Performance Comparisons of Parallel Power Flow Solvers on GPU System

Chunhui Guo1, Baochen Jiang1, Hao Yuan1, Zhiqiang Yang1, Li Wang2, Shangping Ren2

1Shandong University at Weihai, China
2Illinois Institute of Technology, USA
Outline

1. Background
2. Power Flow Model
3. Power Flow Solver
4. Parallelization
5. Performance Evaluation
6. Conclusion & Future Work
Describe steady state of a power system

Importance
- optimize real-time control of running power systems
- provide essential information for designing new power systems
- provide basics for other power system analysis

Calculation
- involve thousands of equations

Goal
- increase computation speed
Parallel Computing

- Common approaches
 - multi-threading
 - parallel machines
 - distributed systems

- Disadvantages of these approaches
 - special hardware support
 - high cost
 - limited speed improvement
Parallel Computing on GPU

- **GPU (Graphics Processing Unit)**
 - high computing efficiency
 - low price
 - widely used in many fields
 - CUDA (Compute Unified Device Architecture)

- **Current parallel power solvers on GPU**
 - Newton method, Jacobi method

- **What’s missing**
 - comparison among different parallel solvers

- **Our work**
 - parallelize and compare three common power flow solvers
For a power system with \(n \) independent buses, the power equations of bus \(i \) are:

\[
P_i = \sum_{k=1}^{n} |V_i V_k Y_{ik}| \cos(\theta_{ik} + \delta_k + \delta_i) \quad (1)
\]

\[
Q_i = -\sum_{k=1}^{n} |V_i V_k Y_{ik}| \sin(\theta_{ik} + \delta_k + \delta_i) \quad (2)
\]

- \(i, k \): bus number
- \(P \): real power
- \(Q \): reactive power
- \(|V| \): voltage magnitude
- \(\delta \): voltage angle
- \(|Y_{ik}| \): magnitude of admittance between bus \(i \) and bus \(k \)
- \(\theta_{ik} \): angle of admittance between bus \(i \) and bus \(k \)
Equation (1) and (2)

- non-linear
- both $|Y_{ik}|$ and θ_{ik} are known
- in P, Q, $|V|$ and δ, two variables are known
- solvable

In order to calculate power flow, we need to solve the non-linear equations which consist of equation (1) and (2).
Power Flow Solver

- Calculation method
 - Gauss-Seidel solver
 - Newton-Raphson solver
 - P-Q decoupled solver

- Calculate steps
 - Input
 - Rearrange buses
 - Admittance matrix
 - Initialization
 - Iteration
 - Output
Power Flow Solver

- Gauss-Seidel solver
 - use the latest iteration value

- Newton-Raphson solver
 - transform non-linear equations to linear equations by Taylor series
 - coefficient matrix of linear equations (Jacobian matrix) needs to be recalculated in each iteration
 - polar form and rectangular form

- P-Q decoupled solver
 - simplified version of Newton-Raphson solver
 - use imaginary part of bus admittance to replace Jacobian matrix
 - coefficient matrix of linear equations remains unchanged
Speedup Analysis

- We use the multiplication number to estimate the computation cost and does not consider the communication cost between CPU and GPU.
- The speedup is sequential computation cost divided by parallel computation cost.
- For a power system with \(n \) buses, theoretical speedups are

<table>
<thead>
<tr>
<th>Power Flow Solver</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauss-Seidel Solver</td>
<td>0.2n</td>
</tr>
<tr>
<td>Newton-Raphson Solver</td>
<td>2n</td>
</tr>
<tr>
<td>P-Q Decoupled Solver</td>
<td>0.4n</td>
</tr>
</tbody>
</table>
Parallelization

- Two problems
 - Which operations to parallelize?
 - How to parallelize?
- Parallelization operations
 - Bus admittance matrix computation
 - Iteration process
- Parallelization steps
 - Allocate GPU memory
 - Copy original data from CPU to GPU
 - Call kernel to process data
 - Copy result data from GPU to CPU
 - Release GPU memory
Gauss-Seidel Iteration

- **Gauss-Seidel iterative format**

\[
V_{i}^{(k+1)} = \frac{1}{Y_{ii}} \left(\frac{P_{i} - jQ_{i}}{V_{i}^{(k)}} \right) - \sum_{j=1}^{i-1} Y_{ij}V_{j}^{(k+1)} - \sum_{j=i+1}^{n} Y_{ij}V_{j}^{(k)}
\] \hspace{1cm} (3)

\[
Q_{i}^{(k)} = - \text{Im} \left[V_{i}^{(k)} \left(\sum_{j=1}^{i-1} Y_{ij}V_{j}^{(k+1)} + \sum_{j=i}^{n} Y_{ij}V_{j}^{(k)} \right) \right]
\] \hspace{1cm} (4)

