## Preliminaries — First Order Predicate Logic

#### Shangping Ren

Department of Computer Science Illinois Institute of Technology

January 15, 2014

Shangping Ren

Preliminaries - First Order Predicate Logic

January 15, 2014 1 / 25

## Logic as a Formal System

- Truth can be formalized (partially....)
- We will start with First Order Predicate Logic

## Symbols

Constants *T*, *F* — True and False Variables *x* — Use lowercase, possible subscripts. Predicates and Sets *P* — Uppercase letters. Connectives  $\lor \land \rightarrow$  ( )  $\neg \forall \exists . \in$ 

#### Sentences

Valid sentences include

If  $E_1$  and  $E_2$  are valid sentences in FOPL, then so are...

$$\begin{array}{lll} E_1 \wedge E_2 & E_1 \vee E_2 & \neg E_1 \\ (E_1) & E_1 \rightarrow E_2 \\ \exists x.E_1 & \exists x \in S.E_1 \\ \forall x.E_1 & \forall x \in S.E_1 \end{array}$$

Where x is a variable, P is a predicate, and S is a set.

< ロ > < 同 > < 回 > < 回 >

## Rewriting

- Given a true logical statement, we can transform them or combine them to make more logical statements.
- The idea of rewriting terms to make simpler, equivalent terms is at the heart of programming.
- It is also a common proof technique.

< ロ > < 同 > < 回 > < 回 >

## Properties of $\wedge$ and $\vee$

| Identities                          | $\neg T = F  \neg F = T$<br>$x \land x = x  x \lor x = x$<br>$x \land F = F  x \lor F = x$<br>$x \land T = x  x \lor T = T$                                     |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Commutative                         | $\begin{array}{l} x \wedge y = y \wedge x \\ x \vee y = y \vee x \end{array}$                                                                                   |
| Associative                         | $ \begin{array}{l} x \wedge (y \wedge z) = (x \wedge y) \wedge z \\ x \vee (y \vee z) = (x \vee y) \vee z \end{array} $                                         |
| Distributive                        | $egin{aligned} & x \wedge (y \oplus z) = (x \wedge y) \oplus (x \wedge z) \ & x \lor (y \oplus z) = (x \lor y) \oplus (x \lor z) \end{aligned}$                 |
| De Morgan                           | $ egin{aligned} end{aligned} end{aligned} end{aligned} = & \neg x \land \neg y \\ end{aligned} end{aligned} end{aligned} = & \neg x \land \neg y \end{aligned}$ |
| Excluded Middle $\neg x \lor x = T$ |                                                                                                                                                                 |

<ロト <回 > < 回 > < 回 > < 回 > … 回

Instead of simple variables, we will use some predicates from arithmetic.

Is it true that  $\neg(\neg(x < 0) \land \neg(x > 0))$  ?

$$n(\neg(x < 0) \land \neg(x > 0)))
 (x < 0) \lor (x > 0))
 (x \neq 0$$

Each line of the proof should have the step and its justification. Note that equality has *three* cases!

Instead of simple variables, we will use some predicates from arithmetic.

Is it true that  $\neg(\neg(x < 0) \land \neg(x > 0))$ ?

Start $\neg(\neg(x < 0) \land \neg(x > 0))$ De Morgan $((x < 0) \lor (x > 0))$ Definition of  $\lor$  and  $= x \neq 0$ 

Each line of the proof should have the step and its justification. Note that equality has *three* cases!

イロト 不得 トイヨト イヨト

#### **Exercise 1**

- Prove that  $\neg x \land x = F$ .
- What will your strategy be? (Forward / Backward)

Start $\neg x$ Negate both sides $\neg$  (-De Morgan $x \lor$ Excluded MiddleT =

$$\neg x \land x = F$$
  

$$\neg (\neg x \land x) = T$$
  

$$x \lor \neg x = T$$
  

$$T = T$$

#### **Exercise 1**

- Prove that  $\neg x \land x = F$ .
- What will your strategy be? (Forward / Backward)

Start¬.Negate both sides¬De MorganxExcluded MiddleT

$$\neg x \land x = F$$
  

$$\neg (\neg x \land x) = T$$
  

$$x \lor \neg x = T$$
  

$$T = T$$

## Implication

The symbol  $\rightarrow$  is convenient, but completely unnecessary.

$$x \to y \equiv \neg x \lor y$$

"If x is true, then y is true. But if x is false, we know nothing about y."

Also, you should know about *Modus Ponens*...  $x \land (x \rightarrow y) \rightarrow y$ 

Example: All Chicago winters are cold. Jan. 16 is in winter. Therefore, Jan. 16 is cold.

< ロ > < 同 > < 回 > < 回 >

If you skip the final, you will fail the course. Suppose you take the final. Is it true that you pass the course?

Let *s* be "skipped final", and let *e* be "failed course" (since f is already taken).

Then we want to solve  $(\neg s \land (s \rightarrow e)) \rightarrow \neg e$ .

Try to solve it.

٠

#### Exercise 2

Start $(\neg s \land (s \rightarrow e)) \rightarrow \neg e$ Substitute $(T \land (F \rightarrow e)) \rightarrow \neg e$ Def of  $\land$  $(F \rightarrow e) \rightarrow \neg e$ Def of  $\rightarrow$  $(T \lor e) \rightarrow \neg e$ Def of  $\lor$  $T \rightarrow \neg e$ Def of  $\lor$  $F \lor \neg e$ Def of  $\lor$  $\neg e$ What does this tell us?

