Rules and Axioms

Rule A1: Decomposition

$$
\begin{aligned}
& \vdash_{p}\{p\} S\{q\}, \\
& \vdash_{t}\{p\} S\{\text { true }\} \\
& \hline\{p\} S\{q\}
\end{aligned}
$$

Axiom A2: Invariance

$$
\{p\} S\{p\}
$$

where $\operatorname{free}(p) \cap \operatorname{change}(S)=\phi$

Rule A3: Disjunction

$$
\frac{\{p\} S\{q\},\{r\} S\{q\}}{\{p \vee r\} S\{q\}}
$$

Rule A4: Conjunction

$$
\frac{\left\{p_{1}\right\} S\left\{q_{1}\right\},\left\{p_{2}\right\} S\left\{q_{2}\right\}}{\left\{p_{1} \wedge p_{2}\right\} S\left\{q_{1} \wedge q_{2}\right\}}
$$

Rule A5: \exists-Introduction

$$
\frac{\{p\} S\{q\}}{\{\exists x: p\} S\{q\}}
$$

where x does not occur in S or in $\operatorname{free}(q)$.
Rule A6: Invariance

$$
\frac{\{r\} S\{q\}}{\{p \wedge r\} S\{p \wedge q\}}
$$

where $\operatorname{free}(p) \cap \operatorname{change}(S)=\phi$

Rule A7: Substitution

$$
\frac{\{p\} S\{q\}}{\{p[\bar{u}:=\bar{t}]\} S\{q[\bar{u}:=\bar{t}]\}}
$$

where $\bar{u} \notin \operatorname{var}(S) \wedge \bar{t} \notin \operatorname{change}(S)$.

Proof System Rules

Axiom 1: Skip

$$
\{p\} \text { skip }\{p\}
$$

Axiom 2: Assignment

$$
\{p[u:=t]\} u:=t\{p\}
$$

Rule 3: Composition

$$
\frac{\{p\} S_{1}\{r\},\{r\} S_{2}\{q\}}{\{p\} S_{1} ; S_{2}\{q\}}
$$

Rule 4: Conditional

$$
\frac{\{p \wedge B\} S_{1}\{q\},\{p \wedge \neg B\} S_{2}\{q\}}{\{p\} \text { if } B \text { then } S_{1} \text { else } S_{2} f i\{q\}}
$$

Rule 5: Loop

$$
\frac{\{p \wedge B\} S\{p\}}{\{p\} \text { while } B \text { do } S \text { od }\{p \wedge \neg B\}}
$$

Rule 6: Consequence

$$
\frac{p \rightarrow p_{1},\left\{p_{1}\right\} S\left\{q_{1}\right\}, q_{1} \rightarrow q}{\{p\} S\{q\}}
$$

Rule 7: Loop II

$$
\begin{aligned}
& \{p \wedge B\} S\{p\} \\
& \{p \wedge b \wedge t=z\} S\{t<z\} \\
& p \rightarrow t \geq 0 \\
& \hline\{p\} \text { while } B \text { do } S \text { od }\{p \wedge \neg B\}
\end{aligned}
$$

where t is an integer expression and z is an integre variable that does not appear in p, B, t, or S.

Rule 8: Recursion

$$
\begin{aligned}
& \left\{p_{1}\right\} P_{1}\left\{q_{1}\right\}, \ldots,\left\{p_{n}\right\} P_{n}\left\{q_{n}\right\} \vdash\{p\} S\{q\}, \\
& \left\{p_{1}\right\} P_{1}\left\{q_{1}\right\}, \ldots,\left\{p_{n}\right\} P_{n}\left\{q_{n}\right\} \vdash\left\{p_{i}\right\} S_{i}\left\{q_{i}\right\}, i \in\{1, \ldots, n\}, \\
& \{p\} S\{q\}
\end{aligned}
$$

where $D=P_{1}:: S_{1}, \ldots, P_{n}:: S_{n}$ (this rule is not covered in class).

Rule 9: Recursion II

(not covered in class)

Rule 10: Block

$$
\frac{\{p\} \bar{x}:=\bar{t} ; S\{q\}}{\{p\} \text { begin local } \bar{x}:=\bar{t} ; S \text { end }\{q\}}
$$

where $\operatorname{var}(\bar{x}) \cap \operatorname{free}(q)=\phi$

Rule 11: Instantiation

(not covered in class)

Rule 12: Recursion III
(not covered in class)

Rule 13: Recursion IV

(not covered in class)
Axiom 14: Assignment to Instance Variables

$$
\{p[u:=t]\} u:=t\{p\}
$$

where u is a (simple or subscripted) instance variable.
Rule 15: Instantiation II - Method Instantiation

$$
\frac{\{p\} y \cdot m\{q\}}{\{p[y:=s]\} \operatorname{s.m}\{q[y:=s]\}}
$$

where D is the set of method declarations, $y \notin \operatorname{var}(D)$ and $\operatorname{var}(s) \cap \operatorname{change}(D)=$ ϕ.

Rule 16: Recursion V

$$
\begin{aligned}
& \left\{p_{1}\right\} P_{1}\left\{q_{1}\right\}, \ldots,\left\{p_{n}\right\} P_{n}\left\{q_{n}\right\} \vdash\{p\} S\{q\}, \\
& \left\{p_{1}\right\} P_{1}\left\{q_{1}\right\}, \ldots,\left\{p_{n}\right\} P_{n}\left\{q_{n}\right\} \vdash \\
& \quad\left\{p_{i}\right\} \text { begin local this }:=s_{i} ; S_{i} \text { end }\left\{q_{i}\right\}, i \in\{1, \text { ldots }, n\} \\
& \{p\} S\{q\}
\end{aligned}
$$

where $m_{i}:: S_{i} \in D$ for $i \in\{1, \ldots, n\}$. Its simplified version is

$$
\frac{\{p\} \text { begin local this }:=s ; S \text { end }\{q\}}{\{p\} \operatorname{s.m}\{q\}}
$$

where $D=m:: S$.