- **Parallelization operations**
 - summation operations in equation (3) and (4)
• Parallelization operations
 - Jacobian matrix computation
 - **linear equations solver**

• Jacobian matrix computation

\[
J = \begin{bmatrix}
H & N \\
K & L \\
\end{bmatrix} \tag{5}
\]
P-Q Decoupled Iteration

- Parallelization operations
 - linear equations solver
Linear Equations Solver

- Gaussian elimination method
 - forward elimination
 - back substitution

- Augmented matrix

\[
A = \begin{bmatrix}
a_{11} & \cdots & a_{1k} & \cdots & a_{1n} & a_{1,n+1} \\
\vdots & & \vdots & & \vdots & \vdots \\
a_{k1} & a_{kk} & a_{kn} & a_{k,n+1} \\
\vdots & & \vdots & & \vdots & \vdots \\
a_{n1} & \cdots & a_{nk} & \cdots & a_{nn} & a_{n,n+1}
\end{bmatrix}
\]

(6)

- kth forward elimination step

\[
a_{kj} = \frac{a_{kj}}{a_{kk}}, \quad (j = k + 1 \sim n+1)
\]

(7)

\[
a_{ij} = a_{ij} - a_{ik} \cdot a_{kj}, \quad (i = k + 1 \sim n, \ j = k + 1 \sim n+1)
\]

(8)
Gaussian Forward Elimination (1)

- Kernel to process equation (7)

\[a_{kj} = a_{kj} / a_{kk}, (j = k + 1 \sim n + 1) \] \hspace{1cm} (7)

Algorithm 1 GAUSS ELIMINATION CUDA KERNEL A

Input: Augmented matrix in GPU memory: `augMatrixGPU`, number of rows in matrix `augMatrixGPU`: \(n \), the Gauss forward elimination step: \(k \).

1. \(i \leftarrow \text{blockIdx.x} \times \text{blockDim.x} + \text{threadIdx.x} \)
2. \(j \leftarrow \text{blockIdx.y} \times \text{blockDim.y} + \text{threadIdx.y} \)
3. **if** \(i = k \) and \(j > k \) and \(j < n + 1 \) and \(\text{augMatrixGPU}[k \times (n + 1) + k] \neq 0.0 \) **then**
4. \(\text{augMatrixGPU}[k \times (n + 1) + j] \leftarrow \text{augMatrixGPU}[k \times (n + 1) + j] / \text{augMatrixGPU}[k \times (n + 1) + k] \)
5. **end if**
Kernel to process equation (8)

\[a_{ij} = a_{ij} - a_{ik} \ast a_{kj}, (i = k + 1 \sim n, j = k + 1 \sim n + 1) \]

(8)

Algorithm 2 GAUSS ELIMINATION CUDA KERNEL B

Input: Augmented matrix in GPU memory:
- \(\text{augMatrixGPU} \), number of rows in matrix \(\text{augMatrixGPU} \): \(n \), the Gauss forward elimination step: \(k \).

1. \(i \leftarrow \text{blockIdx.x} \ast \text{blockDim.x} + \text{threadIdx.x} \)
2. \(j \leftarrow \text{blockIdx.y} \ast \text{blockDim.y} + \text{threadIdx.y} \)
3. **if** \(i > k \) and \(i < n \) and \(j > k \) and \(j < n + 1 \) and \(\text{augMatrixGPU}[k \times (n + 1) + k] \neq 0.0 \) **then**
4. \(\text{augMatrixGPU}[i \times (n + 1) + j] \leftarrow \text{augMatrixGPU}[i \times (n + 1) + j] - \text{augMatrixGPU}[i \times (n + 1) + k] \times \text{augMatrixGPU}[k \times (n + 1) + j] \)
5. **end if**
Algorithm 3 GAUSS FORWARD ELIMINATION

Input: Augmented matrix in GPU memory:

- augmentMatrix, number of rows in matrix
- augmentMatrix: n.