-

イロト 不得 トイヨト イヨト

## Exists and For All

We will use several notations.

- $\forall x \in S.P(x)$
- $\exists x \in S.P(x)$

If the domain of x is understood, we can write:

- $\forall x.P(x)$
- $\exists x.P(x)$

We can also treat a set like a predicate.

• 
$$\forall x.S(x) \rightarrow P(x)$$

•  $\exists x.S(x) \land P(x)$ 

Be careful: the following mean different things than what we have already shown.

- $\exists x.S(x) \rightarrow P(x).$
- $\forall x.S(x) \land P(x)$ .

3

A (10) A (10)

# An important identity

$$\neg \exists x. \neg P(x) \equiv \forall x. P(x)$$
$$\neg \forall x. \neg P(x) \equiv \exists x. P(x)$$

2

イロン イ理 とく ヨン イヨン

#### **Exercise 3**

Write logical formulas for the following. Make up notation if you need to. We will introduce formal notation later.

- All apples are bad.
- Some apples are bad.
- Not all apples are bad.
- Some apples are not bad.
- Are the last two equivalent? Prove or disprove.
- There is an element in the array A that is greater than zero.
- Every student in the class scored more than 90% on the exam.

イロト イポト イラト イラト

## **Expressing Bad Apples**

- All apples are bad...
  - $\forall x.A(x) \rightarrow B(x)$
  - $\forall x \in A.B(x)$
  - Why not  $\forall x.A(x) \land B(x)$ ?
- Some apples are bad...
  - $\exists x.A(x) \land B(x)$
  - $\exists x \in A.B(x)$
  - Why not  $\exists x.A(x) \rightarrow B(x)$ ?
- Not all apples are bad.
  - $\neg \forall x. A(x) \rightarrow B(x)$
  - $\neg \forall x \in A.B(x)$
- Some apples are not bad.
  - $\exists x.A(x) \land \neg B(x)$
  - $\exists x \in A. \neg B(x)$

3

## Not all apples are bad vs some apples are not bad.

# Is "not all apples are bad" the same as saying "some apples are not bad"?

Start Negation Def of  $\rightarrow$ De Morga  $\neg \forall x.A(x) \rightarrow B(x) \\ \exists x. \neg (A(x) \rightarrow B(x)) \\ \exists x. \neg (\neg A(x) \lor B(x)) \\ \exists x. (A(x) \land \neg B(x))$ 

## Not all apples are bad vs some apples are not bad.

#### Is "not all apples are bad" the same as saying "some apples are not bad"?

Start

 $\neg \forall x. A(x) \rightarrow B(x)$ Negation  $\exists x. \neg (A(x) \rightarrow B(x))$ Def of  $\rightarrow \exists x. \neg (\neg A(x) \lor B(x))$ De Morgan  $\exists x.(A(x) \land \neg B(x))$ 



- There is an element in the array *A* that is greater than zero.
- Every student in the class scored more than 90% on the exam.

## Formulas as Diagrams

- A formula expresses true conditions.
- The variables in the formula create a coordinate range.



**A b** 

## Formulas as Diagrams



2

イロト イヨト イヨト イヨト

## $A \lor B$



Shangping Ren

Preliminaries — First Order Predicate Logic

January 15, 2014

(日)、(四)、(日)、(日)、(日)

20 / 25

## $A \wedge B$



January 15, 2014 21 / 25

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ のへで

## A ightarrow B



◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ のへで

## Strength of a Predicate

- If A → B, then A is said to be stronger than B, and B is said to be weaker than A.
- A is more restrictive than B—it will be true less often than B.
- This contrast will be very important later!
- Which is stronger? x > 5, or x > 20.
- Which is stronger?  $A \land B$ , or  $A \lor B$ ?
- Which is weaker? A, or  $A \lor B$ ?
- Which is weaker? A, or  $A \wedge B$ ?
- Is A weaker than A? (no, not a typo.)

イロト イポト イラト イラト

## Weakening

You have many options if you want to weaken a predicate.

- Add a disjoint. (E.g., A becomes  $A \lor B$ .)
- Delete a conjunct. (E.g.,  $A \land B$  becomes A.)
- Replace a constant with a range. (E.g., i = n becomes  $0 \le i \le n$ .)

Questions:

- What is the strongest possible predicate?
- What is the weakest possible predicate?
- Can you prove it?
- Is it possible to have two predicates *A* and *B* such that neither is weaker than the other?

#### **Exercise 4**

- When is  $T \rightarrow x$  true?
- When is  $F \rightarrow x$  true?
- Suppose x → y ∧ y → z. Suppose also ¬x. Can z be true? Must z be true?
- Suppose  $\forall x.S(x) \rightarrow P(x)$ . Which of the following are true?
  - $\exists x.S(X) \land P(X)$
  - $\exists x. \neg S(X) \land P(X)$
  - $\exists x.S(X) \land \neg P(X)$ •  $\exists x \neg S(X) \land \neg P(X)$
  - $\exists x. \neg S(X) \land \neg P(X)$

3