^{j-1} I_i - (j-1)\Phi_W} f(t)dt$

- 2 Resource Model and Problem Formulation
- 3 Resource Supply Analysis
- 4 Average Resource Performance Maximization
- 5 Rejuvenation Strategy Impact Factors
- 6 Conclusion and Future Work

Average Resource Performance Maximization

As $n \in \mathbb{N}$ and $0 \le n \le N_{\text{max}}$, the possible choices of *n* are limited. We present a linear search method to determine N^* maximizing f_{ave} .

Algorithm 1 MAX-AVE-PERFORMANCE

1 $N^* = 0$ 2: $f_{max} = 0$ 3: $N_{\text{max}} = \lfloor \log_p r \rfloor$ 4: for n = 0 to N_{max} do 5: Calculate S_l 6: $f_{ave} = S_I/L$ 7: if $f_{ave} > f_{max}$ then 8: $N^* = n$ $f_{max} = f_{axa}$ 9: 10: end if 11: end for 12: return N^* and f_{max}

A (10) > A (10) > A

- 2 Resource Model and Problem Formulation
- 3 Resource Supply Analysis
- 4 Average Resource Performance Maximization
- 5 Rejuvenation Strategy Impact Factors
 - Conclusion and Future Work

A .

We evaluate the rejuvenation strategy impact factors from two aspects:

- the relationship between warm rejuvenation number *n* and average resource performance f_{ave};
- the impacts of warm/cold rejuvenation time cost on the optimal warm rejuvenation number N^* that maximizes the average resource performance f_{ave} .

Relationship between n and f_{ave}

Figure: Average Resource Performance vs Warm Rejuvenation Number

The resource model with two-level rejuvenations achieves 25.22% higher average resource performance than the resource model with one-level rejuvenations (n = 0).

Warm/Cold Rejuvenation Time Cost Impact

(a) Optimal Number of Warm Rejuvena- (b) Maximal Average Resource Perfortions mance

Figure: Warm/Cold Rejuvenation Time Cost Impact

< A

- 2 Resource Model and Problem Formulation
- 3 Resource Supply Analysis
- 4 Average Resource Performance Maximization
- 5 Rejuvenation Strategy Impact Factors
- 6 Conclusion and Future Work

- Propose the resource model using a two-level rejuvenation strategy to combat resource performance degradation due to software aging.
- Formally analyze the resource supply function of the proposed resource model.
- Present the MAX-AVE-PERFORMANCE algorithm to maximize the average resource performance.
- Validate the resource supply analysis through simulations.
- Compared with the resource model with one-level rejuvenations, the proposed resource model with two-level rejuvenations achieves 25.22% higher average resource performance.

- Analyze task schedulability of the resource model with two-level rejuvenations, and study the optimal rejuvenation pattern maximizing the task schedulability.
- Obtain resource performance degradation function from experiments.

< 3 > < 3</p>

4 A N

References

Guo, C., Wu, H., Hua, X., Ren, S., and Nogiec, J. (2015).

Maximize system reliability for long lasting and continuous applications.

In *New Contributions in Information Systems and Technologies*, volume 353 of *Advances in Intelligent Systems and Computing*, pages 603–612. Springer International Publishing.

Hua, X., Guo, C., Wu, H., and Ren, S. (2015).

Schedulability analysis for real-time task set on resource with performance degradation and periodic rejuvenation.

In Embedded and Real-Time Computing Systems and Applications (RTCSA), 2015 IEEE 21th International Conference on.

Huang, Y., Kintala, C., Kolettis, N., and Fulton, N. (1995).

Software rejuvenation: analysis, module and applications.

In Fault-Tolerant Computing, 1995. FTCS-25. Digest of Papers., Twenty-Fifth International Symposium on, pages 381–390.

Koutras, V. and Platis, A. (2011).

Applying partial and full rejuvenation in different degradation levels.

In Software Aging and Rejuvenation (WoSAR), 2011 IEEE Third International Workshop on, pages 20–25.

Chunhui Guo (IIT)

Thank You

Resource Model with Two-Level Rejuvenation

æ