1: cudaMalloc((void**)&aguMatrixGPU, sizeof(float) \times n \times (n + 1))
2: cudaMemcpy2D(aguMatrixGPU, sizeof(float) \times (n + 1), aguMatrix, sizeof(float) \times (n + 1), sizeof(float) \times (n + 1), n, cudaMemcpyHostToDevice)
3: dim3 blockDim(22, 22)
4: dim3 gridDim((n+blockDim.x−1)/blockDim.x, (n+1+blockDim.y−1)/blockDim.y)
5: for k ← 0 to n − 1 do
6: GaussKernelA <<< gridDim, blockDim >>> (aguMatrixGPU, n, k);
7: GaussKernelB <<< gridDim, blockDim >>> (aguMatrixGPU, n, k);
8: end for
9: cudaMemcpy2D(aguMatrix, sizeof(float) \times (n + 1), aguMatrixGPU, sizeof(float) \times (n + 1), sizeof(float) \times (n + 1), n, cudaMemcpyDeviceToHost)
10: cudaFree(aguMatrixGPU)
Performance Evaluation

- **Experiment platform**
 - host: Intel i3-2100 CPU(3.10GHz) & 2G RAM
 - device: Nvidia GeForce GTS450 GPU(192 CUDA cores & 1G RAM)
 - software: Windows 7, CUDA 4.0

- **Experiment power systems**

<table>
<thead>
<tr>
<th>System</th>
<th>Bus Count</th>
<th>Branch Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>IEEE30</td>
<td>30</td>
<td>41</td>
</tr>
<tr>
<td>IEEE118</td>
<td>118</td>
<td>186</td>
</tr>
<tr>
<td>IEEE300</td>
<td>300</td>
<td>357</td>
</tr>
<tr>
<td>Shandong</td>
<td>974</td>
<td>1449</td>
</tr>
</tbody>
</table>
Experiment Result (1)

- Gauss-Seidel solver

<table>
<thead>
<tr>
<th>System</th>
<th>CPU Runtime (s)</th>
<th>GPU Runtime (s)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE9</td>
<td>0.0001</td>
<td>0.3276</td>
<td>0.0003</td>
</tr>
<tr>
<td>IEEE30</td>
<td>0.002</td>
<td>0.7051</td>
<td>0.0028</td>
</tr>
<tr>
<td>IEEE118</td>
<td>0.023</td>
<td>3.2963</td>
<td>0.007</td>
</tr>
<tr>
<td>IEEE300</td>
<td>0.3428</td>
<td>7.2992</td>
<td>0.047</td>
</tr>
<tr>
<td>Shandong</td>
<td>1.2147</td>
<td>19.603</td>
<td>0.062</td>
</tr>
</tbody>
</table>
Newton-Raphson solver

<table>
<thead>
<tr>
<th>System</th>
<th>CPU Runtime (s)</th>
<th>GPU Runtime (s)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE9</td>
<td>0.0015</td>
<td>0.0094</td>
<td>0.1596</td>
</tr>
<tr>
<td>IEEE30</td>
<td>0.0098</td>
<td>0.0094</td>
<td>1.0426</td>
</tr>
<tr>
<td>IEEE118</td>
<td>0.3132</td>
<td>0.1997</td>
<td>1.5684</td>
</tr>
<tr>
<td>IEEE300</td>
<td>4.689</td>
<td>2.6848</td>
<td>1.7465</td>
</tr>
<tr>
<td>Shandong</td>
<td>583.831</td>
<td>10.881</td>
<td>53.656</td>
</tr>
</tbody>
</table>
Experiment Result (3)

- P-Q decoupled solver

<table>
<thead>
<tr>
<th>System</th>
<th>CPU Runtime (s)</th>
<th>GPU Runtime (s)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE9</td>
<td>0.0047</td>
<td>0.0047</td>
<td>1.0</td>
</tr>
<tr>
<td>IEEE30</td>
<td>0.0081</td>
<td>0.0125</td>
<td>0.648</td>
</tr>
<tr>
<td>IEEE118</td>
<td>0.1137</td>
<td>0.117</td>
<td>0.9718</td>
</tr>
<tr>
<td>IEEE300</td>
<td>1.5107</td>
<td>1.1606</td>
<td>1.3017</td>
</tr>
<tr>
<td>Shandong</td>
<td>148.974</td>
<td>5.5068</td>
<td>27.0527</td>
</tr>
</tbody>
</table>
Result Analysis

![Graph showing speedup vs system size for different solvers]

- Gauss-Seidel solver
- Newton-Raphson solver
- P-Q decoupled solver

The graph illustrates the speedup achieved with increasing system size for each solver.
Conclusion

- Parallelize three power flow solvers on GPU
 - bus admittance matrix computation
 - iteration process

- Compare speedup of three parallel power flow solvers
 - Newton-Raphson solver: best
 - P-Q decoupled solver: middle
 - Gauss-Seidel solver: worst
Future Work

- Improve speedup
- Reduce computation time
- Study different applications
- …
Thank You!

Q & A

Chunhui Guo chunhui.guo@hotmail.com